Information Retrieval Methods

Helena Ahonen-Myka

Spring 2007, part 11

Retrieval strategies

User interfaces and visualisation

Translation from Finnish: Greger Lindén
In this part

- Retrieval strategies
 - querying, browsing, navigation, scanning
 - filtering and routing

- User interfaces and visualisation
Retrieval process

1. The user has an information need
2. The user forms a query
3. The user sends the query to a system
4. The system returns an answer set
5. The user eyes and evaluates the results
6. If the user is satisfied, s/he stops
7. If the user is not satisfied, s/he modifies the query and returns to step 3
Retrieval process

• Background hypothesis:
 – the information need of the information seeker does not change during the retrieval process
 – the process is successful if, by modifying the query iteratively, the end result is a set of all relevant documents and no non-relevant ones
Retrieval process

• In practice the user learns new things during the process
 – the user eyes the titles of the result list, search terms in context, result documents and navigates following hyperlinks

• “the berry picking model”
 – the user’s information need changes during the process
 – the information need is satisfied during the retrieval process by eyeing or reading information fragments

• in addition to querying, other retrieval strategies are scanning, browsing and navigation
Querying, browsing, navigation and eyeing

• querying
 – documents are described explicitly with query words
 – the result is ad hoc document clusters

• browsing
 – the user starts from some possibly interesting topic/idea/document and browses documents to find relevant ones
 – if no relevant documents are found, the user will move to somewhere else
 – the starting point can be found by querying
 – assumption: documents on the same topic are organised together
Querying, browsing, navigation and eyeing

• navigating
 – the user follows hyperlinks towards a known goal (e.g. the phone number of N.N. at the Department of Computer Science)
 – the route is assumed to be known, or it is easily found out while navigating

• scanning
 – the user scans the titles of the answer list, documents, hyperlinks, meta data, etc.

• selection
 – auxiliary operation: e.g. when scanning, the seeker selects a hyperlink to follow
Content-based information filtering and routing

• filtering
 – the goal is to select for a person or an organisation from a document flow (e.g. today’s news, emails) interesting documents or remove unwanted ones

• routing
 – a document from a document flow is routed to a person who is interested in the document or to whose field of activities it belongs (e.g. questions by customers are routed to different experts)
Content-based information filtering and routing

- filtering and routing are based on filters (profiles)
- the document collection in a retrieval system is usually quite static, but queries vary
- in filtering and routing, the document collection changes continuously, but the filters are used for a long time and change only rarely (filters are like static queries)
Content-based information filtering and routing

- Filters can be based on meta data of documents (e.g. the sender of emails), but also on the contents of documents.
- Exact matching: the filters are applied as Boolean queries on each incoming document.
Content-based information filtering and routing

- Partial matching: the relevance of each document to the filter \(\rightarrow\) accept/reject or the best receiver is selected
 - Problem: the collection does not actually exist
 \(\rightarrow\) how can we compute df values for term weights
 - Solution: the df values of terms can be learnt from similar training materials (collections)
Content-based information filtering and routing

Training collection → Indexing → Representation of D → Matching

New document D → Indexing → Representation of D

Tf values → Tf * idf

DF values

Filtering query Q

Match → Route to user
Mismatch → Reject

Match → Route to user
Mismatch → Reject

Tf values

Tf * idf

Match

Mismatch

Route to user

Reject

DF values

a: 30
b: 120
c: 20
User interfaces and visualisation

- Overview of the document collection(s)
- Interfaces for specifying queries
- Visualisation of search results and their context

- This part based on
 - Chapter 10 “User Interfaces and Visualization” (by Marti A. Hearst) in Baeza-Yates & Ribeiro-Neto’s book Modern Information Retrieval
 - Chapter also available on the web (link from our course page)
Overview of the document collection(s)

• we can generate overviews by clustering
 – with labels for clusters
 – e.g. scatter/gather method (see part 6)

• graphical visualizations
 – e.g. WEBSOM (websom.hut.fi)

• manually (semi-automatically) generated hierarchies
 – e.g. Yahoo!, medical concept hierarchies (MeSH)
Interfaces for specifying queries

• forming Boolean queries can be difficult for many users
 • e.g. AND and OR do not correspond to their counterparts in standard language
 • “dogs and cats”, “tee or coffee”
• quorum search may help
 – automatic reformulation of the query from strict to loose
• also interfaces to define flexible forms of faceted queries can be offered
 – (osteoporosis OR ‘bone loss’)
 – (drugs OR pharmaceuticals)
 – (prevention OR cure)
Interfaces for specifying queries: graphical solutions

- **Venn diagrams (Hearst: figure 10.10)**
- the user can assign any number of query terms to ovals
 - if two or more ovals are placed such that they overlap with another, and if the user selects the area of their intersection → an AND operation is implied among the terms
 - if the user selects outside the area of intersection but within the ovals, an OR is implied among the corresponding terms
 - a NOT operation is associated with any term whose oval appears in the active area of the display but which remains unselected
- an active area indicates the current query: all groups of ovals within the active area are considered to be in the query
 - ovals containing query terms can be moved out of the active area for later use
Search for any documents in "HCI Bibliography" containing either Query and Boolean; or Graphical, Searching and Browsing; but not Ranking.

4 documents match the selected query:

- *Graphical Presentation of Boolean Expressions in a Query Network* by A. Richard
- *Query Processing in a Heterogeneous Retrieval Network* by Patricia Simpson
- *A Direct Manipulation Interface for Boolean Information* by Peter A. Anick, Jeffrey D. Brennan, Rex A. Flynn, David
Interfaces for specifying queries: graphical solutions

• block-oriented diagrams (restricted and parallel concepts) (Hearst: figure 10.12)
• the user types a natural language query which is automatically converted to a representation in which each query term is represented within a block
• the block are arranged into rows and columns
 – two or more blocks are in the same row → AND
 – two or more blocks are in the same column → OR
• the user can experiment with different combinations of terms by activating and deactivating blocks
Visualization of search results and their context

• a typical way: document surrogates
 – document titles, a fragment from the beginning, a link to an abstract, the class code, similarity value… (Hearst: figure 10.14)
The New Zealand Digital Library
The University of Waikato

Computer Science Technical Reports

Query Results

Your query contained mixed-case letters, even though your preferences are to ignore upper/lower case differences.

Word count: Swanson: 301

Results for the query Swanson (more than 50 documents matched the query).

2. AN IMPROVED TREATMENT OF EXTERNAL BOUNDARY FOR THREE-DIMENSIONAL FLOW COMPUTATIONS? Senyon V. Tsykinov, Veer N. Vatsaz NASA Langley Research Center, Hampton, VA
 Abstract: We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational

4. A Distributed Garbage Collection Algorithm Termone Critchlow UUCS-42-11 Department of Computer Science University of Utah Salt Lake City, UT 84112 USA July 30, 1992 Abstract Concurrent Scheme extends the Scheme programming language, providing parallel program execution on a distributed network.
Visualization of search results and their context

• highlighting of query terms
 – the user can more easily perceive the answer set, if the occurrences of the search words are somehow highlighted in the documents

• KWIC (keyword-in-context)
 – sentences where the query terms occur: summarize the ways the terms are used within a document
 – decisions:
 • How many sentences?
 • Which sentences? E.g. sentences near the beginning with the largest subset of query terms.
 • Which order? Usually in order of occurrence, independent of how many query terms they contain.
 – the retrieval system must have a copy of the original document (web search engines may not have)
Visualization of search results and their context

• TileBars
 – the user enters a query in faceted format
 – the system displays a graphical bar next to the title of each retrieved document, showing the degree of match for each facet
 • the user can see in which documents all the facets are present
 • (Hearst: figure 10.15, better picture in the PDF version)
Visualization of search results and their context

• SeeSoft
 – visualising occurrences of search terms
 – each column denotes one section (in a book)
 – each colour denotes the occurrence of some person (name) in the text
 – (Hearst: figure 10.16)
Visualization of search results and their context

• InfoCrystal
 – for each combination of search terms: in how many documents does the combination occur
 – the user does not have to specify Boolean operators in the query
 – allows visualization of all possible relations among N user-specified terms (although beyond 4 terms the interface becomes difficult to understand)
 – (Hearst: figure 10.17)
Visualization of search results and their context

• Vibe
 – query terms are placed in conceptual space
 – after the search, result documents are positioned in this space
 • a set of document that contain three query terms are shown at a point midway between the representations of the three terms
 – (Hearst: figure 10.18)
Visualization of search results and their context

• DynaCat
 – the answer set is ordered according to a classification system
 – all classes are not shown, only those that are relevant according to predefined query types
 • example of a type: ”Behaviour and behaviour mechanisms”
 • a query that belongs to the type: ”what are the ways to prevent breast cancer?”
 – (Hearst: figure 10.20)
Query: What are the ways to prevent breast cancer?

Behavior and Behavior Mechanisms

- Attitude
 - Attitude to Health
 - Por La Vida intervention model for cancer prevention in Latinas.
 - Breast cancer prevention education at a shopping center in Israel: a student nurse community health project.
 - Future challenges in secondary prevention of breast cancer for women at high risk.
 - A study of diet and breast cancer prevention in Canada: why healthy women participate in controlled trials.

- Knowledge, Attitudes, Practice
 - Por La Vida intervention model for cancer prevention in Latinas.
User interfaces and visualisation

• there are naturally many other subfields in designing user interfaces for retrieval systems
 – relevance feedback: what is automated, what is left in control of the user
 – supporting the retrieval process: e.g. how is the retrieval history stored; using a result as input for the next phase (query)
 – supporting long-term retrieval processes e.g. continuous follow-up of competing enterprises
In this part

- Retrieval strategies
 - querying, browsing, navigation, scanning
 - filtering and routing
- User interfaces and visualisation
 - Overview of the document collection(s)
 - Interfaces for specifying queries
 - Visualisation of search results and their context
Presentation of project work
(19 February)

• Each project group will give an informal presentation during the last exercise session on Monday February 19th (starting at 12.15 in C221)

• The length of the presentation should be about 15-20 minutes

• The project work does not have to be completed at the time of the presentation
 – the aim is to give an overview of the progress so far (what is your topic, what kind of queries and results you have studied, etc.)

• Remember that the project report deadline is on Friday, March 9th