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Graphical Models

• One of the most important tools in your 
machine learning and AI inference toolbox

• Scott’s applied view on GMs:

– Formalizing intuitions

• Build from ground up 

– Implementation

• If you can implement it, 

then you understand it!

• Models and data structures



Graphical Models

Definition: 

– compact specification of joint probability

– e.g., have the binary variables B, F, A, H ,P:

GMs can represent P(B,F,A,H,P) compactly
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Abdominal
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Graphical Models

What makes it compact?

– specify conditional independence (CI) with edges 

(note: graphical b/c graph properties ⇒ CI)
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Graphical Models

• Why should you care?

– Exponential space savings in 
representation

– Exponential time savings in inference

– Exponential data complexity reduction

• # samples needed to learn “good” model



Graphical Models

Foundations



Random Variables

• For the purpose of this tutorial

– Random variable (RV) denoted by uppercase letter
• e.g., X

– RVs take value assignments X = x where X is a

• Discrete RV if 

– x is in a countable set (binary: x ∈ {0,1}; or dice)

• Continuous RV if

– x is in an uncountable set (real: x ∈ Reals)

– Write x ∈ X for possible value assignments of X

Notation abuse



Random Variables

• Probability distributions

– For all x, P(X = x) ∈ [0,1]

– P(X = x) is a proper distribution

• Discrete RV:

∑x ∈ X P(X = x) = 1

• Continuous RV:

∫x ∈ X P(X = x) dx =1

– Write P(x) for P(X=x), write P(X) for full distribution



Random Variables

• Representing probability distributions

– Discrete RV: tabular

P(X) =

– Continuous / ∞ RV: function

e.g., P(X = x)  α exp (x - µ)2/σ2

.24

.13

.12

.11

.36

.25

PrX

finite



Joint Distributions on RVs

• Aliens in your backyard

P(R,C) =

C=1 C=2

R=1

R=2



Joint Distributions on RVs

• Aliens in your backyard

P(R,C) =

2

1
2

1
C

.42

.22

.41

01
PrR

C=1

0

.4

.4

.2

C=2

R=1

R=2



Joint Distributions on RVs

• Aliens in your backyard

P(R,C) =

• P(R=2,C=2)  =

• P(R=2)  =

• P(R=1|C=2)  =

2

1
2

1
C

.42

.22

.41

01
PrR

C=1

0

.4

.4

.2

C=2

R=1

R=2

.4

∑c∈{1,2} P(R=2,C=c) =  .6

P(R=1,C=2)/P(C=2) = .5 

Marginalize over C

Condition on C=2 Example from Andrew 

Moore @ CMU/Google



Rules of Probability

• Joint and conditional distributions:

• Marginalization:

• Conditional probability & Bayes rule:

P (A,B) = P (A|B) · P (B) = P (B|A) · P (A)

P (A) =
∑

b∈B

P (A,B = b)

P (A|B) =
P (A,B)

P (B)
=

P (B|A) · P (A)∑
a∈A P (B|a) · P (a)

Don’t memorize!  

Derive from first 
principles!



Manipulating Distributions

• Sometimes we don’t just want P(R=1,C=2) = .4

• We want to work with full distributions P(R,C)

• How to apply previous rules to full distributions?

– easy, just do once for each case and store in table…

2

1
2

1
C

.42

.22

.41

01
PrR



Manipulating Discrete Distributions

• Marginalization

.411

.201

.310

.100

PrBA

∑

b

P (A, b) = P (A)

∑

b

=
.61

.40

PrA



Manipulating Discrete Distributions

• Binary Multiplication

• Same principle holds for all binary ops 
– +, -, /, max, etc…

.811

.201

.910

.100

PrBA

P (A) · P (B|A) = P (A,B)

=·

.2411

.0601

.6310

.0700

PrBA

.31

.70

PrA



Nearing End of Prob 101

• We can 

– represent joint distributions

– marginalize

– condition

– perform Bayes rule

• Q: But why is this useful?

• A: All you need to answer probabilistic queries



Fundamental Operation of 

Probabilistic Inference

• Problem:

– Given a joint distribution P(B,F,A,H,P)

– Given evidence: H=true, P=false

– Want to know probability of B given evidence

• Answer: evaluate P(B | H=true, P=false)
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Computing Probabilistic Queries

• Evaluate: P(B | H=true, P=false)
given: P(B,F,A,H,P) as table

• Step 0: Select lines for evidence in table
– Reduce from 32 to 8 rows

• Step 1: Marginalize out non-query / non-evidence RVs
– P(B, H=true, P=false) =

• Step 2: Marginalize out query
– P(H=true, P=false) =

• Step 3: Evaluate conditional probability
– P(B | H=true, P=false) =

true

B

………

.03true…

PrP…

∑f ∑a P(B, f, a, H=true, P=false)

∑b P(B=b, H=true, P=false)

P(B, H=true, P=false) 

P(H=true,P=false)



Key Points

• Goal is to do probabilistic inference

• Need a joint distribution
– RVs specified by human

– Parameters can be learned (later)

• All probabilistic queries P(Q|E) computed by
– Instantiation of RVs (evidence)

– Marginalization,

– Multiplication & division on distributions



Learning Check

• Given joint probability over discrete RVs 

P(X1, …, X20) =

represented in tabular format

… can you write code to compute query, e.g.,

P(X1,X11 | x4,x7, x17)?

…

…

…

………

.0300

PrX20X1



Graphical Models

Directed Graphical Models



Probabilistic Queries in the Real World

• Just need a 

– joint distribution

– operations (marginalization, binary ops)

and we can compute any prob. query, right?

• If available time, space, and data are infinite



Let’s Look at a 

Medical Example

(one of the first fielded 
applications of graphical models)



Scurvy, it’s not just for Pirates

Severe
Headache

Abdominal
Pain

Bubonic
Plague

Stomach
Flu

Appendicitis

• You’re a doctor

– You regularly diagnose about 100 ailments

– As evidence you use 200 tests / questions

…

…Scurvy

Tender 
Gums



Joint Distributions, Problem 1:

• How do you represent a joint distribution over 

300 binary variables?

• Tabular?  2300 – 1 rows!

…………

…………

…………

.01100

…

0

…

………

.0300

PrX1X1



Joint Distributions, Problem 2:

• You’re Google and 2300 is a small number
– So tabular doesn’t scare you

• How long does it take to compute P(Q|E)?

– Note: have to visit each row at least once

• Takes time Ω(2300)

…

…

…

………

.0100

PrX300X1



Joint Distributions, Problem 3:

• You’ve sipped from the fountain of youth
– So you have an eternity

• How much data does it take to learn probabilities
– Remember alien spaceships?  Just frequency ratios

– Note: need a fair number of samples (30?) per row

• Need at least Ω(30 ⋅ 2300) labeled examples
– i.e., doctor visits

…

…

…

………

.0100

PrX300X1



Sorry folks, tutorial is over

Using probabilities in 
practice is hopeless



Scurvy to the rescue, sort of
• Not all variables important in predicting others

• In predicting Scurvy, do Flea bites matter?
– Should be able to predict scurvy probability from

> 100 Days 

no fruits
Flea bite?

Occupation:

PirateFacts:

Bubonic

Plague
ScurvyAilments:

Sore 

Gums

Severe 

Headache
Symptoms:



Exploiting Structure

• Key idea is to exploit known dependences

– Draw arc when one variable known to influence other

– For directed GMs, any directed acyclic graph (DAG) is allowed 

> 100 Days 

no fruits
Flea bite?

Occupation:

PirateFacts:

Bubonic

Plague
ScurvyAilments:

Sore 

Gums

Severe 

Headache
Symptoms:



• Every DAG implies set of conditional independences
– Use thick ovals for evidence, double ovals for query 

• Then following are two of the CI (     ) implications:

Conditional Independence I

> 100 Days 

no fruits
Flea bite?

Occupation:

PirateFacts:

Bubonic

Plague
ScurvyAilments:

Sore 

Gums

Severe 

Headache
Symptoms:

S ⊥⊥ B|D,P
⊥⊥
S ⊥⊥ F |D,P



• Every DAG implies a set of conditional independences
– Use thick circles for evidence, double circle for query 

• Then following two are not CI (     ) implications:

Conditional Independence II

> 100 Days 

no fruits
Flea bite?

Occupation:

PirateFacts:

Bubonic

Plague
ScurvyAilments:

Sore 

Gums

Severe 

Headache
Symptoms:

S ⊥⊥ B|D,P,G
⊥⊥
S ⊥⊥ F |D,P,G

New 

evidence



• That’s odd… adding evidence made previously 

independent variables now dependent

• Diagnosis example

– Measles, Flu, Cough 

• Note what happens to CI when C (un)observed:

Conditional Independence III

M ⊥⊥ F |∅

Measles Flu

Cough

M ⊥⊥ F |C

Explaining 

away



Conditional Independence IV

• How to tell what CIs implied 
by directed GM?

• Graph-theoretic property 
called dependency 
separation (D-separation)

• Compute using “Bayes ball”

– Observed nodes shaded

– X & Y are CI iff bounce a ball 
from X to Y (or reverse) using 
bouncing rules at left

Graphic borrowed from http://ergodicity.net/2009/12/08/bayes-ball-in-a-nutshell/



Conditional Independence V

• Is a directed link causal?

• Not necessarily

– can represent exact 

same GM using…

– Implies same CIs Smoking

Cancer

Smoking Cancer

Cancer and smoking

Predisposition gene

Smoking

Cancer
Latent variable

(always 

unobserved)



OK, So DAG implies CIs

But still don’t know how to 
represent, infer, learn…



Bayes nets (BNs): Directed GMs

• Simple BN rule for joint
– Write down product of 

all variables conditional
on parents (if any)

– P(D,P,S,G) = P(G|S) P(S|D,P) P(D) P(P)

• If network is a DAG
– Always gives a proper joint distribution

– CIs are probabilistic independences!

• Note compactness by exploiting (in)dependences
– How many parameters in tabular joint?

– How many parameters in this BN? 

> 100 Days 

no fruits

Occupation:

Pirate

Scurvy

Sore 

Gums

31

8



Graphical Model Example II

– Each node has associated conditional probability

– Root nodes correspond to prior probabilities

Xn

Y

. . .X1 X2

P (y, x1, ..., xn) = P (y|x1, ..., xn)P (x1) · · ·P (xn)

P (y|x1, ..., xn)

P (x1) P (x2) P (xn)

How many 

parameters?



Graphical Model Example III
– Model for naïve Bayes classifier

Xn

Y

. . .X1 X2

P (y, x1, . . . , xn) = P (x1|y) · · ·P (xn|y)P (y)

P (y)

P (x1|y) P (x2|y) P (xn|y)

How many 

parameters?



Aside: Probabilistic Independence

• Conditional independence for Bayes nets 
implies probabilistic independence

A ⊥⊥ B ⇒ P (A,B) = P (A) · P (B)

A ⊥⊥ B|C ⇒ P (A,B|C) = P (A|C) · P (B|C)



It’s Query Time

• Clear space savings for joint distribution 
using some graphical models

• Can also exploit graphical model structure 
during probabilistic query evaluation…

– e.g., variable elimination (VE)



Variable Elimination (VE) I

• When marginalizing over y, try to factor out all 

probabilities independent of y:

P (X1) =
∑

y,x2,...,xn

P (y|x1, ..., xn)P (X1) · · ·P (xn)

= P (X1)︸ ︷︷ ︸
O(1)

∑

x2,...,xn

P (x2) · · ·P (xn)

︸ ︷︷ ︸
=O(n)

∑

y

P (y|X1, ..., xn)︸ ︷︷ ︸
=O(1)

Xn

Y

. . .X1 X2

– Curly braces show number of FLOPS

– So this query can be done efficiently in GM

complexity in 

tabular case?



Variable Elimination (VE) II

• When marginalizing over x, try to factor out 
all probabilities independent of x:

P (Y ) =
∑

x1,...,xn

P (Y |x1, ..., xn)P (x1) · · ·P (xn)

=
∑

x1,...,xn

P (Y |x1, ..., xn)P (x1) · · ·P (xn)

︸ ︷︷ ︸
O(2n+1)

Xn

Y

. . .X1 X2

Different 

Query

– Curly braces show number of FLOPS

– So this query cannot be done efficiently in GM



Variable Order Matters

• Original query, different variable elim. order:

P (X1) =
∑

y,x2,...,xn

P (y|x1, ..., xn)P (X1) · · ·P (xn)

=
∑

y,x3,...,xn

P (X1)P (x3) · · ·P (xn)
∑

x2

P (x2)P (y|X1, ..., xn)

︸ ︷︷ ︸
=O(2n+1)

Xn

Y

. . .X1 X2

Original 

Query

• With different variable order: O(n)  → O(2n+1)
– Good variable order: 

• minimize #vars in largest intermediate factor
• a.k.a., ~tree width (TW) = n+1

– Graphical model inference is ~O(2TW)
Actually TW+1 

but the point is 

exponential



Query Types

• Marginals
– P(X), P(Y|evidence)

– As previously shown using VE

• Clique marginals
– P(X,Y), P(X,Y|evidence)

– Trivial for VE, not so for some other inference algorithms

• Most probable explanation (MPE)
– Also known as MAP (but not in MAP parameter sense)

– Instead of ∑x1 ∏ for marginals, use argmaxx1 ∏

– Still uses VE

• Just generalized distributive law (SM Aji, 2000)
(works in any commutative semiring like ∑ ∏ or max ∏)



Parameter Estimation

• Maximum Likelihood (ML)

• Maximum a Posteriori (MAP)

• Bayesian: maintain distribution over models

�θ∗ = argmax
�θ

P (D|�θ)

Closed-form 
for Gaussian, 
Binomial, etc.

�θ∗ = argmax
�θ

P (�θ|D)

∝ argmax
�θ

P (D|�θ)P (�θ)

P (�θ|D) ∝ P (D|�θ)P (�θ)

Just ML 
with a prior

Inference 
requires
integral



ML for Naïve Bayes Graphical Model

• Estimate ML parameters for following GM

– Assume all variables are binary

y

x1 xn. . .

1-θyF

θyT

Prob.y

1-θi,y=TTF

θi,y=TTT

F

T

xi

1-θi,y=FF

θi,y=FF

Prob.y



�θ∗ = argmax
�θ

L(θ)
︷ ︸︸ ︷
P (D|�θ)

= argmax
�θ

∏

d∈D

P (yd, xd1, . . . , x
d
n|
�θ)

= argmax
�θ

∏

d∈D

P (xd1, . . . , x
d
n|y

d, �θ)P (yd|�θ)

= argmax
�θ

∏

d∈D

P (yd|�θ)

n∏

i=1

P (xdi |y
d, �θ)

= argmax
�θ

∏

d∈D

θIy=T [d]y (1− θy)
Iy=F [d]

n∏

i=1

∏

v∈{F,T}

θ
Iy=v,xi=T

[d]

y=v,i (1− θy=v,i)
Iy=v,xi=F

[d]

= argmax
�θ

θ#Dy=T
y (1− θy)

#Dy=F

n∏

i=1

∏

v∈{F,T}

θ
#Dy=v,xi=T

y=v,i (1− θy=v,i)
#Dy=v,xi=F

= argmax
�θ

︷ ︸︸ ︷
#Dy=T log θy +#Dy=F log(1− θy)+

n∑

i=1

∑

v∈{F,T}

[
#Dy=v,xi=T log θy=v,i +#Dy=v,xi=F log(1− θy=v,i)

]

︸ ︷︷ ︸
l(�θ)

Max Likelihood for Naïve Bayes



Max Likelihood for NB (Cont.)
• Unique maxima for log-linear models at slope = 0

• ML parameters are just the empirical probabilities!

∂l(�θ)

∂θy=v,i
=
#Dy=v,xi=T
θy=v,i

+
#Dy=v,xi=F
(1− θy=v,i)

= 0

θy=v,i

(1− θy=v,i)
=
#Dy=v,xi=T
#Dy=v,xi=F

θy=v,i =
#Dy=v,xi=T

#Dy=v,xi=T +#Dy=v,xi=F

∂l(�θ)

∂θy
=
#Dy=T
θy

+
#Dy=F
(1− θy)

= 0

θy

(1− θy)
=
#Dy=T
#Dy=F

θy =
#Dy=T

#Dy=T +#Dy=F



ML Parameters for General Bayes Nets

• Recall the scurvy network

– Joint is product of four

conditional probabilities

– P(D,P,S,G) = P(G|S) P(S|D,P) P(D) P(P)

• Get ML conditional probability 

tables from empirical data counts

– E.g., P(G=true|S=true) =

> 100 Days 

no fruits

Occupation:

Pirate

Scurvy

Sore 

Gums

Freq(G=true,S=true)

Freq(S=true)



Bayes Net Recap

• What we covered

– Laws of probabilities

– Discrete representation and operations

– Use graphical models to structure joint dist.

• Edges represent conditional dependences

– Variable elimination inference to exploit structure

• Benefits

– Compact representation

– Robust learning of params (more data per parameter!)

– Can often do efficient inference Depends on 

model, query.



Other Inference Algorithms

• Exact
– Junction tree

• think of as VE on modified graph with cached pre-
computations of intermediate factors

• only use if repeated queries with same evidence

– …

• Approximate
– Biased

• Loopy belief propagation 
– just like it sounds, exact on trees, efficient for all marginals

• …

– Unbiased
• Sampling (Rejection, Importance, MCMC – Gibbs)
• …



Structure Learning

• Have explored parameter learning for a fixed DAG

• But what about learning the DAG itself?

• For Bayes Nets, many approaches
– All search in space of DAGs

• Usually greedy search with incremental modifications

– Find DAG that trades off log likelihood with model complexity

– Local changes in structure incur local changes in log likelhood

• So search is relatively efficient

• Not so well explored for undirected models
– Local changes require recalculating all parameters

– See Koller, Welling for some ideas in recent years



Other RVs

• For continuous / ∞ integer case

– Gaussians
• Closed-form

• Nice properties for loopy BP (exact means) 

– ∞ Integer or non-Gaussians 
• Requires symbolic function representation, integration

• Some useful approximation techniques

– MCMC Sampling (Gibbs)

– Variational

– Expectation propagation

• We only focused on discrete probabilities
– But all ideas generalize (CI & distributive law)



Other Graphical Models

• Markov Random Fields (MRFs)

• Factor Graphs (generalization of BNs and MRFs)

• Still product of factors, but need 1/Z normalizer
– Product no longer guaranteed to sum out to 1

• Inference same (1/Z is a constant)

• Parameter estimation different (if not Bayes net)
– No closed-form solution like Bayes net emprirical counts

– Have to use gradient descent or other method

Factors denote 
“compatibility”

of configurations

Variables take 
on possible 

configurations

X1

X3 X4

X2



Other Training Criteria

• Max likelihood
– generative models, shown previously

• Max conditional likelihood
– discriminative models (conditional random fields)

• don’t model features!

– No closed-form gradient descent

• inference required to compute gradient

• Pseudolikelihood (Besag, 1975)
– “local” training of discriminative models

– asymptotically consistent

• Max / large margin methods
– choose weights to separate correct configuration from rest

Just empirical 

counts, used 

most in practice



Graphical Models

(Hidden) Markov Models



Markov Models (or Markov Chains)

• At each time step, probabilistically transition from 
current state to next state (S = {s1, s2, …, sn})

• Finite State Machine (FSM) view for n=5:

s1

s2

s4 s5

s3

0.1

0.8

0.2

0.7
0.5

0.5
1.0

1.0

0.2



Markov Models

• The graphical model view for t steps:

– Note: for t =∞, an infinite graphical model!

• Or assuming transition stationarity, just:

S1 S2 St…

St St+1

P(St+1|St) = P(St|St-1)



Transition Matrix

• Represent P(st+1|st) as transition matrix:

T = 

s1
t s2

t sn
t

s1
t+1

s2
t+1

sn
t+1

. . . . .P(sj
t+1|si

t)

Do rows or 

cols ΣΣΣΣ=1?
si

t

sj
t+1



Transition Probabilities

• Formally

– Define state set St = {s1, s2, …, sn} ; ∀t

– Define transition matrix Tij
t = P(Si

t+1|Sj
t) ; ∀t

• Properties of Tij

– Stationary: Tij
t = Tij

t-1 OR P(St+1|St) = P(St|St-1); ∀t

– Ergodic: any state can be reached from any other 

state in a finite number of steps
Examples?



Distribution at Time t 

• Given P(s0), what is P(st)?

• Use var. elim. to marginalize over 

intermediate time steps

– P(st) = Σsi=s1,…,st-1 P(s0) Πi=0…t-1 P(si+1|si)

• Or let Ps0 & Pst be column vectors…

– Then simply: Pst = (T^t) Ps0

• Note: Intimate connection between matrix ops and var. elim.

• When P(si+1|si) factors as a DBN…

capture many efficiencies of var. elim. via sparse matrix ops

If no evidence 
after time t, all 
factors for t+1 

and after 
marginalize out



Stationary Distribution

• Stationary Distribution π at t=∞

– π = (T^∞) Ps0

– If T ergodic, Ps0 irrelevant
• Reaches unique steady-state distribution: π=Tπ

• So π=any column of T∞

• Can solve via eigenvector analysis (note: λ=1)

– Related to (Krylov) iterated eigenvector computation

• Or use fixed point to solve linear system 

– Tπ - π = 0 � π’T’ - π’=0 � π’ (T’ – I) = 0
s.t. constraints on π

– Can solve linear system via matrix inversion

» (T’ – I) guaranteed full rank ∴ invertible

Why?  What 

are they?



Markov Model Applications

• Simple theory, ingenious applications:

– nth-order Markov models 

• Relax Markovian assumption to previous n states

• Used in text and speech processing

– N-grams for predicting next word occurrence

– Colocation identification

– Dasher for text input, try it in your web browser

– More generally

• Physics (states of systems)

• Queuing theory (random entries and exits)

• Economics, Biology, Chemistry, etc…

• Google!



Google PageRank Example

• Very beautiful use of Markov Models

• Model of web
browsing:
– Probabilistically

take link with ~1/k 
chance if k links

– Small chance of
random transition

• Stationary distribution 
π gives PageRank!
– Measure of “authority”

Link

Web

page

How to 
compute on 

web scale?

Hint: Use iterative 
method; how would 

you compute T^256?



Factored Markov Models

• The Dynamic Bayes Net (DBN) view:

– State factors into variables: X1, X2, …, Xk

– Capture transition independences

P(x1
t+1, x2

t+1, …, xk
t+1 | x1

t, x2
t, …, xk

t) = Π …

X1
t X1

t+1

X2
t X2

t+1

X3
t X3

t+1



Hidden Markov Models

• Formally
– Define state set St = {s1, s2, …, sn} ; ∀t
– Define observation set Ot = {o1, o2, …, om} ; ∀t
– Define observation prob P(Ot|St); ∀t
– Define transition prob P(St+1|St) ; ∀t

• Graphical Model view:

S1 S2 St…

O1 O2 Ot



Primary Operations

• Operations

– Viterbi: state estimation

– Forward-backward: marginal prob of each state

– Baum-Welch: EM estimation of parameters given 

only observations

• Graphical Model view:

S1 S2 St…

O1 O2 Ot



HMMs for Information Extraction

• Information Extraction

– Want to extract entities from text (e.g., places)

– Context helps (“at X”, “X located in Y”)

– Observations are words, infer state via MPE query

S1 S2 S5

O1 O2 O5

S3

O3

S4

O4

S6

O6

I                 ate                 a          cheesesteak in         Philadelphia.

NO              NO NO NO PREFIX      LOCATION



HMMs for Speech Recognition

• Speech to text

– Observations are power spectrum for time intervals

– Each state is a syllable (inferred via MPE query)

S1 S2 S5

O1 O2 O5

S3

O3

S4

O4

Aus            str al                  i                 an

A              stray              al                 ie n   



Sequential Decision Theory

• We’ve looked at sequential prediction

– But what if choose actions that affect model?

– And differing utilities for different states?

• Fully observable case (MDP): 

– Markov Decision Process (MDP) = MM  + Actions

• Partially observable case (POMDP):

– Partially Observable MDP = HMM + Actions

More in Will 
Uther’s RL lecture



Graphical Models

Data Structures for Factors



Factor Representation (Tables)

• How do we represent a 
function from Bn → R?

• How about a fully 
enumerated table…

• …OK, but can we be 
more compact?

1

0

1

0

1

0

1

0

c

1.00

0.00

1.00

0.00

1.00

0.00

0.00

0.00

F(a,b,c)

11

11

01

01

10

10

00

00

ba



Factor Representation (Trees)

• How about a tree?  Sure, now can simplify.

1

0

1

0

1

0

1

0

c

1.00

0.00

1.00

0.00

1.00

0.00

0.00

0.00

F(a,b,c)

11

11

01

01

10

10

00

00

ba a

bc

c1 0

1 0

0

Context-specific

independence!



Factor Representation (ADDs)

• Why not a directed acyclic graph (DAG)?

1

0

1

0

1

0

1

0

c

1.00

0.00

1.00

0.00

1.00

0.00

0.00

0.00

F(a,b,c)

11

11

01

01

10

10

00

00

ba a

bc

c1 0

1 0

0



Algebraic Algebraic 

Decision Decision 

Diagram Diagram 

(ADD)(ADD)

Factor Representation (ADDs)

• Why not a directed acyclic graph (DAG)?

1

0

1

0

1

0

1

0

c

1.00

0.00

1.00

0.00

1.00

0.00

0.00

0.00

F(a,b,c)

11

11

01

01

10

10

00

00

ba aa

b

c

1 0



Binary Operations (ADDs)
• Why do we order the variables?

• This enables us to do efficient binary 
operations…

aa

b

1 0

c

aa
aa

0

0 2

c
b

c

2

Result: ADD Result: ADD 

operations can operations can 

be be muchmuch more more 

efficient than efficient than 

using tablesusing tables



Replacing Tables with ADDs

• Instead of representing discrete probability 
functions as tables…

• Represent as ADDs

– Can add, multiply, divide, max ADDs

– Can even marginalize

– No worse than table space / time

• Often much better when repeated values in tables

How?



• Is context-specific independence enough?

• Or do we need more compactness?

• Example 1: Additive reward/utility functions

– R(a,b,c) = R(a) + R(b) + R(c) 
= 4a + 2b + c

• Example 2: Multiplicative value functions

– V(a,b,c) = V(a) ⋅ V(b) ⋅ V(c)
= γ(4a + 2b + c)

ADD Inefficiency

aa
b

c

b

c c c

7 6 5 4 3 2 1 0

aa
b

c

b

c c c

γ7 γ6 γ5 γ4 γ3 γ2 γ1 γ0



• AADDs can be exp. smaller than ADDs

• Ex. 1: Additive reward/utility functions

• R(a,b) = R(a) + R(b)
= 2a + b

• Ex. 2: Multiplicative value functions

• V(a,b) = V(a) ⋅ V(b) 

= γ(2a + b); γ<1

Affine ADDs to Rescue

b

a
<2/3,1/3> <0,1/3>

<0,3>

0
<1,0> <0,0>

b

a
<γ3, 1-γ3>

0
<0,0> <1,0>

<0, γ2-γ3>
1-γ3

< γ-γ3, 1-γ>
1-γ3 1-γ3

Automatically 

Constructed!

Sanner & McAllester (IJCAI-05)



Graphical Models

Summary



Probabilistic Inference

• Fundamental Operation

– P(Query | Evidence)

• To compute, just need

– Joint probability distribution over RVs
• Graphical model is a compact representation that 

exploits known (in)dependences (e.g., Markov)

– Ability to do marginalization, multiplication, 
and division on distributions

• For discrete distributions, can use tables / DDs



Graphical Models

• A tool you need in your toolbox:

– Exponential space savings in 
representation

– Exponential time savings in inference

– Exponential data complexity reduction

• # samples needed to learn “good” model



For More Information

• Kevin Murphy’s “Bayes Net Tutorial”

• Thorough discussion

• Great reference list

• Links to software!

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html


