Model Answers – Chapters 6 and 7

March 30, 2011

Exercise 6.4

(a) Player B has the strictly dominant strategy of playing L. This strategy will result in the highest pay-off for player B regardless of what player A does. Player A has no dominant strategy.

(b) The only pure strategy Nash equilibrium is (b, L).

Exercise 6.7

(a) (D, R) is the only Nash equilibrium. This game has no mixed strategy Nash equilibria.

(b) This game has no pure strategy Nash equilibria, but the following mixed strategy Nash equilibrium exists:

\[
5q + 0(1 - q) = 4q + 2(1 - q) \Rightarrow q = \frac{2}{3}
\]

\[
6p + 4(1 - p) = 10p + 2(1 - p) \Rightarrow p = \frac{1}{3}
\]

Exercise 6.15

\[
\begin{array}{c|ccc}
 & A & B & \text{no} \\
\hline
A & -10, -10 & 10, 10 & 15, 0 \\
B & 10, 10 & 5, 5 & 30, 0 \\
\text{no} & 0, 15 & 0, 30 & 0, 0 \\
\end{array}
\]

(b) True. The worst case outcome is making a profit of 5 million when producing B.

(c) False. If firm 2 entered producing B, the best response for firm 1 would still be to produce A instead. Both firms entering the market producing B does not make it a Nash equilibrium.

(d) Firm 1 producing A, and firm 2 producing B, or firm 1 producing B and firm 2 producing A.

(e) The firms would reach social optimality if they by merging could produce only B (and if necessary limit the production output, etc.). This would result in a total profit of 30 million. This compares favourably to the 5 million each would be guaranteed to make by entering the market and producing B, or the 10 million each could make in one of the pure strategy Nash equilibria.
There is a possibility that the other firm would stay out of the market without a merger, but this seems highly unlikely given that both firms are guaranteed a minimum profit of 5 million by entering and producing B.

Exercise 7.4

(a) (X, X) and (Y, Y) are Nash equilibria for $x \in \{0, 1\}$. For $x = 2$, (Y, Y) is the only Nash equilibrium. Y is an evolutionarily stable strategy for $x \in \{0, 1, 2\}$, and additionally X is an evolutionarily stable strategy for $x = 0$.

(b) According to the definition in section 7.3, a strategy in such a game is evolutionarily stable if and only if (i) $a > c$ or (ii) $a = c$ and $b > d$. If the strategy X is weakly dominated, the strategy Y has to be dominant because the game has only two strategies. According to the given definition of a weakly dominated strategy, it then has to be the case that $c = a$ (if $c > a$, (X, X) would not be a Nash equilibrium, and if $c < a$, Y would not be a dominant strategy). Thus, (i) cannot be true.

If we assume that (ii) holds, it must be that $b > d$. But if $b > d$, Y is no longer a dominant strategy, because the pay-off for (X, Y) would be higher than the pay-off for (Y, Y), and thus X is not weakly dominated. It follows that neither (i) nor (ii) can hold when X is weakly dominated, and thus X cannot be evolutionarily stable when X is weakly dominated.