Processing of large document collections

Part 10 (Information extraction: learning extraction patterns) Helena Ahonen-Myka Spring 2005

Learning of extraction patterns

- IE systems depend on a domain-specific knowledge
 - acquiring and formulating the knowledge may require many person-hours of highly skilled people (usually both domain and the IE system expertize is needed)
 - the systems cannot be easily scaled up or ported to new domains.
 - automating the domain knowledge acquisition is needed

2

Learning of extraction patterns

- AutoSlog
- AutoSlog-TS
- · Multi-level bootstrapping

3

AutoSlog

- · Ellen Riloff, University of Massachusetts
 - Automatically constructing a dictionary for information extraction tasks, 1993
- given a training corpus, AutoSlog proposes a set of patterns that are capable of extracting the desired information from the training texts
- if the training corpus is representative of the target texts, the patterns should work also with new texts

.

Domain-specific knowledge

- the UMASS/MUC4 system used 2 dictionaries
 - a part-of-speech lexicon: 5436 lexical definitions, including semantic features for domain-specific words
 - a dictionary of 389 extraction patterns (= concept node definitions)
- for MUC4, the concept node dictionary was manually constructed by 2 graduate students: 1500 person-hours

AutoSlog

- · two central observations:
 - the most important facts about a news event are typically reported during the initial event description
 - the first reference to a targeted piece of information (e.g. a victim) is most likely where the relationship between that information and the event is made explicit

AutoSlog

- the immediate linguistic context surrounding the targeted information usually contains the words or phrases that describe its role in the event
 - e.g. "A U.S. diplomat was kidnapped by FMLN guerillas'
 - the word 'kidnapped' is the key word that relates the victim (A U.S. diplomat) and the perpetrator (FMLN guerillas) to the kidnapping event
 - · 'kidnapped' is the triggering word

Algorithm

- given a set of training texts and their associated answer
- AutoSlog proposes a set of patterns that are capable of extracting the information in the answer keys from the texts
- given a string from an answer key template (= targeted
 - AutoSlog finds the first sentence in the text that contains the
 - the sentence is given to a syntactic analysis component which generates an analysis of the sentence
 - using the analysis, AutoSlog identifies the first clause in the sentence that contains the string

Algorithm

- a set of heuristic rules are applied to the clause to suggest a good triggering word for a extraction
- if none of the heuristic rules is satisfied then AutoSlog searches for the next sentence in the text and process is repeated

Heuristic rules

- each heuristic rule looks for a specific linguistic pattern in the clause surrounding the targeted string
- if a heuristic identifies its pattern in the clause then it generates
 - a triggering word
 - a set of enabling conditions

Conceptual anchor point heuristics

- · suppose
 - the clause "the diplomat was kidnapped"
 - the targeted string "the diplomat"
- the targeted string appears as the subject and is followed by a passive verb 'kidnapped
- a heuristic that recognizes the pattern <subject> passive-verb is satisfied
 - returns the word 'kidnapped' as the triggering word,
 - as enabling condition: a passive construction

11

Linguistic patterns

- · <subj> passive-verb
- <subj> active-verb
- <subj> verb infinitive
- <subj> aux noun
- active-verb <dobj>

passive-verb <dobj>

- infinitive <dobj>
- · <victim> was murdered
- · <perpetrator> bombed
- · <perpetrator> attempted to
- <victim> was victim
- · killed <victim>
- · bombed <target>

· to kill <victim>

Linguistic patterns

- verb infinitive <dobj>
- threatened to attack <target>
- gerund <dobj>
- · killing <victim>
- noun aux <dobj>
- · fatality was <victim>
- noun prep <np>
- bomb against <target>killed with <instrument>
- active-verb prep <np>
 - passive-verb prep <np> was aimed at <target>

Building extraction patterns

- · a slot to extract the information
 - the name of the slot comes from the answer key template
 - "the diplomat" is Victim -> slot: Victim
 - the syntactic constituent comes from the linguistic pattern, e.g. the filler is the subject of the clause
 - "the diplomat" is subject -> slot: Victim *Subject*

14

Building extraction patterns

- · hard and soft constraints for the slot
 - e.g. constraints to specify a legitimate victim
- a type
 - e.g. the type of the event (bombing, kidnapping) from the answer key template

15

Example

..., public buildings were bombed and a car-bomb was...

Filler of the slot 'Phys_Target' in the answer key template: "public buildings"

Pattern (concept node definition):

Name: target-subject-passive-verb-bombed

Trigger: bombed

Slot: Phys_Target *Subject*

Slot-constraints: class phys-target *Subject*

Constant-slots: type bombing Enabled-by: passive

16

A bad definition

"they took 2-year-old gilberto molasco, son of patricio rodriguez, .."

${\bf Pattern} \ ({\bf concept} \ {\bf node} \ {\bf definition}) ;$

Name: victim-active-verb-dobj-took

Trigger: took

Slot: victim *DirectObject*

Slot-constraints: class victim *DirectObject*

Constant-slots: type kidnapping

Enabled-by: active

17

A bad pattern

- a pattern is triggered by the word "took" as an active verb
- this pattern is appropriate for this sentence, but in general we don't want to generate a kidnapping node every time we see the word "took"

Bad definitions

- AutoSlog generates bad definitions for many reasons
 - a sentence contains the targeted string but does not describe the event
 - a heuristic proposes a wrong triggering word
 - syntactic analysis works incorrectly
- · solution: human-in-the-loop

19

Empirical results

- training data: 1500 texts (MUC-4) and their associated answer keys
 - -6 slots were chosen
 - 1258 answer keys contained 4780 string fillers
- · result:
 - 1237 extraction patterns

20

Empirical results

- · human-in-the-loop:
 - 450 definitions were kept
 - time spent: 5 hours (compare: 1500 hours for a handcrafted set of patterns)
- the resulting set of extraction patterns was compared with a hand-crafted set within the UMass/MUC-4 system
 - precision, recall, F-measure almost the same

21

AutoSlog-TS

 Riloff (University of Utah): Automatically generating extraction patterns from untagged text, 1996

22

Extracting patterns from untagged text

- AutoSlog needs manually tagged or annotated information to be able to extract patterns
- manual annotation is expensive, particularly for domain-specific applications like IE
 - may also need skilled people
 - -~8 hours to annotate 160 texts (AutoSlog)

23

AutoSlog-TS

- needs only a preclassified corpus of relevant and irrelevant texts
 - much easier to generate
 - relevant texts are available online for many applications
- generates an extraction pattern for every noun phrase in the training corpus
- the patterns are evaluated by processing the corpus and generating relevance statistics for each pattern

Process

- · Stage 1:
 - the sentence analyzer produces a syntactic analysis for each sentence and identifies the noun phrases
 - for each noun phrase, the heuristic (AutoSlog) rules generate a pattern (a concept node) to extract the noun phrase
 - if more than one rule matches the context, multiple extraction patterns are generated
 - · <subj> bombed, <subj> bombed embassy

25

Process

- Stage 2:
 - the training corpus is processed a second time using the new extraction patterns
 - the sentence analyzer activates all patterns that are applicable in each sentence
 - relevance statistics are computed for each pattern
 - the patterns are ranked in order of importance to the domain

26

Relevance statistics

- relevance rate: R_i = F_i / N_i
 - F_i: the number of instances of pattern i that were activated in the relevant texts
 - N_i: the total number of instances of pattern i in the training corpus
- domain-specific expressions appear substantially more often in relevant texts than in irrelevant texts

27

Ranking of patterns

- the extraction patterns are ranked according to the formula:
 - $-score_i = R_i * log (F_i)$
 - or zero, if $R_i < 0.5$
 - in this case, the pattern is negatively correlated with the domain (assuming the corpus is 50% relevant)
- the formula promotes patterns that are
 highly relevant or highly frequent

00

The top 25 extraction patterns

- <subj> exploded
- murder of <np>
- · assassination of <np>
- <subj> was killed
- · <subj> was kidnapped
- attack on <np>
- <subj> was injured
- exploded in <np>

29

The top 25 extraction patterns, continues

- death of <np>
- · <subj> took place
- · caused <dobj>
- · claimed <dobj>
- <subj> was wounded
- <subj> occurred
- <subi> was located
- · took_place on <np>

The top 25 extraction patterns, continues

- · responsibility for <np>
- occurred on <np>
- · was wounded in <np>
- · destroyed <dobj>
- <subj> was murdered
- · one of <np>
- · <subj> kidnapped
- · exploded on <np>
- · <subj> died

31

Human-in-the-loop

- the ranked extraction patterns were presented to a user for manual review
- · the user had to
 - decide whether a pattern should be accepted or rejected
 - label the accepted patterns
 - murder of <np> -> <np> means the victim

32

AutoSlog-TS: conclusion

- empirical results comparable to AutoSlog
 - recall slightly worse, precision better
- · the user needs to
 - provide sample texts (relevant and irrelevant)
 - spend some time filtering and labeling the resulting extraction patterns

33

Multi-level bootstrapping

 Riloff (Utah), Jones(CMU): Learning Dictionaries for Information Extraction by Multi-level Bootstrapping, 1999

34

Multi-level bootstrapping

- an algorithm that generates simultaneously
 - a semantic lexicon
 - extraction patterns
- input: unannotated training texts and a few seed words for each category of interest (e.g. location)

Mutual bootstrapping

 observation: extraction patterns can generate new examples of a semantic category, which in turn can be used to identify new extraction patterns

Mutual bootstrapping

- process begins with a text corpus and a few predefined seed words for a semantic category
 - text corpus: e.g. terrorist events texts, web pages
 - semantic category : (e.g.) location, weapon, company

37

Mutual bootstrapping

- AutoSlog is used in an exhaustive fashion to generate extraction patterns for every noun phrase in the corpus
- the extraction patterns are applied to the corpus and the extractions are recorded

38

Mutual bootstrapping

- input for the next stage:
 - a set of extraction patterns, and for each pattern, the NPs it can extract from the training corpus
 - this set can be reduced by pruning the patterns that extract one NP only
 - general (enough) linguistic expressions are preferred

39

Mutual bootstrapping

- using the data, the extraction pattern is identified that is most useful for extracting known category members
 - known category members in the beginning = the seed words
 - e.g. in the example, 10 seed words were used for the location category (in terrorist texts): bolivia, city, colombia, district, guatemala, honduras, neighborhood, nicaragua, region,

..

Mutual bootstrapping

- the best extraction pattern found is then used to propose new NPs that belong to the category (= should be added to the semantic lexicon)
- in the following algorithm:
 - SemLex = semantic lexicon for the category
 - Cat_EPlist = the extraction patterns chosen for the category so far

. .

Algorithm

- Generate all candidate extraction patterns from the training corpus using AutoSlog
- Apply the candidate extraction patterns to the training corpus and save the patterns with their extractions to EPdata
- SemLex = {seed_words}
- Cat_EPlist = {}

Algorithm, continues

- Mutual Bootstrapping Loop
 - 1. Score all extraction patterns in EPdata
 - 2. best_EP = the highest scoring extraction pattern not already in Cat_EPlist
 - 3. Add best_EP to Cat_EPlist
 - 4. Add best EP's extractions to SemLex
 - 5. Go to step 1

43

Mutual bootstrapping

- at each iteration, the algorithm saves the best extraction pattern for the category to Cat EPlist
- all of the extractions of this pattern are assumed to be category members and are added to the semantic lexicon

44

Mutual bootstrapping

- in the next iteration, the best pattern that is not already in Cat EPlist is identified
 - based on both the original seed words + the new words that have been added to the lexicon
- the process repeats until some end condition is reached

45

Scoring

- based on how many different lexicon entries a pattern extracts
- · the metric rewards generality
 - a pattern that extracts a variety of category members will be scored higher than a pattern that extracts only one or two different category members, no matter how often

46

Scoring

- · head phrase matching:
 - X matches Y if X is the rightmost substring of Y
 - "New Zealand" matches "eastern New Zealand" and "the modern day New Zealand"
 - -... but not "the New Zealand coast" or "Zealand"
 - important for generality
- each NP was stripped of leading articles, common modifiers ("his", "other",...) and numbers before being saved to the lexicon

Scoring

- the same metric was used as in AutoSlog-TS
 - score(pattern_i) = R_i * log(F_i)
- F_i: the number of unique lexicon entries among the extractions produced by pattern i
- N_i: the total number of unique NPs that pattern i extracted
- $R_i = F_i / N_i$

Example

- 10 seed words were used for the location category (terrorist texts):
 - bolivia, city, colombia, district, guatemala, honduras, neighborhood, nicaragua, region, town
- · the first five iterations...

49

Example

Best pattern "headquartered in <x> (F=3, N=4)

Known locations nicaragua

New locations san miguel, chapare region, san miguel city

Best pattern "gripped <x>" (F=2, N=2) Known locations colombia, guatemala

New locations none

Example

Best pattern "downed in <x>" (F=3, N=6)

Known locations nicaragua, san miguel*, city

New locations area, usulutan region, soyapango

Best pattern "to occupy <x>" (F=4, N=6)

Known locations nicaragua, town

New locations small country, this northern area,

san sebastian neighborhood, private property

51

Example

Best pattern "shot in <x>" (F=5, N=12)

Known locations city, soyapango*

New locations jauja, central square, head, clash, back,

central mountain region, air, villa el_salvador district, northwestern guatemala, left side

52

Strengths and weaknesses

- the extraction patterns have identified several new location phrases
 - jauja, san miguel, soyapango, this northern area
- but several non-location phrases have also been generated
 - private property, head, clash, back, air, left side
 - most mistakes due to "shot in <x>"
- many of these patterns occur infrequently in the corpus

Multi-level bootstrapping

- the mutual bootstrapping algorithm works well but its performance can deteriorate rapidly when non-category words enter the semantic lexicon
- once an extraction pattern is chosen for the dictionary, all of its extractions are immediately added to the lexicon
 - few bad entries can quickly infect the dictionary

Multi-level bootstrapping

- for example, if a pattern extracts dates as well as locations, then the dates are added to the lexicon and subsequent patterns are rewarded for extracting these dates
- to make the algorithm more robust, a second level of bootstrapping is used

55

Multi-level bootstrapping

- the outer bootstrapping mechanism ("meta-bootstrapping")
 - compiles the results from the inner (mutual) bootstrapping process
 - identifies the five most reliable lexicon entries
 - these five NPs are retained for the permanent semantic lexicon
 - the entire mutual bootstrapping process is then restarted from scratch (with new lexicon)

56

Multi-level bootstrapping

- number of iterations: 50 (for instance)
- · output:
 - extraction patterns generated by the last iteration
 - extraction patterns from the previous iterations are thrown away
 - permanent semantic lexicon

57

Scoring for reliability

- to determine which NPs are most reliable, each NP is scored based on the number of different category patterns that extracted it
- intuition: a NP extracted by e.g. three different category patterns is more likely to belong to the category than a NP extracted by only one pattern

58

Multi-level bootstrapping

- the main advantage of meta-bootstrapping comes from re-evaluating the extraction patterns after each mutual bootstrapping process
- in practice, the ordering of patterns changes: more general patterns float to the top as the semantic lexicon grows

59

Multi-level bootstrapping: conclusion

- both a semantic lexicon and a dictionary of extraction patterns are acquired simultaneously
- · resources needed:
 - corpus of (unannotated) training texts
 - a small set of words for a category