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Graphical Models

* One of the most important tools in your
machine learning and Al inference toolbox

« Scott’s applied view on GMs:
— Formalizing intuitions
 Build from ground up
— Implementation

* |f you can implement it,
then you understand it!

 Models and data structures




Graphical Models

Definition:
— compact specification of joint probability
—e.g., have the binary variables B, F, A, H ,P:

Bubonic e
Appendicitis
Severe Abdominal
Headache Pain

GMs can represent P(B,F,A,H,P) compactly



Graphical Models

What makes it compact?
— specify conditional independence (Cl) with edges

Bubonlc

-

Severe Abdominal
Headache Pain

(note: graphical b/c graph properties = CI)



Graphical Models

* Why should you care?

—EXxponential space savings in
representation

—Exponential time savings in inference

—Exponential data complexity reduction
 # samples needed to learn “good” model
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Foundations




Random Variables

* For the purpose of this tutorial

— Random variable (RV) denoted by uppercase letter
ceg.,X

— RVs take value assighments X = x where X is a

 Discrete RV if - ‘ ~
— X is in a countable set (binary: x € {0,1}; or dice) - ’

« Continuous RV if
— X is in an uncountable set (real: x € Reals)

— Write x € X for possible value assignments of X

\ Notation abuse ]




Random Variables

* Probabillity distributions
— For all x, P(X =x) € [0,1]

— P(X = x) is a proper distribution
* Discrete RV:

> P(X=x) =1 Y

e Continuous RV:
| P(X =x)dx =1

— Write P(x) for P(X=x), write P(X) for full distribution




Random Variables

* Representing probability distributions

— Discrete RV: tabular

P(X) =

S [QIEN NI
W]~ |~ [<]|T
‘
°«
_".

— Continuous / = RV: function /\
e.g., P(X=x) o exp (X - u)?/c?— ~



Joint Distributions on RVs

 Aliens in your backyard

P(R,C) =




Joint Distributions on RVs
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Joint Distributions on RVs

Aliens in your backyard C=1  C=2
R| C | Pr
11110 R=1 0 4
PRC)=[71]2] .4
21 1|.2 .
21 2] 4 = 2 4

P(R=2,C=2) =2\Marginalize over C |
P(R=2) = 22 P(R=2,C=C) = .6

P(R=1|C=2) = P(R=1,C=2)/P(C=2) = .5
YCondition on C=2 ’ [Example from Andrew}

Moore @ CMU/Google




Rules of Probability

« Joint and conditional distributions:

P(A, B) = P(A|B) - P(B) = P(B|A) - P(A)

« Marginalization: — —
Don’t memorize!

P(A)=  P(A,B=10) | Derive from first
beB - principles! P

« Conditional probability & Bayes rule:

" P(A,B)  P(B|A)-P(A)
PUIB) = 5By =~ P(Bla)- Pla)




Manipulating Distributions
« Sometimes we don'’t just want P(R=1,C=2) = .4

 We want to work with full distributions P(R,C)

R| C | Pr

INTMEN(S

111
112
211
2| 2

* How to apply previous rules to full distributions?
— easy, just do once for each case and store in table...



Manipulating Discrete Distributions

« Marginalization

P(A,b) = P(A)
b
A B | Pr
01 01]|.1 A | Pr
o\ 11].3 — | 0| 4
b 110].2 I 1.6
1| 1] 4




Manipulating Discrete Distributions

« Binary Multiplication

P(A) - P(B|A) = P(A,B)
A B | Pr A B | Pr
A_| Pr 0| 0.1 0| o ].07
0 1.7 o119 = ol 1].e63
L |3 11012 110 |.06
1 1.8 1|1 |24

« Same principle holds for all binary ops
— +, -, /, max, etc...



Nearing End of Prob 101

* We can
— represent joint distributions
— marginalize
— condition
— perform Bayes rule

« Q: But why is this useful?

* A: All you need to answer probabilistic queries



Fundamental Operation of
Probabillistic Inference

* Problem:
— Given a joint distribution P(B,F A ,H,P)

Bubonic e
Appendicitis
Severe Abdominal

Headache Pain

— Given evidence: H=true, P=false

— Want to know probability of B given evidence

« Answer: evaluate P(B | H=true, P=false)



Computing Probabilistic Queries

Evaluate: P(B | H=true, P=false) B |..| P |Pr
given: P(B,F,A,H,P) as table —— | 7rue| ... | true .03

Step 0: Select lines for evidence in table
— Reduce from 32 to 8 rows

Step 1: Marginalize out non %uer}/ / non-evidence RVs
— P(B, H=true, P=false) = a, H=true, P=lalse)

Step 2: Marginalize out query
— P(H=true, P=false) = >, P(B=b, H=true, P=false)

Step 3: Evaluate conditional probability
— P(B | H=true, P=false) = P(B, H=true, P=false)

P(H=true,P=false)




Key Points

« (Goal is to do probabilistic inference

* Need a joint distribution
— RVs specified by human
— Parameters can be learned (later)

« All probabilistic queries P(Q|E) computed by
— Instantiation of RVs (evidence)
— Marginalization,
— Multiplication & division on distributions



Learning Check

« Given joint probability over discrete RVs

X | oo | Xy | Pr
0 |.03

S

P(X15 ey X20) —_

represented in tabular format

... can you write code to compute query, e.qg.,
P(X4,X11 | X4:X7,X47)7?
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Directed Graphical Models.




Probabilistic Queries in the Real World

e Just need a

— Joint distribution
— operations (marginalization, binary ops)

and we can compute any prob. query, right?

 If available time, space, and data are infinite



Let’'s Look at a
Medical Example

(one of the first fielded
applications of graphical models)



Scurvy, it's not just for Pirates

* You're a doctor
— You regularly diagnose about 100 ailments
— As evidence you use 200 tests / questions

Bubonic
Severe Abdominal
Headache Pain



Joint Distributions, Problem 1:

 How do you represent a joint distribution over
300 binary variables?

X | - | X | Pr
0O 0] 01].03
0|0 | 11].0]

« Tabular? 239 — 1 rows!



Joint Distributions, Problem 2:

* You’re Google and 239 js a small number
— So tabular doesn’t scare you

Xl e oo X3OO Pr
O |...] 0 |.01

 How long does it take to compute P(QIE)?
— Note: have to visit each row at least once

« Takes time Q(2300)



Joint Distributions, Problem 3:

* You've sipped from the fountain of youth

— S0 you have an eternity

 How much data does it take to learn probabilities
— Remember alien spaceships? Just frequency ratios
— Note: need a fair number of samples (307) per row

Xy

. X3OO

Pr

0

0

01

* Need at least Q(30 - 2300) |abe

— I.e., doctor visits

ed examples



Sorry folks, tutorial is over

Using probabilities Iin
practice is hopeless



Scurvy to the rescue, sort of

* Not all variables important in predicting others

: 100 Days Occupation:
. ? .
Facts: Flea bite 0 fruits Pirate
. Bubonic
Ailments: E

mptoms: ([ Severe
Sy P Headache

* In predicting Scurvy, do Flea bites matter?

— Should be able to predict scurvy probability from




Exploiting Structure

« Key idea is to exploit known dependences
— Draw arc when one variable known to influence other
— For directed GMs, any directed acyclic graph (DAG) is allowed

: 100 Days Occupation:
= 2 .
Facts: Flea bite” o fruns Pirate
Ailments:

Bubonic
Plague
Symptoms: Severe
ymp Headache



Conditional Independence |

« Every DAG implies set of conditional independences
— Use thick ovals for evidence, double ovals for query

: 100 Days Occupation:
u ') .
Facts: el gl no fruits Pirate
. Bubonic
Ailments: - e

Severe
m m

« Then following are two of the Cl (|| ) implications:

S1 B|D,P S F|D,P



Conditional Independence |

« Every DAG implies a set of conditional independences
— Use thick circles for evidence, double circle for query

: 100 Days Occupation:
= [p) :
- Bubonic
Ailments:
New
evidence
. Severe
m ms.:
Sy pto S Headache

« Then following two are not CI ( || ) implications:

S 1| B{PP,G SW



Conditional Independence llI

« That's odd... adding evidence made previously
iIndependent variables now dependent

« Diagnosis example
— Measles, Flu, Cough

Explaining
- Note what happens to Cl when C (un)observed: . 2%

M 1L F|) M WFTT




Conditional Independence IV

= > - = Howtotell what Cls implied
—-O—- —-O—- by directed GM?

» Graph-theoretic property

= el L called dependency
= O : separation (D-separation)
—  — A » Compute using “Bayes ball
) ( }- _O — Observed nodes shaded
— X &Y are Cl iff bounce a ball
from Xto Y (or reverse) using
Bayes-Ball Rules In A Nutshell bouncing rules at left

Graphic borrowed from htip://ergodicity.net/2009/12/08/bayes-ball-in-a-nutshell/




Conditional Independence V

 |s a directed link causal?
* Not necessarily @
— Ccan represent exact

same GM using...

— Implies same Cls

Latent variable
(always
unobserved)

Cancer and smoking
Predisposition gene



OK, So DAG implies Cls

But still don't know how to
represent, infer, learn...



« Simple BN rule for joint
— Write down product of

Bayes nets (BNs): Directed GMs
no fruits Pirate
all variables conditional
on parents (if any)

- P(D.P.8,G) = P(G[S) P(SID.P) P(D) P(P)
 |If network is a DAG
— Always gives a proper joint distribution

— Cls are probabilistic independences!

* Note compactness by exploiting (in)dependences
— How many parameters in tabular joint? 31
— How many parameters in this BN? 8



Graphical Model Example |

— Each node has associated conditional probability
— Root nodes correspond to prior probabilities

P(azl) @P(CBQ). B n P(an)

@P(y|$17 cees xn) parameters?

P(y,z1,...,xn) = P(ylz1, ..., 0)P(x1) - - - P(xy,)



Graphical Model Example Il

— Model for naive Bayes classifier

How many
parameters?




Aside: Probabillistic Independence

 Conditional independence for Bayes nets
implies probabilistic independence

A1l B= P(A,B) = P(A) - P(B)

A 1l B|C = P(A, B|C) = P(A|C) - P(B|C)



It's Query Time

» Clear space savings for joint distribution
using some graphical models

» Can also exploit graphical model structure
during probabillistic query evaluation...

—e.g., variable elimination (VE)



Variable Elimination (VE) |K\/

« When marginalizing over vy, try to factor out all
probabilities independent of y:

P(X1) = P(ylz1, ..., zn)P(X1) - - - P(zn)
Y, L2y..., In,
= P(X1) P(x2)--- Plzn)  Py|Xy, ..., zn)
O(l) L2yeuny In Y :O(l)

=0(n)

complexity in]
— Curly braces show number of FLOPS tabular case?
— S0 this query can be done efficiently in GM




Variable Elimination (VE) ||K\/

 When marginalizing over x, try to factor out
all probabilities independent of x:

P(Y) = P(Y|z1,....zn)P(z1) - - P(zn)
Diff t
O(27+1)

— Curly braces show number of FLOPS
— So this query cannot be done efficiently in GM



Variable Order Matteréﬁ\.@/@

 QOriginal query, different variable elim. order:

P(X1) = P(ylz1,...,xn) P(X1) - P()
Y, L2y.eeyLpy
Original | —
Query . P(X1)P(x3) - P(zn) P(x2) P(y| X1, ..., p)
s L3 yeeey Ly To
=0(2n+1)

« With different variable order: O(n) — O(2n+1)

— Good variable order:
* minimize #vars in largest intermediate factor

e a.k.a., ~tree width (TW) = n+1
. : . W Actually TW+1
— Graphical model inference is ~O(2'") but the point is

exponential




Query Types

« Marginals
— P(X), P(Y|evidence)
— As previously shown using VE

« Clique marginals
— P(X,Y), P(X,Y|evidence)
— Trivial for VE, not so for some other inference algorithms

* Most probable explanation (MPE)
— Also known as MAP (but not in MAP parameter sense)
— Instead of 2., I ] for marginals, use argmax,, 1]
— Still uses VE

 Just generalized distributive law (SM Aji, 2000)
(works in any commutative semiring like 2. [ or max [])



Parameter Estimation

» Maximum Likelihood (ML) £Closed-form]
— — for Gaussian,
0" = arg max P(D| ) Binomial, etc.
0

« Maximum a Posteriori (MAP)

0* = argmax P(0|D) Just ML
7] with a prior

o< argmax P(D|0)P(0)
0

« Bayesian: maintain distribution over models

P@ID) P(D\§‘>P<5>{'P£ZL?P::}

integral




ML for Naive Bayes Graphical Model

« Estimate ML parameters for following GM
— Assume all variables are binary

X

n|—|m|H
n|mH| <
D
b
_|




Max Likelihood for Naive Bayes

L(6)

—

0" = arg max P(D|0)
Z

= arg max Pyt 2%, ..., 2%10)
Y deD

=argmax  P(af,...,z%y", 6)P(y|0)
Y deD

—argmax  P(y%d)  P(zd|y?,0)
0

deD =1
n
= arg max Q?Ey:T[d] (1-— Qy)ﬂy:F[d] Qi?f;:imi:T[d] (1- Qy:v,i)ﬂy:v,mizp[d]
deD 1=1ve{F,T}
n
= argmax T (1 - 0,) 7P Oy (L Oy ) Pvmeimimr

0 i=1ve{F,T}

= argmax #Dy—_rlog 0, + #D,—rlog(1 — 0,)+
o

n

#Dy:v,xi:T log ey:v,i + #Dy:v,xi:F 10g(1 — (gy:v,z’)
i=1 ve{F,T}

-

1(6)



Max Likelihood for NB (Cont.)

« Unique maxima for log-linear models at slope =0

81(5) _ #Dy=r  #Dy=r

=0
o0, 0, (10,
0, _ #Dy_r
(1—-0y) #Dy—r

B #Dy:T + #Dy:F

—

81(9) _ #Dy:'v,xi:T _|_ #Dy:U,CIZi:F

=0
aey:v,i Qyzv,i (1 - eyzv,i)
Q?J:U,i _ #Dy:v,aci:T
(1 - Qy:v,i) #Dyzv,xi:F

9 . #Dy:v,xi:T
Yy=v,1 —
#Dyzv,wizT + #Dy:v,azi:F

« ML parameters are just the empirical probabilities!



ML Parameters for General Bayes Nets
* Recall the scurvy network
— Joint is product of four

Occupation:
Pirate
conditional probabilities

- P(D,P,S,G) = P(GIS) P(S|D,P) P(D) P(P)
- Get ML conditional probability %

tables from empirical data counts

100 Days
no fruits

Freq(G=true,S=true)

_ Eg, P(G=true|S=trU9) = Freq(S=true)



Bayes Net Recap

 What we covered
— Laws of probabilities
— Discrete representation and operations

— Use graphical models to structure joint dist.
« Edges represent conditional dependences

— Variable elimination inference to exploit structure

» Benefits
— Compact representation
— Robust learning of params (more data per parameter!)

— Can often do efficient inference Depends on
model, query.




Other Inference Algorithms

 Exact

— Junction tree

« think of as VE on modified graph with cached pre-
computations of intermediate factors

» only use if repeated queries with same evidence

* Approximate

— Biased
« Loopy belief propagation
— just like it sounds, exact on trees, efficient for all marginals

— Unbiased
« Sampling (Rejection, Importance, MCMC — Gibbs)



Structure Learning

Have explored parameter learning for a fixed DAG
But what about learning the DAG itself?

For Bayes Nets, many approaches
— All search in space of DAGs
« Usually greedy search with incremental modifications
— Find DAG that trades off log likelihood with model complexity

— Local changes in structure incur local changes in log likelhood
« So search is relatively efficient

Not so well explored for undirected models
— Local changes require recalculating all parameters
— See Koller, Welling for some ideas in recent years



Other RVs

* For continuous / « integer case

pi NV

— GGaussians
« Closed-form
 Nice properties for loopy BP (exact means)

— oo [nteger or non-Gaussians
* Requires symbolic function representation, integration

« Some useful approximation techniques
— MCMC Sampling (Gibbs)
— Variational
— Expectation propagation

* We only focused on discrete probabilities
— But all ideas generalize (Cl & distributive law)



Other Graphical Models

Markov Random Fields (MRFs)
Factor Graphs (generalization of BNs and MRFs)

@_

—(x,)

Variables take
on possible
configurations

Factors denote
“compatibility”
of configurations

@_

—®

Still product of factors, but need 1/Z normalizer
— Product no longer guaranteed to sum out to 1

Inference same (1/Z is a constant)
Parameter estimation different (if not Bayes net)

— No closed-form solution like Bayes net emprirical counts
— Have to use gradient descent or other method



Other Training Criteria

Max likelihood Just empirical
counts, used

— generative models, shown previously most in practice

Max conditional likelihood

— discriminative models (conditional random fields)
« don’t model features!

— No closed-form gradient descent
* inference required to compute gradient

Pseudolikelinood (Besag, 1975)

— “local” training of discriminative models
— asymptotically consistent

Max / large margin methods
— choose weights to separate correct configuration from rest
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(Hidden) Markov Models




Markov Models (or Markov Chains)

« At each time step, probabilistically transition from
current state to next state ( )

 Finite State Machine (FSM) view for

Q 0.1




Markov Models

* The graphical model view for steps:

OO O

— Note: for t =, an infinite graphical model!
« Or assuming transition stationarity, just:

- e




Transition Matrix

* Represent as transition matrix:

S t+1

SZt+1

"

P(sjt+1 |S|.t)J Sjt+1

t+1
sn

s,T s,! st S, Do rows or
cols X= ?




Transition Probabilities

* Formally
— Define state set \v4
— Define transition matrix \v4

* Properties of

— Stationary: = OR \v/
— Ergodic: any state can be reached from any other

state in a finite number of steps
Examples?




Distribution at Time t

¢ Given , what is
» Use var. elim. to marginalize over i no evidence
_ " y 9 after time t, all
iIntermediate time steps factors for t+1
> 1 and after
marginalize out
/
* Or let & be column vectors...
— Then simply:
* Note: Intimate connection between matrix ops and var. elim.
« When factors as a DBN...

capture many efficiencies of var. elim. via sparse matrix ops



Stationary Distribution

 Stationary Distribution &t at t=co
T = o0
—If ergodic, I
« Reaches unique steady-state distribution: t=Tn

« SO m=any column of =

« Can solve via eigenvector analysis (note: A=1)
— Related to (Krylov) iterated eigenvector computation

 Or use fixed point to solve linear system | Why? What
Tt duiw dm i $ are they?
s.t. constraints on &

— Can solve linear system via matrix inversion
% ¢+ $ guaranteed full rank ... invertible




Markov Model Applications

« Simple theory, ingenious applications:

— nth-order Markov models
« Relax Markovian assumption to previous n states

» Used in text and speech processing
— N-grams for predicting next word occurrence
— Colocation identification
— Dasher for text input, try it in your web browser

— More generally
« Physics (states of systems)
« Queuing theory (random entries and exits)
« Economics, Biology, Chemistry, etc...
« Google!



Google PageRank Example

* Very beautiful use of Markov Models

 Model of web
browsing:
— Probabillistically

take link with ~1/k
chance if k links

— Small chance of ‘
random transition

 Stationary distribution
T gives PageRank!
— Measure of “authority”

Web .
page L/n/(




Factored Markov Models

» The Dynamic Bayes Net (DBN) view:
— State factors into variables: & & &.
— Capture transition independences




Hidden Markov Models

* Formally
— Define state set \
— Define observation set ) * o o
— Define observation prob ) \Y
— Define transition prob \v/

» Graphical Model view:

66



Primary Operations

» Operations
— Viterbi: state estimation
— Forward-backward: marginal prob of each state

— Baum-Welch: EM estimation of parameters given
only observations

» Graphical Model view:

66



HMMs for Information Extraction

* |Information Extraction

— Want to extract entities from text (e.g., places)
— Context helps (“at X, “X located in Y”)
— Observations are words, infer state via MPE query

PREFIX  LOCATION

Q%Q%Q%@%@

9 © 6 o

cheesesteak in Philadelphia.



HMMs for Speech Recognition

« Speech to text
— Observations are power spectrum for time intervals
— Each state is a syllable (inferred via MPE query)

o395
EXEX




Sequential Decision Theory

« We've looked at sequential prediction
— But what if choose actions that affect model?
— And differing utilities for different states?

* Fully observable case (MDP):
— Markov Decision Process (MDP) = MM + Actions

 Partially observable case (POMDP):
— Partially Observable MDP = HMM + Actions

More in Will
Uther’s RL lecture
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Factor Representation (Tables)

 How do we represent a
function from - — _?

« How about a fully
enumerated table... 0

« ...OK, but can we be 0
more compact? 0




Factor Representation (Trees)

« How about a tree”? Sure, now can simplify.

Context-specific
independence!

) /‘ 2
0 :>l/< /<




Factor Representation (ADDs)
« Why not a directed acyclic graph (DAG)?




Factor Representation (ADDs)

« Why not a directed acyclic graph (DAG)?

0

0 Algebraic 2
Decision /

0 Diagram

0 (ADD) /




Binary Operations (ADDs)

* Why do we order the variables?

* This enables us to do efficient binary
operations...

Result: ADD
operations can
be much more
efficient than
using tables




Replacing Tables with ADDs

* Instead of representing discrete probability
functions as tables...

* Represent as ADDs
— Can add, multiply, divide, max ADDs

— Can even marginalize — How? |

— No worse than table space / time
« Often much better when repeated values in tables



ADD Inefficiency

Is context-specific independence enough?
Or do we need more compactness?
Example 1: Additive reward/utility functions

...... R
. " 2// 2
2/ 2.2/ -/ {/.‘( ’.(“/.
W 'u 'u L'a L4
.
Example 2: Multiplicative value functions
3v27 av.a2.3s A 42
Sy /{ Y / Ry

v La L L d o

G S A S R A



Automatically
Constructed!

Affine ADDs to Rescue

 AADDs can be exp. smaller than ADDs
« Ex. 1: Additive reward/utility functions
¢<O 3>
* R(ab) = R(a) + R(b) <23,1/3> ( b; <0,1/3>

=2a+b
<1 O>< A * <0,0>

« Ex. 2: Multiplicative value functions

gqﬁ, 1-v3>
* V(a,b) = V(a) - V(b) <0, vz_-f>< " < PP 1
_Y(2a+b 1-y° b"’ 13 1y

<0,0> <O A‘: <1,0>

Sanner & McAllester (IJCAI-05)
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Probabilistic Inference

» Fundamental Operation
— P(Query | Evidence)

* To compute, just need

— Joint probability distribution over RVs

« Graphical model is a compact representation that
exploits known (in)dependences (e.g., Markov)

— Ability to do marginalization, multiplication,
and division on distributions
* For discrete distributions, can use tables / DDs



Graphical Models

A tool you need in your toolbox:

—EXxponential space savings in
representation

—Exponential time savings in inference

—Exponential data complexity reduction
 # samples needed to learn “good” model



For More Information

Kevin Murphy’s “Bayes Net Tutorial”

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

Thorough discussion
Great reference list
Links to software!



