Processing of large document collections

Part 3 (Evaluation of text classifiers, applications of text categorization) Helena Ahonen-Myka Spring 2005

Evaluation of text classifiers

- evaluation of document classifiers is typically conducted experimentally, rather than analytically
- reason: in order to evaluate a system analytically, we would need a formal specification of the problem that the system is trying to solve
- text categorization is non-formalisable

2

Evaluation

- the experimental evaluation of a classifier usually measures its effectiveness (rather than its efficiency)
 - effectiveness= ability to take the right classification decisions
 - efficiency= time and space requirements

3

Evaluation

- after a classifier is constructed using a training set, the effectiveness is evaluated using a test set
- the following counts are computed for each category i:

TP_i: true positives
FP_i: false positives
TN_i: true negatives
FN_i: false negatives

4

Evaluation

- TP_i: true positives w.r.t. category c_i
 - the set of documents that both the classifier and the previous judgments (as recorded in the test set) classify under ci
- FP_i: false positives w.r.t. category c_i
 - the set of documents that the classifier classifies under $c_{\rm l},$ but the test set indicates that they do not belong to $c_{\rm l}$

5

Evaluation

- TN_i: true negatives w.r.t. c_i
 - both the classifier and the test set agree that the documents in TN_{\parallel} do not belong to c_{\parallel}
- FN;: false negatives w.r.t. c;
 - the classifier do not classify the documents in FN_{i} under $c_{\text{i}},$ but the test set indicates that they should be classified under c_{i}

Evaluation measures

• Precision wrt c

$$\pi_i = \frac{TP_i}{TP_i + FP_i}$$

• Recall wrt ci

$$\rho_i = \frac{TP_i}{TP_i + FN}$$

7

Evaluation measures

- for obtaining estimates for precision and recall in the collection as a whole, two different methods may be adopted:
 - microaveraging
 - counts for true positives, false positives and false negatives for all categories are first summed up
 - precision and recall are calculated using the global values
 - macroaveraging
 - average of precision (recall) for individual categories

8

Evaluation measures

- microaveraging and macroaveraging may give quite different results, if the different categories have very different generality
- e.g. the ability of a classifier to behave well also on categories with low generality (i.e. categories with few positive training instances) will be emphasized by macroaveraging
- choice depends on the application

9

Combined effectiveness measures

- neither precision nor recall makes sense in isolation of each other
- the trivial acceptor (each document is classified under each category) has a recall = 1
 - in this case, precision would usually be very low
- higher levels of precision may be obtained at the price of lower values of recall

10

Trivial acceptor

• Precision wrt c

$$\pi_i = \frac{TP_i}{TP_i + FP_i}$$

• Recall wrt ci

$$\rho_i = \frac{TP_i}{TP_i + FN_i}$$

FPi TPi

Classified Ci: all

11

Test Class Ci

Combined effectiveness measures

- a classifier should be evaluated by means of a measure which combines recall and precision
- some combined measures:
 - 11-point average precision
 - the breakeven point
 - F1 measure

11-point average measure

- in constructing the classifier, the threshold is repeatedly tuned so as to allow recall (for the category) to take up values 0.0, 0.1., ..., 0.9, 1.0.
- precision (for the category) is computed for these 11 different values of precision, and averaged over the 11 resulting values

Recall-precision curve

Breakeven point

- process analoguous to the one used for 11point average precision
 - precision as a function of recall is computed by repeatedly varying the thresholds
- breakeven is the value where precision equals recall

16

F₁ measure

• F₁ measure is defined as:

$$F_1 = \frac{2\pi\rho}{\pi + \rho}$$

- the breakeven point of a classifier is always less or equal than its F₁ value
- for the trivial acceptor, $\pi\to 0$ and $\rho=1,$ $F_1\to 0$

17

15

Effectiveness

 once an effectiveness measure is chosen, a classifier can be tuned (e.g. thresholds and other parameters can be set) so that the resulting effectiveness is the best achievable by that classifier

Evaluation measures

- efficiency (= time and space requirements)
 - seldom used, although important for reallife applications
 - difficult: environment parameters change
 - two parts
 - training efficiency average time it takes to build a classifier for a category from a training set
 - classification efficiency average time it takes to classify a new document under a category

19

Conducting experiments

- in general, different sets of experiments may be used for cross-classifier comparison only if the experiments have been performed
 - on exactly the same collection (same documents and same categories)
 - with the same split between training set and test set
 - with the same evaluation measure

20

Applications of text categorization

- automatic indexing for Boolean information retrieval systems
- document organization
- text filtering
- word sense disambiguation
- authorship attribution
- hierarchical categorization of Web pages

21

Automatic indexing for information retrieval systems

- in an information retrieval system, each document is assigned one or more keywords or keyphrases describing its content
 - keywords belong to a finite set called controlled dictionary
- TC problem: the entries in a controlled dictionary are viewed as categories
 - $\begin{array}{lll} \ k_1 \leq x \leq \ k_2 & \text{keywords are assigned to each} \\ \text{document} & \end{array}$

22

Document organization

- indexing with a controlled vocabulary is an instance of the general problem of document collection organization
- e.g. a newspaper office has to classify the incoming "classified" ads under categories such as Personals, Cars for Sale, Real Estate etc.
- organization of patents, filing of newspaper articles...

23

Text filtering

- classifying a stream of incoming documents by an information producer to an information consumer
- e.g. newsfeed
 - producer: news agency; consumer: newspaper
 - the filtering system should block the delivery of documents the consumer is likely not interested in

Word sense disambiguation

- given the occurrence in a text of an ambiguous word, find the sense of this particular word occurrence
- e.g.
 - bank, sense 1, like in "Bank of Finland"
 - bank, sense 2, like in "the bank of river Thames"
 - occurrence: "Last week I borrowed some money from the bank."

25

Word sense disambiguation

- indexing by word senses rather than by words
- text categorization
 - documents: word occurrence contexts
 - categories: word senses
- also resolving other natural language ambiguities
 - context-sensitive spelling correction, part of speech tagging, prepositional phrase attachment, word choice selection in machine translation

26

Authorship attribution

- task: given a text, determine its author
- author of a text may be unknown or disputed, but some possible candidates and samples of their works exist
- literary and forensic applications
 - who wrote this sonnet? (literary interest)
 - who sended this anonymous letter? (forensics)

27

Hierarchical categorization of Web pages

- e.g. Yahoo like web hierarchical catalogues
- typically, each category should be populated by "a few" documents
- new categories are added, obsolete ones removed
- usage of link structure in classification
- usage of the hierarchical structure