Hidden Markov Models and Gene Prediction

Brandon Malone

Much of this material is adapted from Chapter 15 in Russell - Norvig
Many of the images were taken from the Internet

January 30, 2014
Gene Prediction

Suppose we have a long DNA sequence.

We are interested in parts of the sequence that may be genes. How can we (automatically) tell which parts may be genes?
What are the conditional independencies asserted by this structure?
What are the conditional independencies asserted by this structure?

All of the observations \((O_t)\) are independent, given the state \((S_t)\).

A particular state \(S_{t+1}\) is independent of all previous states given its immediate successor \(S_t\).
1. Markov Models
2. Inference Algorithms
3. Wrap-up
 Observable Markov models

Each variable S_t corresponds to the state of the world at “time” t^*. For a stationary first-order Markov process, the state of the world at time $t + 1$ depends only upon the state at time t.

* In our running example, “time” will actually be the position in the DNA sequence.
Each variable S_t corresponds to the state of the world at “time” t.

For a **stationary first-order Markov process**, the state of the world at time $t + 1$ depends only upon the state at time t.

$$I(S_{t+1}, S_t, \{S_0, S_1, \ldots, S_{t-1}\})$$

* In our running example, “time” will actually be the position in the DNA sequence.
Given the following Markov process, calculate the probability of the following sequence of states: true, true, false, true, true.

\[
\begin{array}{c|c|c|c|}
S_0 & \Theta_{S_0} & S_{t-1} & S_t & \Theta_{S_t|S_{t-1}} \\
T & .5 & T & T & .7 \\
T & .5 & T & F & .3 \\
F & .5 & F & T & .3 \\
F & .5 & F & F & .7 \\
\end{array}
\]
Hidden Markov models

We (often) cannot directly observe if a piece of DNA is a gene or not.

We *can* observe the DNA sequence, though.

So, given the DNA sequence, we would like to label each base as “Genic” or “Intergenic”.
We will discuss four inference algorithms. All of the algorithms are based on the notion of **message passing**.

- **The forward algorithm** predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.
We will discuss four inference algorithms. All of the algorithms are based on the notion of message passing.

- The forward algorithm predicts the state in the future given current observations.
- **The backward algorithm** updates predictions about states in the past given more recent observations.
- The forward-backward efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.
Inference algorithms

We will discuss four inference algorithms. All of the algorithms are based on the notion of message passing.

- The forward algorithm predicts the state in the future given current observations.
- The backward algorithm updates predictions about states in the past given more recent observations.
- The forward-backward algorithm efficiently calculates the posterior probabilities of all states given observations.
- The Viterbi algorithm calculates the most likely sequence of states to generate the observations.
We will discuss four inference algorithms. All of the algorithms are based on the notion of message passing.

The forward algorithm predicts the state in the future given current observations.

The backward algorithm updates predictions about states in the past given more recent observations.

The forward-backward efficiently calculates the posterior probabilities of all states given observations.

The Viterbi algorithm calculates the most likely sequence of states to generate the observations.
The forward algorithm

Problem: Given the observations up to time $t+1$, what is the posterior probability of S_{t+1}?

$$P(S_{t+1} | O_1, \ldots, O_{t+1}) = \frac{P(S_{t+1}, O_1, \ldots, O_t, O_{t+1})}{P(O_1, \ldots, O_{t+1})} = \frac{P(O_{t+1} | S_{t+1}, O_1, \ldots, O_t) P(S_{t+1} | O_1, \ldots, O_t) P(O_1, \ldots, O_t)}{P(O_1, \ldots, O_{t+1})}$$

$$= \frac{P(O_1, \ldots, O_t)}{P(O_1, \ldots, O_{t+1})} P(O_{t+1} | S_{t+1}, O_1, \ldots, O_t) P(S_{t+1} | O_1, \ldots, O_t)$$

$$= \frac{P(O_1, \ldots, O_t)}{P(O_1, \ldots, O_{t+1})} P(O_{t+1} | S_{t+1}) P(S_{t+1} | O_1, \ldots, O_t)$$

$$= \frac{P(O_1, \ldots, O_t)}{P(O_1, \ldots, O_{t+1})} P(O_{t+1} | S_{t+1}) \sum_{S_t = s_t} P(S_{t+1} | S_t, O_1, \ldots, O_t) P(S_t = s_t | O_1, \ldots, O_t)$$

$$= \frac{P(O_1, \ldots, O_t)}{P(O_1, \ldots, O_{t+1})} P(O_{t+1} | S_{t+1}) \sum_{S_t = s_t} P(S_{t+1} | S_t) P(S_t = s_t | O_1, \ldots, O_t)$$
The forward algorithm

Problem: Given the observations up to time $t + 1$, what is the posterior probability of S_{t+1}?

\[
P(\text{next state}|\text{observations so far, next observation})
\propto P(\text{next observation}|\text{next state}) \sum_{\text{current state}} P(\text{next state}|\text{current state})P(\text{current state}|\text{observations so far})
\]

\[
P(S_{t+1}|O_1, O_2, \ldots, O_{t+1}) \propto P(O_{t+1}|S_{t+1}) \sum_{S_t = s_t} P(S_{t+1}|S_t)P(S_t = s_t|O_1, \ldots, O_t)
\]
The forward algorithm

Problem: Given the observations up to time $t + 1$, what is the posterior probability of S_{t+1}?

$$
P(\text{next state} | \text{observations so far, next observation}) \\
\propto P(\text{next observation} | \text{next state}) \sum_{\text{current state}} P(\text{next state} | \text{current state}) P(\text{current state} | \text{observations so far})
$$

$$
P(S_{t+1} | O_1, O_2, \ldots, O_{t+1}) \propto P(O_{t+1} | S_{t+1}) \sum_{S_t = s_t} P(S_{t+1} | S_t) P(S_t = s_t | O_1, \ldots, O_t)
$$

We recursively calculate $P(S_t = s_t | O_1, \ldots, O_t)$, starting with $t = 1$

We will refer to $P(S_t | O_1, \ldots O_t)$ as forward(t).
The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_1, \ldots, S_t?

$$P(S_k | O_1, \ldots, O_t) = \frac{P(S_k, O_1, \ldots, O_t)}{P(O_1, \ldots, O_t)}$$

$$= \frac{P(O_1, \ldots, O_k)P(S_k | O_1, \ldots, O_k)P(O_{k+1}, \ldots, O_t | S_k, O_1, \ldots, O_k)}{P(O_1, \ldots, O_t)}$$

$$\propto P(S_k | O_1, \ldots, O_k)P(O_{k+1}, \ldots, O_t | S_k, O_1, \ldots, O_k)$$

$$\propto \text{forward}(t)P(O_{k+1}, \ldots, O_t | S_k)$$
Problem: Given the observations up to time \(t \), what is the posterior probability of \(S_1, \ldots, S_t \)?

\[
P(O_{k+1}, \ldots, O_t | S_k) = \frac{P(O_{k+1}, \ldots, O_t, S_k)}{P(S_k)}
\]

\[
= \frac{\sum_{S_{k+1} = s_{k+1}} P(O_{k+1}, \ldots, O_t, S_k, S_{k+1} = s_{k+1})}{P(S_k)}
\]

\[
= \frac{\sum_{S_{k+1} = s_{k+1}} P(O_{k+1}, \ldots, O_t | S_k, S_{k+1} = s_{k+1})P(S_{k+1} = s_{k+1} | S_k)P(S_k)}{P(S_k)}
\]

\[
= \sum_{S_{k+1} = s_{k+1}} P(O_{k+1}, \ldots, O_t | S_k, S_{k+1} = s_{k+1})P(S_{k+1} = s_{k+1} | S_k)
\]

\[
= \sum_{S_{k+1} = s_{k+1}} P(O_{k+1} | S_{k+1})P(O_{k+2}, \ldots, O_t | S_{k+1} = s_{k+1})P(S_{k+1} = s_{k+1} | S_k)
\]
The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_1, \ldots, S_t?

$$P(\text{remaining observations}|\text{current state}) = \sum_{\text{next state}} P(\text{next state}|\text{current state})P(\text{next observation}|\text{next state})P(\text{further observations}|\text{next state})$$

$$P(O_{k+1}, \ldots, O_t|S_k) = \sum_{S_{k+1}=s_{k+1}} P(S_{k+1} = s_{k+1}|S_k)P(O_{k+1}|S_{k+1})P(O_{k+2}, \ldots, O_t|S_{k+1} = s_{k+1})$$
The backward algorithm

Problem: Given the observations up to time t, what is the posterior probability of S_1, \ldots, S_t?

\[
P(\text{remaining observations} | \text{current state}) = \sum_{\text{next state}} P(\text{next state} | \text{current state}) P(\text{next observation} | \text{next state}) P(\text{further observations} | \text{next state})
\]

\[
P(O_{k+1}, \ldots, O_t | S_k) = \sum_{S_{k+1} = s_{k+1}} P(S_{k+1} = s_{k+1} | S_k) P(O_{k+1} | S_{k+1}) P(O_{k+2}, \ldots, O_t | S_{k+1} = s_{k+1})
\]

We recursively calculate $P(O_{k+2}, \ldots, O_t | S_{k+1} = s_{k+1})$, starting with $k = t$.

We will refer to $P(O_{k+2}, \ldots, O_t | S_{k+1} = s_{k+1})$ as backward(t).
The forward-backward algorithm

procedure FORWARD_BACKWARD(observations $O_1 \ldots O_t$, prior $P(S_0)$)

$forward_0 \leftarrow P(S_0)$

for i in 1 to t do

$forward_i \leftarrow forward(forward_{i-1}, O_i)$

end for

$b \leftarrow 1$

for i in t downto 1 do

$smoothed_i \leftarrow normalize(forward_i \times b)$

$b \leftarrow backward(b, O_i)$

end for

return b

end procedure
The Viterbi algorithm

Problem: Given the observations up to time t, what is the *most likely instantiation* of S_1, \ldots, S_t?

We can think about this as a path-finding problem.

The probability of a state is the probability of the most likely path to that state.
The Viterbi algorithm

Problem: Given the observations up to time t, what is the *most likely instantiation* of S_1, \ldots, S_t?

We can think about this as a path-finding problem.

$$\max_{\text{path so far}} P(\text{path so far}, \text{next state in path}|\text{observations so far, next observation})$$

$$\propto P(\text{next observation}|\text{next state}) \left\{ \max_{\text{current state}} P(\text{next state}|\text{current state}) \right\}$$

$$\max_{\text{previous states}} P(\text{previous states, current state}|\text{observations so far})$$

$$\max_{s_1 \ldots s_t} P(s_1 \ldots s_t, S_{t+1}|O_1 \ldots O_{t+1})$$

$$\propto P(O_{t+1}|S_{t+1}) \left\{ \max_{s_t} P(S_{t+1}|s_t) \left\{ \max_{s_1 \ldots s_{t-1}} P(s_1 \ldots s_{t-1}, s_t|O_1 \ldots O_t) \right\} \right\}$$
Problem: Given the observations up to time t, what is the *most likely instantiation* of S_1, \ldots, S_t?

We can think about this as a path-finding problem.

\[
\max_{\text{path so far}} P(\text{path so far}, \text{next state in path}|\text{observations so far, next observation})
\propto P(\text{next observation}|\text{next state}) \left\{ \max_{\text{current state}} P(\text{next state}|\text{current state}) \right. \\
\left. \max_{\text{previous states}} P(\text{previous states, current state}|\text{observations so far}) \right\}
\]

\[
\max_{s_1 \ldots s_t} P(s_1 \ldots s_t, S_{t+1}|O_1 \ldots O_{t+1})
\propto P(O_{t+1}|S_{t+1}) \left\{ \max_{s_t} P(S_{t+1}|s_t) \right. \\
\left. \max_{s_1 \ldots s_{t-1}} P(s_1 \ldots s_{t-1}, s_t|O_1 \ldots O_t) \right\}
\]
Recap

During this section, we discussed

- Stationary, first-order Markov processes
- Hidden Markov models (HMMs)
- Prediction in HMMs with the forward algorithm
- Posterior probability calculations with the backward algorithm
- Efficient calculations with the forward-backward algorithm
- Identifying the most likely instantiation of the state variables with the Viterbi algorithm
Next in probabilistic models

- The belief propagation algorithm for efficient inference in polytree networks

![Diagram of polytree network with variables Earthquake (E), Burglary (B), Radio (R), Alarm (A), Call (C).]