Information Retrieval Methods

Helena Ahonen-Myka Spring 2007, part 2 Relevance. Evaluation. Translation from Finnish: Greger Lindén

In this part ...

- About the concept of relevance
- About evaluation of information retrieval

Relevance

- **relevance** is an important concept in information retrieval (IR), but it is hard to define
- The goal of IR is to find relevant information for the person who needs it
- But:
 - What is relevance?
 - What kind of information or document is relevant?
 - Who evaluates the relevance of a text or a document?
 - On what criteria?

Relevance

2

- Retrieval results, indexing, etc., are evaluated with methods that are based on the concept of relevance
- There is no single agreement on the definition of relevance
 - relatedness
 - topicality
 - beneficiality
 - utility

Topicality vs. user relevance

- There are two main directions in relevance definitions:
 - Topical relevance: relevance to a subject (topic), topicality, system relevance
 - In its most simple form, matching words in documents and queries
 - User relevance: user oriented view of relevance
 Based on the user's evaluation of the usefulness of the documents

Topicality vs. user relevance

- Basic assumption about topicality: index words (or phrases) can describe the semantics of a document and a retrieval task sufficiently
 - It is commonly believed that a better matching of keywords leads to a better result
 - For example, the system may try to infer the meaning of a text with advanced linguistic methods
 - But no system has been shown to be perfect

Topicality vs. user relevance

- Topical relevance is useful because it is easy to define and to measure, but it does not contain everything related to relevance
- The main focus in research is now towards user relevance

A more specific classification

- Algorithmic relevance
- Similarity between query and document depending on the matching method
- Topicality
 - Correspondence between topic and text as an interpretation by a human being
- Cognitive relevance
 - The relevance of a document according to the knowledge state of the user

A more specific classification, cont.

- Situational relevance
 - The relevance of the document according to the situation, task or problem of the user
- Motivational/emotional relevance
 - The relevance of the document according to the objectives or motives of the user, e.g., the entertainment value

Evaluation of IR

- IR research is usually only able to evaluate systems (or methods) in relation to other systems (or methods)
- Assume we want to compare a set of systems S Or one system with different methods or parameter settings
- Assume we have
 - A (large) set of documents D
 - A set of retrieval tasks T (= information needs)
 - Relevance assessments for documents in D

Relevance assessments

· Two common models

- Classical evaluation model (aka Cranfield evaluation framework)
- For each retrieval task t in T, all the documents in D have been relevance-judged (by human judges)
 In practice, it is impossible to judge each document for each task

- TREC (Text REtrieval Conference) framework
 - · The set of relevance judgements for each retrieval task is not complete.
 - Retrieval pool: e.g. the top-100 documents returned by each system are collected
 - · Only these documents are relevance-judged

11

Relevance assessments · Relevance values are usually binary - A document is either relevant or non-relevant (not relevant) for a task - Multi-graded relevance values could be used (e.g. significant/useful/marginal/irrelevant)

- · Developers of the systems/methods are not allowed to participate
 - in defining retrieval tasks
 - in relevance assessments

Evaluation process

- · For each system and each retrieval task, formulate a query
- Let each system match each query against the documents in the database
- Let's define:
 - a search request = processing one retrieval task by one system
 includes formulating a query, matching the query against
- documents, and returning a resultResult of a search request: a set of documents (often in some order)
- · The results are evaluated based on some evaluation criteria

13

15

Evaluation criteria

- The most common evaluation criteria – Recall (saanti; åtkomst)
 - Precision (tarkkuus; precision)

Recall and precision

- The result divides the documents in the database into two sets
 - The retrieved documents
 - The documents that were not retrieved
- In principle, all documents in the database should be evaluated for relevance; then we could divide the database into
 - Relevant documents for the task
 - Not relevant documents for the task

Definition of recall and precision

	Re	levan	ce
Answer set	Relevant	Non-relevant	Total
Retrieved	a	b	a + b
	Matches/true positives	false positives	retrieved
Rejected	с	d	c + d
	false negatives	true negatives	rejected
Total	a + c	b + d	a+b+c+d
	relevant	non-relevant	database

Recall and precision

- Together recall and precision are two concrete measurements for how well the retrieval succeeded
 - The recall denotes how much information the user received (in relation to how much there would have been)
 - The precision measure denotes how much work the user must do in order to find the relevant documents in the answer set
- We can often influence recall and precision by our design decisions

19

Relation between recall and precision

- The relation between recall and precision is inverse
 - Better recall usually means worse precision and vice versa
 - 100% recall is always possible by returning all documents → precision might then be close to zero
- E.g. if we add keywords to a query, the recall will
 - increase but the precision will decrease
 New keywords find other documents that use different words to describe the same topic but these keywords might also refer to other topics

20

Computing recall and precision

• Partial matching (the query is a set of terms)

- The result is a list of documents ordered according to the relevance of the document
 - Relevance is defined by the search system according to the similarity between the query and the documents
- In principle, the whole document collection is the result, ordered according to relevance probability
 - All relevant documents will be found at some stageIt is not reasonable to calculate just one recall and precision
- The result can be evaluated at separate stages

23

Computing recall and precision

Document #	Recall %	Precision %
4	10	25
6	20	33
12	30	25
15	40	27
19	50	26

d# 1	2345	6789	10 11	12 13	14 15	16 17.	3045
-	+		+ -			- +	+ +
	r%	p%				r%	p%
1:	0	0			17:	60	18
2:	20	50					
3:	20	33			30	80	13
4:	20	25					
5:	20	20			45	100	11
9:	20	11					
10:	40	20					

Recall and precision Usually we study a large set of results and are interested in the average recall and precision values We can, for example, gather the precision values for each search request (of a system) when recall is 10%, 20%,..., 100%, and compute the average precision at each stage (over the search requests)

• Average values can also be presented in a recallprecision graph

The DCV curve

- The user may be interested mainly only in the first retrieved documents
- We can focus on recall and precision at stages that correspond to a certain size of the answer set
 - After 5 documents, after 10 documents
 - \rightarrow DCV (Document Cut-off Value) curve

29

d# 1	2345	6789	10 11 12 13 14 15 16 173045
	- +		+ + + +
	r%	p%	
2:	20	50	1st relevant document
5:	20	20	
10:	40	20	2nd relevant
15:	40	13	
20:	60	15	3rd relevant
25:	60	12	
30:	80	13	4th relevant
35:	80	11	
40:	80	10	
45:	100	11	5th relevant ³⁰

Problems with recall and precision

- We do not know (in practice) the number of relevant documents in the document collection

 An approximate value is used
- It can happen that we see a document in the result set that is not relevance-judged
 - In TREC framework, non-judged documents are assumed to be irrelevant
 - Other evaluation methods which ignore non-judged documents exist

31

Comparing search methods

- We can compute from the results for each search request its successfulness, e.g. as a recall-precision curve
- If we compute the average precisions for a set of search requests of a system, we detect the performance of this retrieval system
- Usually we study average performances of several different methods

- In the previous picture, the performance of four search methods is compared
 - Each method is represented by a recall-precision curve in a different colour
 - Each curve presents the average precision at different recall levels;
 - Each curve represents one search method using 30 retrieval tasks
- The average precision of the best method at 50% recall is almost 60% and only about 20% for the worst one → there seems to be differences in performance

Comparing search methods

- When developing retrieval methods, it is important to evaluate which differences are significant
- We often compute the average of the performance curve at 11 points
 - The average of the precision values at recall levels 0-100% (at each 10%, "standard recall levels")
 - E.g., the precision average of the best method over different recall levels is about 60%, the others' about 50%, 40% and 20%

35

- Statistical tests, e.g. the t-test

32

Comparing search methods

- Interpreting the results from a recall-precision curve can be difficult, if recall bases for each task differ a lot (recall base = number of relevant documents in the database)
- If we know that the best method reaches 50% precision at recall level 60%, we still do not know how many documents the user will retrieve
- Varying sizes of the recall bases is also a problem in the DCV curve
 - If the recall base contains 5 documents, the precision at result size 50 documents cannot be very high

37

In this part

- Different views on how to define relevance
- Basic principles for evaluating IR methods and systems
 - Evaluation criteria recall and precision
 - Evaluation of the result of one search request
 - Evaluation of the performance of one system using a set of search requests
 - Comparing several systems