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The position weight matrix (PWM)
model and its visualization by se-
quence logos used to be the state of
the art for motif representation in
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Probabilistic Model

¢ allows dependencies of max-
imal order d among adjacent

Learning Approach

structure learning: selecting
each PCT so that the BIC score

¢ DeNovoMoDe

¢ MixtureMoDe

structure learning simultaneously

¢ FlexibleMoDe
flexible choice of latent variables,
allows weighted input

motif discovery from, e.g., ChIP-seq data

learning multiple models, clustering and

rences in given sequences

ClassificationApp

classifying sequences accord-
ing to different motif models
and/or background models

VisualizationApp
plotting of customized condi-
tional sequence logos
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* GUI

¢ Command line interface

Autosave w. Save wor.

¢ Galaxy integration
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