Processing of large document collections

Part 2 (Text categorization, term selection)
Helena Ahonen-Myka
Spring 2005

Text categorization, continues

- · problem setting
- machine learning approach
- example of a learner: Rocchio method
- term selection (for text categorization)

2

Text categorization: problem setting

- let
 - D: a collection of documents
 - C = $\{c_1, ..., c_{|C|}\}$: a set of predefined categories
 - T = true, F = false
- the task is to approximate the unknown target function Φ': D x C -> {T,F} by means of a function Φ: D x C -> {T,F}, such that the functions "coincide as much as possible"
- \bullet function Φ' : how documents should be classified
- function Φ : classifier (hypothesis, model...)

,

Some assumptions

- categories are just symbolic labels
 - no additional knowledge of their meaning is available
- no knowledge outside of the documents is available
 - all decisions have to be made on the basis of the knowledge extracted from the documents
 - metadata, e.g., publication date, document type, source etc. is not used

4

Some assumptions

- methods do not depend on any applicationdependent knowledge
 - but: in operational ("real life") applications all kind of knowledge can be used (e.g. in spam filtering)
- note: content-based decisions are necessarily subjective
 - it is often difficult to measure the effectiveness of the classifiers
 - even human classifiers do not always agree

5

Single-label, multi-label TC

- single-label text categorization
 - exactly 1 category must be assigned to each $\textbf{d}_j \in \textbf{D}$
- multi-label text categorization
 - any number of categories may be assigned to the same $\textbf{d}_j \in \ \textbf{D}$

Single-label, multi-label TC

- special case of single-label: binary
 - each d_j must be assigned either to category c_i or to its complement $\neg\ c_i$
- the binary case (and, hence, the single-label case) is more general than the multi-label
 - an algorithm for binary classification can also be used for multi-label classification
 - the converse is not true

Single-label, multi-label TC

- in the following, we will use the binary case only:
 - classification under a set of categories C = set of |C| independent problems of classifying the documents in D under a given category c_i, for i = 1, ..., |C|

8

Machine learning approach

- a general inductive process (learner) automatically builds a classifier for a category c₁ by observing the characteristics of a set of documents manually classified under c₁ or ¬c₁ by a domain expert
- from these characteristics the learner extracts the characteristics that a new unseen document should have in order to be classified under ci
- use of classifier: the classifier observes the characteristics of a new document and decides whether it should be classified under c_i or ¬c_i

.

Classification process: classifier construction Learner Training set Doc 1; Label: yes Doc2; Label: no ... Docn; Label: yes

Training set, test set, validation set

- initial corpus of manually classified documents
 - let d; belong to the initial corpus
 - for each pair < d $_{\rm j}$, c $_{\rm i}>$ it is known if d $_{\rm j}$ should be filed under c $_{\rm i}$
- positive examples, negative examples of a category

12

Training set, test set, validation set

- the initial corpus is divided into two sets
 - a training set
 - a test set
- the training set is used to build the classifier
- the test set is used for testing the effectiveness of the classifier
 - each document is fed to the classifier and the decision is compared to the manual category

14

Training set, test set, validation set

- the documents in the test set are not used in the construction of the classifier
- alternative: k-fold cross-validation
 - k different classifiers are built by partitioning the initial corpus into k disjoint sets and then iteratively applying the trainand-test approach on pairs, where k-1 sets construct a training set and 1 set is used as a test set
 - individual results are then averaged

15

Training set, test set, validation set

- training set can be split to two parts
- one part is used for optimising parameters
 - test which values of parameters yield the best effectiveness
- test set and validation set must be kept separate

16

Strengths of machine learning approach

- the learner is domain independent
 - usually available 'off-the-shelf'
- the inductive process is easily repeated, if the set of categories changes
 - only the training set has to be replaced
- manually classified documents often already available
 - manual process may exist
 - if not, it is still easier to manually classify a set of documents than to build and tune a set of rules

Examples of learners

- Rocchio method
- probabilistic classifiers (Naïve Bayes)
- decision tree classifiers
- decision rule classifiers
- regression methods
- on-line methods
- neural networks
- example-based classifiers (k-NN)
- boosting methods
- support vector machines

Rocchio method

- learner
- for each category, an explicit profile (or prototypical document) is constructed from the documents in the training set
 - the same representation as for the documents
 - benefit: profile is understandable even for humans

19

Rocchio method

- a profile of a category is a vector of the same dimension as the documents
 - in our example: 118 terms
 - categories medicine, energy, and environment are represented by vectors of 118 elements
 - the weight of each element represents the importance of the respective term for the category

20

Rocchio method

• weight of the kth term of the category i:

$$w_{ki} = \beta \cdot \sum_{\{d_j \in POS_i\}} \frac{w_{kj}}{\mid POS_i \mid} - \gamma \cdot \sum_{\{d_j \in NEG_i\}} \frac{w_{kj}}{\mid NEG_i \mid}$$

- POS_i: set of positive examples
 - $\boldsymbol{\mathsf{-}}$ documents that are of category i
- NEG;: set of negative examples

21

Rocchio method

- in the formula, β and γ are control parameters that are used to set the relative importance of positive and negative examples
- for instance, if β =2 and γ =1, we don't want the negative examples to have as strong influence as the positive examples

22

Rocchio method

- in our sample dataset: what is the weight of term 'nuclear' in the category 'medicine'?
 - POS_{medicine} contains the documents Doc1-Doc4, and NEG_{medicine} contains the documents Doc5-Doc10
 - \bullet | $POS_{medicine}$ | 4 and $|NEG_{medicine}|$ 6

23

Rocchio method

- the weights of term 'nuclear' in documents in $\mathsf{POS}_{\mathsf{medicine}}$
 - w_nuclear_doc1 0.5
 - w_nuclear_doc2 0
 - w_nuclear_doc3 0
 - w_nuclear_doc4 0.5
- and in documents in NEG medicine
 - w_nuclear_doc6 0.5

Rocchio method

- weight of 'nuclear' in the category 'medicine':

Rocchio method

- using the classifier: cosine similarity of the category vector and the document vector is computed
 - |T| is the number of terms

$$S(c_i, d_j) = \frac{\sum_{k=1}^{|T|} w_{ki} \cdot w_{kj}}{\sqrt{\sum_{k=1}^{|T|} w_{ki}^2} \cdot \sqrt{\sum_{k=1}^{|T|} w_{kj}^2}}$$

Rocchio method

- the cosine similarity function returns a value between 0 and 1
- a threshold is given
 - if the value is higher than the threshold -> true (the document belongs to the category)
 - otherwise -> false (the document does not belong to the category)

27

Strengths of Rocchio method

- simple to implement
- fast to train
- search engines can be used to run a classifier

28

Weaknesses of Rocchio method

- if the documents in a category occur in disjoint clusters, a classifier may miss most of them
 - e.g. two types of Sports news: boxing and rock-climbing
 - $\ -$ the centroid of these clusters may fall outside all of these clusters

Enhancement to the Rocchio Method

- instead of considering the set of negative examples in its entirety, a smaller sample can be used
 - for instance, the set of near-positive examples
- near-positives (NPOS_c): the most positive amongst the negative training examples

31

Enhancement to the Rocchio Method

• the new formula:

$$w_{ki} = \beta \cdot \sum_{\{dj \in POS_i\}} \frac{w_{kj}}{|POS_i|} - \gamma \cdot \sum_{\{dj \in NPOS_i\}} \frac{w_{kj}}{|NPOS_i|}$$

32

Enhancement to the Rocchio Method

- the use of near-positives is motivated, as they are the most difficult documents to distinguish from the positive documents
- near-positives can be found, e.g., by querying the set of negative examples with the centroid of the positive examples
 - the top documents retrieved are most similar to this centroid, and therefore nearnositives
- with this and other enhancements, the performance of Rocchio is comparable to the best methods

33

Term selection

- a large document collection may contain millions of words -> document vectors would contain millions of dimensions
 - many algorithms cannot handle high dimensionality of the term space (= large number of terms)
 - very specific terms may lead to overfitting: the classifier can classify the documents in the training data well but fails often with unseen documents

34

Term selection

- usually only a part of terms is used
- how to select terms that are used?
 - term selection (often called feature selection or dimensionality reduction) methods

35

Term selection

- goal: select terms that yield the highest effectiveness in the given application
- wrapper approach
 - the reduced set of terms is found iteratively and tested with the application
- filtering approach
 - keep the terms that receive the highest score according to a function that measures the "importance" of the term for the task

Term selection

- many functions available
 - document frequency: keep the high frequency terms
 - stopwords have been already removed
 - 50% of the words occur only once in the document collection
 - e.g. remove all terms occurring in at most 3

37

Term selection functions: document frequency

- document frequency is the number of documents in which a term occurs
- in our sample, the ranking of terms:
 - 9 current
 - 7 project
 - 4 environment
 - 3 nuclear
 - 2 application
 - 2 area ... 2 water
 - 1 use ...

38

Term selection functions: document frequency

- we might now set the threshold to 2 and remove all the words that occur only once
- result: 29 words of 118 words (~25%) selected

39

Term selection: other functions

- Information-theoretic term selection functions, e.g.
 - chi-square
 - information gain
 - mutual information
 - odds ratio
 - relevancy score

40

42

Term selection: information gain

- Information gain: measures the (number of bits of) information obtained for category prediction by knowing the presence or absence of a term in a document
- information gain is calculated for each term and the best n terms are selected

 $G(t) = -\sum_{i=1}^{m} p(c_i) \log p(c_i)$

- m: the number of categories

• information gain for term t:

 $+p(t)\sum_{i=1}^{m}p(c_{i}|t)\log p(c_{i}|t)$

 $+p(\sim t)\sum_{i=1}^{m}p(c_{i}\mid\sim t)\log p(c_{i}\mid\sim t)$

Term selection: IG

Estimating probabilities

- Doc 1: cat cat cat (c)
- Doc 2: cat cat cat dog (c)
- Doc 3: cat dog mouse (~c)
- Doc 4: cat cat cat dog dog (~c)
- Doc 5: mouse (~c)
- 2 classes: c and ~c

43

Term selection: estimating probabilities

- P(t): probability of a term t
 - -P(cat) = 4/5, or
 - 'cat' occurs in 4 docs of 5
 - -P(cat) = 10/17
 - the proportion of the occurrences of 'cat' of the all term occurrences

44

Term selection: estimating probabilities

- P(~t): probability of the absence of t
 - $-P(\sim cat) = 1/5$, or
 - $-P(\sim cat) = 7/17$

45

Term selection: estimating probabilities

- P(c_i): probability of category i
 - P(c) = 2/5 (the proportion of documents belonging to c in the collection), or
 - P(c) = 7/17 (7 of the 17 terms occur in the documents belonging to c)

46

Term selection: estimating probabilities

- P(c_i | t): probability of category i if t is in the document; i.e., which proportion of the documents where t occurs belong to the category i
 - $-P(c \mid cat) = 2/4 \text{ (or 6/10)}$
 - $-P(\sim c \mid cat) = 2/4 \text{ (or } 4/10)$
 - $-P(c \mid mouse) = 0$
 - $-P(\sim c \mid mouse) = 1$

47

Term selection: estimating probabilities

- P(c_i | ~t): probability of category i if t is not in the document; i.e., which proportion of the documents where t does not occur belongs to the category i
 - $-P(c \mid \sim cat) = 0 (or 1/7)$
 - $-P(c \mid \sim dog) = \frac{1}{2} (or 6/12)$
 - $-P(c \mid \sim mouse) = 2/3 \text{ (or } 7/15)$

Term selection: estimating probabilities

- In other words...
- Let
 - term t occurs in B documents, A of them are in category c
 - category c has D documents, of the whole of N documents in the collection

49

Term selection: estimating probabilities

• For instance,

– P(t): B/N

- P(~t): (N-B)/N

-P(c): D/N

- P(c|t): A/B

-P(c|~t): (D-A)/(N-B)

Term selection: IG

 information gain for a term t:

$$G(t) = -\sum_{i=1}^{m} p(c_i) \log p(c_i)$$

$$+p(t){\sum\nolimits_{i=1}^{m}p\left(c_{i}\mid t\right)}{\log p\left(c_{i}\mid t\right)}+p\left(\sim t\right){\sum\nolimits_{i=1}^{m}p\left(c_{i}\mid\sim t\right)}{\log p\left(c_{i}\mid\sim t\right)}$$

• G(cat) = -0.40

• G(dog) = -0.38

• G(mouse) = -0.01