Processing of large document collections

Part 2 (Text categorization) Helena Ahonen-Myka Spring 2006

Text categorization, continues

- problem setting
- machine learning approach
- example of a learning method: Rocchio

Text categorization: problem setting

- let
 - D: a collection of documents
 - C = {c₁, ..., c_{|C|}} : a set of predefined categories T = true, F = false
- the task is to approximate the unknown target function Φ': D x C -> {T,F} by means of a function Φ : D x C -> {T,F}, such that the functions "coincide as much as possible"
- function Φ^\prime : how documents should be classified
- function Φ : classifier (hypothesis, model...)

Some assumptions

- categories are just symbolic labels

 no additional knowledge of their meaning is available
- no knowledge outside of the documents is available
 - all decisions have to be made on the basis of the knowledge extracted from the documents
 - metadata, e.g., publication date, document type, source etc. is not used

Some assumptions

- methods do not depend on any applicationdependent knowledge
 - but: in operational ("real life") applications all kind of knowledge can be used (e.g. in spam filtering)
- note: content-based decisions are necessarily subjective
 - it is often difficult to measure the
 - effectiveness of the classifiers
 - even human classifiers do not always agree

5

3

Variations of problem setting: single-label, multi-label text categorization

- single-label text categorization

 exactly 1 category must be assigned to
 each d_i ∈ D
- multi-label text categorization
- any number of categories may be assigned to the same $d_j \in D$

Variations of problem setting: single-label, multi-label text categorization

- special case of single-label: binary
 - each d_j must be assigned either to category c_i or to its complement $\neg c_i$
- the binary case (and, hence, the single-label case) is more general than the multi-label

 an algorithm for binary classification can
 - also be used for multi-label classification
 - the converse is not true

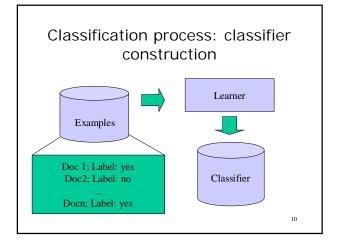
Variations of problem setting: single-label, multi-label text categorization

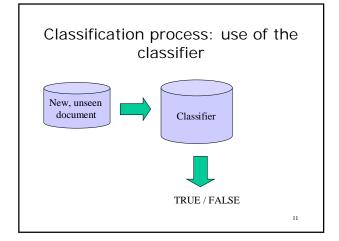
- in the following, we will use the binary case only:
 - classification under a set of categories C = set of |C| independent problems of classifying the documents in D under a given category c_i , for i = 1, ..., |C|

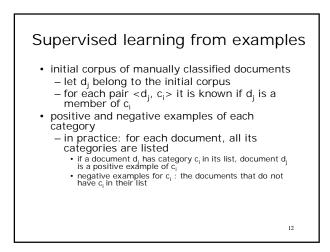
Machine learning approach to text categorization

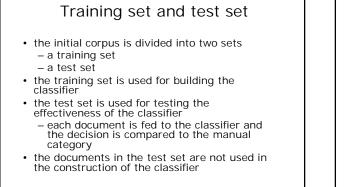
- a general program (learner) automatically builds a classifier for a category c_i by observing the characteristics of a set of documents manually classified under c_i or ¬c_i by a domain expert
- from these characteristics the learner extracts the characteristics that a new unseen document should have in order to be classified under c_i
- use of classifier: the classifier observes the characteristics of a new document and decides whether it should be classified under c_i or $\neg c_i$

9

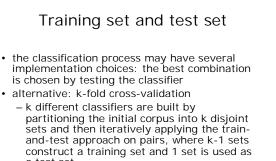








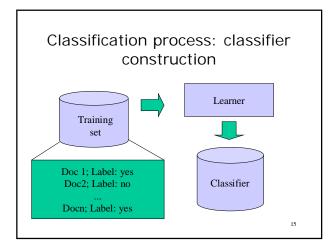
13

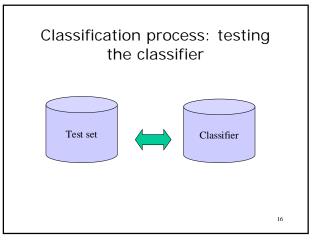


14

- individual results are then averaged

a test set



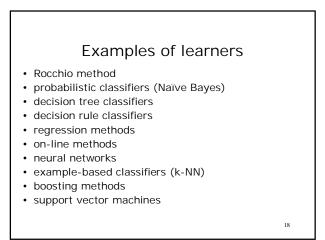


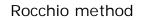
Strengths of machine learning approach

- learners are domain independent

 usually available 'off-the-shelf'
- the learning process is easily repeated, if the set of categories changes
 - only the training set has to be replaced
- manually classified documents often already available
 - manual process may exist
 - if not, it is still easier to manually classify a set of documents than to build and tune a set of rules

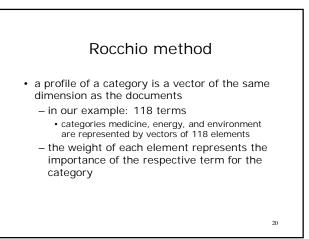
17

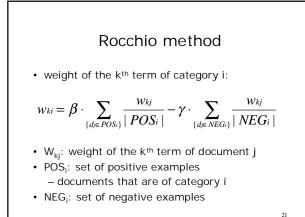


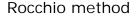


- learning method adapted from the relevance feedback method of Rocchio
- for each category, an explicit profile (or prototypical document) is constructed from the documents in the training set
 - the same representation as for the documents
 - benefit: profile is understandable even for humans
- profile = classifier for the category

19







- in the formula, β and γ are control parameters that are used to set the relative importance of positive and negative examples
- for instance, if $\beta=2$ and $\gamma=1$, we do not want the negative examples to have as strong influence as the positive examples

22

• if β =1 and γ =0, the category vector is the centroid (average) vector of the positive sample documents

