
A Logic-Based RDF to HTML Generator
for Spinning the Semantic Web

Eero Hyvönen and Markus Holi and Kim Viljanen and Arttu Valo
�

Abstract.
The Resource Description Framework RDF is used to describe

content, such as HTML pages and other documents, for the ma-
chines to interpret on the Semantic Web. In contrast, we consider
the problem of rendering RDF content for the human user by trans-
forming RDF descriptions into a repository of semantically indexed
and linked HTML pages. This paper presents a two level method for
such a transformation: On the HTML level, the layout of the pages
can be described by an HTML designer by using templates and tags.
On the RDF level, the semantics of the tags are specified by a system
programmer in terms of logical rules based on the RDF(S) repository.
The idea is to apply logic to defining the semantic linkage structure
and the indices of the page repository. This approach provides a sim-
ple method for publishing a human readable version of RDF content
on the web. The idea has been implemented as a tool called SWeHG
for generating a static, semantically linked site of HTML pages from
an RDF repository. As case applications, web exhibitions generated
from museum collection metadata are presented.

1 PUBLISHING PROBLEMS ON THE
SEMANTIC WEB

A key idea of the Semantic Web2[1, 3] is to enrich the web with
metadata describing resources, such as web pages3, documents, pho-
tos, and real world objects in a machine understandable form. For
representing the metadata and ontologies, the resource description
framework RDF4 is commonly used. Semantic web languages are
intended for the machine to interpret but the ultimate goal is usually
to present the semantic content in a human readable form also to the
user.

Semantic portals5 are widely used for publishing dynamic seman-
tic web content for the humans. This approach has, however, cre-
ated publication obstacles from the viewpoint of content providers:
1) Only content of certain type conforming to the portal’s application
ontologies can usually be published. 2) The publication process is
dependent on the organization maintaining the portal application. 2)
Ordinary Internet Service Providers (ISP) do not usually allow ordi-
nary users to run servers or provide semantic portal services for their
customers. 3) Content publishers do not necessarily have the required

�

Helsinki Institute for Information Technology (HIIT), University of
Helsinki, P.O. Box 26, 00014 UNIV. OF HELSINKI, FINLAND,
email: FirstName.LastName@cs.Helsinki.FI, home:
http://www.cs.helsinki.fi/group/seco/�

http://www.w3.org/2001/sw/�

See, e.g., http://dmoz.org.�

http://www.w3.org/RDF/�

See, e.g., http://www.ontoweb.org and http://www.mindswap.org.

technical skills to maintain semantic portals. 4) The portal may pro-
vide some of the content only in the “hidden web” which hinders
Internet search engines such as Google from indexing the content.
5) Using the semantic portal may not scale up to large amounts of
user’s if lot’s of dynamic data processing is needed. 6) Special care
is needed to ensure security of the portal.

The notion of semantic portal is in these respects in contrast with
the very idea of the current web, where everybody can publish con-
tent easily and independently by just maintaining HTML files in a
public directory. To address these real life publishing problems, we
have developed a method and a tool “Semantic Web HTML Genera-
tor SWeHG” [9] for transforming RDF(S) repositories into reposito-
ries of semantically indexed and mutually linked static HTML pages.

In the following, we first show an example of a semantically in-
dexed and linked HTML repository generated by SWeHG. The spec-
ifications needed for the RDF to HTML transformation are then dis-
cussed. After this, the transformation process and its implementa-
tion are presented, and application cases of SWeHG are discussed.
In conclusion, experiences of our research and experimentation are
summarized, related work is described, and directions for further re-
search are outlined.

2 THE USER’S PERSPECTIVE

Figure 1. A photo exhibition generated with SWeHG.

Figure 1 presents the home page of the exhibition “Espoo City
Museum on the Semantic Web” that SWeHG generated for the mu-



seum6. It consists of some 1200 resource web pages (RPage) describ-
ing objects in the museum’s collection database, pages indexing the
contents along different classifications, and a short user’s guide. On
the left, three frames containing indices for the underlying content
are seen. The alphabetical index (“Aakkostettu hakemisto”) contains
links to the RPages in alphabetical order. By selecting a link, the
RPage is shown on the right. In the figure, the user has selected a link
to an RPage depicting perfume bottles. Before making a selection,
the user’s guide was shown in the same frame. The classified index
(“Hakemisto aiheittain”) is based on the RDFS taxonomy of the un-
derlying cultural MAO ontology [8] that was used when creating the
collection metadata. When selecting a concept, the rightmost frame
shows links to its subconcepts together with links to RPages whose
objects are directly related to the concept. By selecting a subconcept
link there, the taxonomy can be browsed further downward; by se-
lecting a link to an RPage, the corresponding collection object with
its metadata can be viewed in the frame. The third index “Hakemisto
tapahtumittain” classifies collection object by associating them with
the different events, processes or activities is which the objects are
used or otherwise related to.

By using the indices, the user can find collection objects of inter-
est. An alternative way is to use a conventional search engine. In the
upper right corner of figure 1 a form for using Google to search for
the pages in the repository is seen. The hit list will be shown in the
rightmost frame.

After finding an PRage of interest, the collection can be browsed
by using the semantic links generated between related collection
items. For example, in figure 1 links to objects manufactured at the
same location, objects of similar material etc. can be clicked. The se-
mantic links are generated based on the underlying ontologies, meta-
data, and logical recommendation rules defined by a domain expert.

The RDF(S) metadata to the exhibition was originally created for
a semantic portal [6]. By using SWeHG the same content could be
reused without any modifications in order to create a separate appli-
cation for the museum’s own independent usage. The museum can
publish the content by just copying the pages into a public HTML
directory. This is of practical importance, since museums typically
do not have competent IT personnel, servers, and resources to create
and maintain semantic portals of their own.

To sum up, the output of SWeHG is a semantically linked space of
HTML pages of the following kind: 1) Resource pages (RPage) de-
pict selected resources with their metadata. 2) Index pages (IPage)
classify RPages along conceptual hierarchical classifications, that
will be called facets or views [10]. By using IPages, RPages can be
found along different facets. 3) A home page (HPage) defines the
entrance page to the HTML repository.

Figure 2 illustrates the RDF to HTML transformation. The RDF
graph is on the left. Each ��� corresponds to a resource correspond-
ing to a data entry in the RDF repository. In our example, the data
entries are collection objects with their metadata. On the right, the
HPage has links to various IPages classifying the underlying RPages
that are related with each other by semantic links.

3 DEFINING TAG SEMANTICS IN LOGIC

SWeHG is based on descriptions on two levels: 1) The layout of the
HTML pages is described on the HTML level by templates using cus-
tom tags. 2) The semantics of the tags is defined on the RDF level in

�
The exhibition is on the web at
http://www.cs.helsinki.fi/group/seco/swehg/ekmdemo/

R

R R

RRR

1

2
3

4 5 6

R7

RDF
repository

templates
+

rules

HTML repository

HPage

IPage1 IPage2

R1Page R2Page R3Page 4RPage R5Page

Figure 2. Transforming an RDF repository into HTML pages.

terms of logical rules based on the input RDF(S) content. The idea
is that an HTML designer can design the layout of the page repos-
itory to be generated by using tags without knowing details of the
underlying RDF structures, RDFS ontologies, and Prolog program-
ming. RDF(S) related knowledge as well as programming capability
in Prolog is needed only for the system programmer when defining
the tags. The same tags definitions can be re-used in applications
conforming to similar ontological schemas.

SWeHG provides the HTML designer with three major tags: get-
Property, getLinks, and getView. The tag <getProperty name=� >
is used for rendering a label related to the resource underlying an
RPage. For example, the metadata property values of the bottles and
the photo in figure 1 are rendered in this way. The relation � can be
specified by the system programmer on the RDF level freely by a
binary logical predicate.

The tag <getLinks> is used for rendering links between RPages.
For example, the tag

<swehg:getLinks name="SameLocation"
listType="ul" listStyle="text-size: 10;"/>

could expand into the following HTML code linking photographs
taken at the same location:

<ul style="text-size: 10;">
<li><a href="entry.Mediacard_00071.html">

View from Eiffel-tower</a></li>
<li><a href="entry.Mediacard_00143.html">

Cafe Parisienne</a></li> ...
</ul>

On the RDF level, the criterion SameLocation for the link-
age could defined by the predicate below7. It associates the attribute
SameLocation with the HTML link label ’Same Place’ and the
predicate photosWithSameLocation defining the link relation.

swehg_relation_rule( ’SameLocation’,
’Same Place’, photosWithSameLocation).

photosWithSameLocation(Context, Target) :-
photo(Context), photo(Target),
rdf(Context, _:place, Location),
rdf(Target, _:place, Location),
not(Context == Target).

�
The examples are presented in SWI-Prolog (http://www.swi-prolog.org)
syntax. Here RDF triples are presented as rdf(Subject, Predicate, Object).
Underscore “_” is an unnamed variable.



The tag <getView> renders into a hierarchical index-like view of
category resources used in IPages. Each category is associated with
a set of subcategories and additional individuals of the categories. A
view is defined by specifying 1) the root resource selector, 2) a binary
subcategory relation predicate, and 3) a binary relation predicate that
maps the hierarchy categories with the individuals used as leaves in
the view. For example, the tag

<swehg:getView
roots="buildings" branches="subclass"
leaves="photoOf" listType="ul" />

expands recursively into a hierarchical unordered tree (ul), where
the leaves are links to photo record resources related to different
building categories. The predicate definitions defining the meaning
of the attribute values can be, for example, the following:

buildings(URI) :-
rdf(URI, rdf:type, ’http://some.org#building’).

subclass(SubCategory, SuperCategory) :-
rdf(SubCategory, rdfs:subClassOf, SuperCategory).

photoOf(Class, Record) :-
rdf(Instance, rdf:type, Class),
rdf(Record, dc:subject, Instance).

Here buildings selects the class building as the view root,
and the hierarchy is expanded along the rdfs:subClassOf prop-
erty. The photoOf predicate relates each building type � of this tree
with a set of photo record resources which are used as the leaf cate-
gories of � . These are rendered as HTML links to the corresponding
RPages. The view expansion into HTML can be controlled with the
help of additional tag attributes for, e.g., ordering the categories.

The following is an example of a complete RPage template. It
could be used for rendering the images using the HTML img-tag
and links to related RPages:

<swehg:template selector="photo">
<html>
<body>

<h2><swehg:getProperty name="Title_Of_Photo"/></h2>
<p><img src="<swehg:getProperty

name="PhotoURL"/>" /></p>
<h3>Photos from the same place:</h3>
<swehg:getLinks predicate="sameLocation"

listType="ul"/>
</body>
</html>
</swehg:template>

The tag attribute selector in the tag <swehg:template> tells
the criterion for selecting context resources from the RDF reposi-
tory. Each context resource will have an RPage of their own on the
HTML level. The attribute value, here photo, is the name of a unary
Prolog predicate called selector that should evaluate true for context
resource URIs.

An example of a complete IPage template is given below using the
view definitions above:

<swehg:template>
<html>
<body>
<h1>Building index</h1>

<swehg:getView
roots="buildings"
branches="subclass"
leaves="photoOf"
orderby="order_alphabetically"
listType="ul"/>

</body>
</html>
</swehg:template>

4 GENERATION PROCESS

The process for transforming an RDF(S) repository into HTML
pages is defined by the algorithms 1 and 2. The input of the pro-
cedure is a set of HTML templates, and an RDF(S) repository. The
output is an HTML page repository conforming to the templates. The
transformation is based on a set of logical rules for selectors, proper-
ties, links, and views.

The process is based on generating pages using the HTML tem-
plates one after another. If a template is associated with a selector,
then it is expanded into a set of RPages corresponding to the selected
context resources, else it is expanded once without a reference to a
context resource. In the latter case, the HPage and IPages are created.
When generating an HTML page, the tags are expanded into HTML
in the ways described in the previous section.

Algorithm: RDF2HTML

Data: Templates T, RDF(S) repository R
HTMLPageRepository H = empty;
foreach Template t in T do

if t has a selector rule S then
foreach RDF Resource r in R do

if S(r) == true then
h = createHTMLpage(r, t);
add h to H;

end
end

end
else

h = createHTMLpage(T);
add h to H;

end
end

Algorithm 1: Main procedure for the RDF to HTML transforma-
tion

Algorithm: createHTMLpage

Data: Template t, Context Resource r
Result: HTML page
String H = t;
foreach Tag in H do

h = executeRule(Tag.rulename, r);
replace Tag in H with h;

end
return H;

Algorithm 2: Algorithm createHTMLpage for rendering an
HTML template. Tag.rulename returns the name of the rule, e.g.,
“getProperty”.

Figure 3 depicts the architecture of our implementation. The main
program is a Perl script which first builds an XSLT 8 template out of
the HTML templates using the module “Template processor”. This
module also writes out a set of “Processing instructions” into a sep-
arate Prolog source code file. These instructions link template tags

�
http://w3.org/TR/xslt



RDF(S)
repository

HTML 
templates

Processing
instructions

Prolog
predicates

Page content XML

Layout
XSL

 HTML
pages

Link
Analysis

report
HTML

INPUT OUTPUT

Template
processor

XML page
generator

Linkage
analyzer

XSL
transformer

SWeHG

Figure 3. Internal architecture of SWeHG.

with the Prolog predicates used in them as attribute values. The mod-
ule “XML page generator” is a Prolog program that applies the pred-
icates used in the HTML tags with respect to the RDF repository
according to the Processing instructions. The result is a set of XML
files describing the page contents. These XML files are then trans-
formed using Apache Xalan9 and with the help of the XSLT tem-
plates generated earlier into the final HTML pages.

The intermediate XML files in figure 3 are also used as a basis for
the “Linkage analyzer” module that tries to identify the following
potential problems: Self loops (a link that points to the page itself),
Bad links (link pointing to a non existing page), Dead ends (an RPage
with no outbound links), No way in (an RPage with no inbound links
from any RPages or IPages), Not in index (an RPage with no inbound
links from any IPage), and Unused rules (rules that are newer referred
to when generating the HTML repository). The analysis results are
represented as HTML pages. This helps the designer in debugging
the specifications.

Figure 4. An analysis page created by SWeHG.

Figure 4 depicts a portion of the result from the analyzer. On this
page the number of in-coming and out-going links can be seen for
each RPage together with a status explanation. The analyzer has
found out that the page with label “Aikaisempien yleisten ...” is
not connected with any other page or index. Furthermore, the page
�

xml.apache.org/xalan-j/

“Airueet” has one incoming and two outgoing links but was not in-
cluded in any index. This kind of connectivity information is vital
when debugging the logical rules that produce the HTML pages.

5 CASE APPLICATIONS

We applied SWeHG to a number of cultural RDF(S) repositories in
order to test and evaluate its usability.

First, a virtual exhibition of a photo archive in the Helsinki
University Museum10 was generated. The archive contained 629
photographs about the promotion ceremonies of the University of
Helsinki. The content of the archive was transformed into RDF(S)
format in an other application project [7] and was used as it is by
SWeHG. The domain knowledge consists of six ontologies with 329
promotion-related concept classes, such as “Person” and “Building”,
125 properties, and 2890 instances, such as “Linus Torvalds” and the
“Entrance of Cathedral of Helsinki”.

In the photo annotation schema, the subject of a photograph is
represented by a collection of ontology classes and individuals that
appear on the image11. For example, if Linus Torvalds appears in a
photo on a particular street, then the photo record is related directly
with the corresponding person and street resources with a property
corresponding to dc:subject. However, the relation between pho-
tos and subjects can be indirect, as well, involving traversal through
several RDF arcs in the underlying knowledge base. For example,
Linus Torvalds is present in a photograph as a Honorary Doctor.
Then only an instance of such a role is associated with the image.
The person instance in not directly linked with the image, but indi-
rectly through the role instance. SWeHG predicate definition facility
is very handy in hiding such annotation schema specific details from
the HTML designer: the persons can be associated with images ei-
ther directly or indirectly through roles. The criterion for association
can be defined freely and conveniently by a declarative predicate.

Using SWeHG to publish the archive provides the end-users with
two services. First, the photos can be found along the different or-
thogonal views based on the ontologies. Second, the hidden semantic

���

http://www.helsinki.fi/museo/� �

The annotations also include other metadata, such as the photographer,
free text descriptions, some technical information of the images, etc.



associations between the photos can be made explicit to the user and
can be used as the basis for browsing the photos, as in figure 1.

Second, we applied SWeHG to the RDF(S) repositories created
for the semantic portal MuseumFinland [6]. Here RPages depict col-
lection items from museum databases. Seven RDF(S) ontologies are
used with some 10,000 classes and individuals and the metadata is
described in terms of 38 properties. In this work, we could re-use the
semantic recommendation predicates and the inference rule base de-
veloped for the original system, and an exhibition could be generated
in a day or two.

6 DISCUSSION

6.1 Benefits and Limitations

Our initial experiences indicate that the presented RDF to HTML
transformation method is feasible. HTML templates can be created
fairly easily and can be adapted to different RDF repositories. The
idea of using logic and Prolog for defining the semantics of the tags
seems powerful. Complicated semantic link relations and views can
be defined and modified easily thanks to the declarative nature of
logic programming. In contrast to view-based search systems, such
as [10, 5], the views are projected from the RDF(S) ontologies. The
main benefit is that arbitrary mappings between view categories and
data resources can be flexibly defined. The system infers the map-
ping between views and resources which gives it an “intelligent” fla-
vor. Furthermore, the HTML pages are linked semantically with each
other according to the ontologies, metadata, and rule base used. To
the end-user, the underlying hidden associations between collection
objects is a most interesting aspect of cultural collections. The nature
of the associations can be explained to the user by the labels of the
links.

SWeHG generates static pages in a batch process before publish-
ing them on the web. This approach has the following benefits when
compared with dynamic semantic portals: The page repository can
be published easily by just copying it into a public HTML direc-
tory. SWeHG can be adapted to different contents conforming to dif-
ferent ontologies. The publication process is independent from se-
mantic portal providers—no special server software is needed. The
pages need no special maintenance. The static pages are indexed and
searched for by general search engines. The pages can be viewed ef-
ficiently. Data security problems are minimal. The properties of the
resulting HTML page set can be analyzed efficiently.

On the other hand, the static approach taken in SWeHG also has, of
course, its limitations. First, static pages can not adapt their content
dynamically to different user or patterns of usage. Second, dynamic
systems can be connected more easily with other services providing
additional functionality. Third, if the RDF repository, the rules, or the
HTML templates change, the site has to be regenerated usually from
scratch. Dynamic systems can adapt better to such changes. Fourth,
if the RDF repository is large and many templates are used, then the
number and size of generated pages can be large.

Clearly, both the dynamic and static approach have their own
virtues and application possibilities.

6.2 Related Work

Logic and dynamic link creation on the semantic web have been
discussed, e.g., in [4, 2]. Our approach is different in it’s use of
HTML templates and Prolog for describing the static HTML output.

In the RDF Twig tool12 the RDF to HTML transformation is based
on XSLT. A problem here is that an RDF graph can be serialized
in many ways in XML. In Spectacle13 the RDF to HTML transfor-
mation is based on APIs. Then the user must write programs that
use the API, and also an application server is needed. In contrast,
our approach is based on tags, is declarative, and the result is a set
of static pages whose linkage structure is inferred by logical linking
predicates.

6.3 Directions for Future Work

SWeHG is a research prototype. More work and testing is still needed
in order to evaluate and enhance the usability and extendability of
system in different applications. More work is also needed in opti-
mizing the efficiency of the code and in providing better develop-
ment tools for the HTML designer and system programmer using the
system.

Acknowledgments

M. Kiesilä, V. Komulainen, R. Köppä-Laitinen, and J. Muhonen
participated in the implementation project. Our work was mainly
funded by the National Technology Agency Tekes, Nokia Corp.,
TietoEnator Corp., the Espoo City Museum, the Foundation of the
Helsinki University Museum, the National Board of Antiquities, and
the Antikvaria-group of some 20 Finnish museums.

REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001.
[2] P. Dolong, N. Henze, and W. Neijdl. Logic-based open hypermedia for

the semantic web. In Proceedings of the Int. Workshop on Hypermedia
and the Semantic Web, Hypertext 2003 Conference, Nottinghan, UK,
2003.

[3] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors. Weaving
the Semantic Web. The MIT Press, 2002.

[4] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall. Con-
ceptual open hypermedia = the semantic web? In Proceedings of the
WWW2001, Semantic Web Workshop, Hongkong, 2001.

[5] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P.
Lee. Finding the flow in web site search. CACM, 45(9):42–49, 2002.

[6] E. Hyvönen, M. Junnila, S. Kettula, , E. Mäkelä, S. Saarela, M. Salmi-
nen, A. Syreeni, A. Valo, and K. Viljanen. MuseumFinland—Finnish
Museums on the Semantic Web. User’s perspective. In Proceedings
of Museums and the Web 2004 (MW2004), Arlington, Virginia, USA,
2004. http://www.cs.helsinki.fi/u/eahyvone/publications/ MuseumFin-
land.pdf.

[7] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: combin-
ing view- and ontology-based search with semantic browsing. In
Proceedings of the XML Finland 2003 conference. Kuopio, Fin-
land, 2003. http://www.cs.helsinki.fi/u/eahyvone/publications/ xmlfin-
land2003/yomXMLFinland2003.pdf.

[8] E. Hyvönen, M. Salminen, S. Kettula, and M. Junnila. A content cre-
ation process for the semantic web, 2004. Paper, submitted.

[9] E. Hyvönen, A. Valo, K. Viljanen, and M. Holi. Publish-
ing semantic web content as semantically linked html pages.
In Proceedings of XML Finland 2003, Kuopio, Finland,
2003. http://www.cs.helsinki.fi/u/eahyvone/publications/ xmlfin-
land2003/swehg_article_xmlfi2003.pdf.

[10] A. S. Pollitt. The key role of classification and indexing in view-based
searching. Technical report, University of Huddersfield, UK, 1998.
http://www.ifla.org/IV/ifla63/63polst.pdf.

� �

http:/rdftwig.sourceforge.net/� �

http://www.aidministrator.nl/spectacle/


