
1

Processing of large document
collections

Part 9 (Information extraction: learning
extraction patterns)

Helena Ahonen-Myka
Spring 2006

2

Learning of extraction patterns

• motivation: portability of IE systems
• learning methods

– AutoSlog
– AutoSlog-TS
– Multi-level bootstrapping

3

Portability of information extraction
systems

• one of the barriers to making IE a practical
technology is the cost of adapting an
extraction system to a new scenario

• in general, each application of extraction
will involve a different scenario

• implementing a scenario should not
require too much time and not the skills of
the extraction system designers

4

Portability of information extraction
systems

• the basic question in developing a
customization tool is the form and level of
the information to be obtained from the
user

• goal: the customization is performed
directly by the user (rather than by an
expert system developer)

5

Portability of information extraction
systems

• if we are using a pattern matching system,
most work will probably be focused on the
development of the set of patterns

• also changes
– to the dictionaries
– to the semantic hierarchy
– to the set of inference rules
– to the rules for creating the output templates

6

Portability of information extraction
systems

• we cannot expect the user to have
experience with writing patterns (regular
expressions with associated actions) and
familiarity with formal syntactic structure

• one possibility is to provide a graphical
representation of the patterns but still too
many details of the patterns are shown

• possible solution: learning from examples

2

7

Learning from examples

• learning of patterns
– information is obtained from examples of

sentences of interest and the information to
be extracted

• for instance, in a system ”AutoSlog”
patterns are created semiautomatically
from the templates of the training corpus

8

AutoSlog

• Ellen Riloff, University of Massachusetts
– Automatically constructing a dictionary for information

extraction tasks, 1993
• idea:

– given a template slot which is filled with words from
the text (e.g. a name), the program searches for these
words in the text and hypothesizes a pattern based
on the immediate context of these words

– the patterns are presented to a system developer,
who can accept or reject the pattern

– if the training corpus is representative of the target
texts, the patterns should work also with new texts

9

Domain-specific knowledge

• the UMASS/MUC4 system used 2 dictionaries
– a part-of-speech lexicon: 5436 lexical definitions,

including semantic features for domain-specific words
– a dictionary of 389 extraction patterns (= concept

node definitions)
• for MUC4, the set of extraction patterns was

manually constructed by 2 graduate students:
1500 person-hours

10

Two observations

• two central observations:
– the most important facts about a news event

are typically reported during the initial event
description

• the first reference to a targeted piece of
information (e.g. a victim) is most likely where the
relationship between that information and the
event is made explicit

11

Two observations

– the immediate linguistic context surrounding
the targeted information usually contains the
words or phrases that describe its role in the
event

• e.g. ”A U.S. diplomat was kidnapped by FMLN
guerillas”

• the word ’kidnapped’ is the key word that relates
the victim (A U.S. diplomat) and the perpetrator
(FMLN guerillas) to the kidnapping event

• ’kidnapped’ is the triggering word

12

Algorithm
• given a set of training texts and their associated

answer keys
– AutoSlog proposes a set of patterns that are capable

of extracting the information in the answer keys from
the texts

• given a string from an answer key template (=
targeted string)
– AutoSlog finds the first sentence in the text that

contains the string
– the sentence is given to a syntactic analysis

component which generates an analysis of the
sentence

– using the analysis, AutoSlog identifies the first clause
in the sentence that contains the string

3

13

Algorithm
– a set of heuristic rules are applied to the clause to

suggest a good triggering word for an extraction
pattern

– if none of the heuristic rules is satisfied then AutoSlog
searches for the next sentence in the text and
process is repeated

14

Heuristic rules

• each heuristic rule looks for a specific linguistic
pattern in the clause surrounding the targeted
string

• if a heuristic identifies its linguistic pattern in the
clause then it generates
– a triggering word
– a set of enabling conditions

15

Heuristic rules
• suppose

– the clause ”the diplomat was kidnapped”
– the targeted string ”the diplomat”

• the targeted string appears as the subject and is
followed by a passive verb ’kidnapped’

• a heuristic that recognizes the linguistic pattern
<subject> passive-verb is satisfied
– returns the word ’kidnapped’ as the triggering word,

and
– as enabling condition: a passive construction

16

Heuristic rule / extraction pattern

• <subj> passive-verb
• <subj> active-verb
• <subj> verb infinitive

• <subj> aux noun
• passive-verb <dobj>
• active-verb <dobj>
• infinitive <dobj>

• <victim> was murdered
• <perpetrator> bombed
• <perpetrator> attempted to

kill
• <victim> was victim
• killed <victim>
• bombed <target>
• to kill <victim>

17

Heuristic rule / extraction pattern

• verb infinitive <dobj>

• gerund <dobj>
• noun aux <dobj>
• noun prep <np>
• active-verb prep <np>
• passive-verb prep <np>

• threatened to attack
<target>

• killing <victim>
• fatality was <victim>
• bomb against <target>
• killed with <instrument>
• was aimed at <target>

18

Building extraction patterns
• e.g. <victim> was kidnapped
• triggering word (’kidnapped’) and enabling

conditions (verb in passive) as above
• a slot to extract the information

– the name of the slot comes from the answer key
template

• ”the diplomat” is Victim -> slot: Victim

– the syntactic constituent comes from the linguistic
pattern, e.g. the filler is the subject of the clause

• ”the diplomat” is subject -> slot: Victim *Subject*

4

19

Building extraction patterns

• hard and soft constraints for the slot
– e.g. constraints to specify a legitimate victim

(’human’,…)
• a type

– e.g. the type of the event (bombing, kidnapping) from
the answer key template

20

Example
…, public buildings were bombed and a car-bomb was…

Filler of the slot ’Phys_Target’ in the answer key template:”public
buildings”

Pattern (concept node definition):
Name: target-subject-passive-verb-bombed
Trigger: bombed
Slot: Phys_Target *Subject*
Slot-constraints: class phys-target *Subject*
Constant-slots: type bombing
Enabled-by: passive

21

A bad pattern
”they took 2-year-old gilberto molasco, son of patricio rodriguez, ..”

Pattern (concept node definition):
Name: victim-active-verb-dobj-took
Trigger: took
Slot: victim *DirectObject*
Slot-constraints: class victim *DirectObject*
Constant-slots: type kidnapping
Enabled-by: active

22

A bad pattern

• a pattern is triggered by the word ”took” as
an active verb

• this pattern is appropriate for this
sentence, but in general we don’t want to
generate a kidnapping node every time we
see the word ”took”

23

Bad patterns

• AutoSlog generates bad patterns for many
reasons
– a sentence contains the targeted string but

does not describe the event
– a heuristic proposes a wrong triggering word
– syntactic analysis works incorrectly

• solution: human-in-the-loop

24

Empirical results

• training data: 1500 texts (MUC-4) and
their associated answer keys
– 6 slots were chosen
– 1258 answer keys contained 4780 string

fillers
• result:

– 1237 extraction patterns

5

25

Empirical results

• human-in-the-loop:
– 450 definitions were kept
– time spent: 5 hours (compare: 1500 hours for a hand-

crafted set of patterns)
• the resulting set of extraction patterns was

compared with a hand-crafted set within the
UMass/MUC-4 system
– precision, recall, F-measure almost the same

26

AutoSlog-TS

• Riloff (University of Utah): Automatically
generating extraction patterns from
untagged text, 1996

27

Extracting patterns from
untagged text

• AutoSlog needs manually tagged or
annotated information to be able to extract
patterns

• manual annotation is expensive,
particularly for domain-specific
applications like IE
– may also need skilled people
– ~8 hours to annotate 160 texts (AutoSlog)

28

AutoSlog-TS

• needs only a preclassified corpus of relevant and
irrelevant texts
– much easier to generate
– relevant texts are available online for many applications

• generates an extraction pattern for every noun
phrase in the training corpus

• the patterns are evaluated by processing the
corpus and generating relevance statistics for
each pattern

29

Process

• Stage 1:
– the sentence analyzer produces a syntactic

analysis for each sentence and identifies the
noun phrases

– for each noun phrase, the heuristic (AutoSlog)
rules generate a pattern (a concept node) to
extract the noun phrase

• if more than one rule matches the context, multiple
extraction patterns are generated

• <subj> bombed, <subj> bombed embassy
30

Process

• Stage 2:
– the training corpus is processed a second

time using the new extraction patterns
– the sentence analyzer activates (and counts)

all patterns that are applicable in each
sentence

– relevance statistics are computed for each
pattern

– the patterns are ranked in order of importance
to the domain

6

31

Relevance statistics

• relevance rate: Ri = Fi / Ni
– Fi : the number of instances of pattern i that

were activated in the relevant texts
– Ni: the total number of instances of pattern i

in the training corpus
• domain-specific expressions appear

substantially more often in relevant texts
than in irrelevant texts

32

Ranking of patterns

• the extraction patterns are ranked
according to the formula:
– scorei = Ri * log (Fi)
– or zero, if Ri < 0.5

• in this case, the pattern is negatively correlated
with the domain (assuming the corpus is 50%
relevant)

• the formula promotes patterns that are
– highly relevant or highly frequent

33

The top 25 extraction patterns (MUC-4)

• <subj> exploded
• murder of <np>
• assassination of <np>
• <subj> was killed
• <subj> was kidnapped
• attack on <np>
• <subj> was injured
• exploded in <np>

34

The top 25 extraction patterns,
continues

• death of <np>
• <subj> took place
• caused <dobj>
• claimed <dobj>
• <subj> was wounded
• <subj> occurred
• <subj> was located
• took_place on <np>

35

The top 25 extraction patterns,
continues

• responsibility for <np>
• occurred on <np>
• was wounded in <np>
• destroyed <dobj>
• <subj> was murdered
• one of <np>
• <subj> kidnapped
• exploded on <np>
• <subj> died

36

Human-in-the-loop

• the ranked extraction patterns were
presented to a user for manual review

• the user had to
– decide whether a pattern should be accepted

or rejected
– label the accepted patterns

• murder of <np> -> <np> means the victim

7

37

AutoSlog-TS: conclusion

• empirical results comparable to AutoSlog
– recall slightly worse, precision better

• the user needs to
– provide sample texts (relevant and irrelevant)
– spend some time filtering and labeling the

resulting extraction patterns

38

Multi-level bootstrapping

• Riloff (Utah), Jones(CMU): Learning
Dictionaries for Information Extraction by
Multi-level Bootstrapping, 1999

39

Multi-level bootstrapping

• an algorithm that generates
simultaneously
– a semantic lexicon for several categories
– extraction patterns for lexicon entries in each

category
• input: unannotated training texts and a few

seed words for each category of interest
(e.g. location)

40

Mutual bootstrapping

• observation:
– extraction patterns can generate new

examples of a semantic category
– new examples in turn can be used to identify

new extraction patterns

41

Mutual bootstrapping

• process begins with a text corpus and a
few predefined seed words for a semantic
category
– text corpus: e.g. terrorist events texts, web

pages
– semantic category : (e.g.) location, weapon,

company

42

Mutual bootstrapping

• AutoSlog is used in an exhaustive manner
to generate extraction patterns for every
noun phrase in the corpus

• the extraction patterns are applied to the
corpus and the extractions are recorded
– for each pattern it is recorded which NPs it

extracted

8

43

Mutual bootstrapping

• input for the next stage:
– a set of extraction patterns, and for each

pattern, the NPs it can extract from the
training corpus

– this set can be reduced by pruning the
patterns that extract one NP only

• general (enough) linguistic expressions are
preferred

44

Mutual bootstrapping

• using the data, the extraction pattern is
identified that is most useful for extracting
known category members
– known category members in the beginning =

the seed words
– e.g. in the example, 10 seed words were used

for the location category (in terrorist texts):
bolivia, city, colombia, district, guatemala,
honduras, neighborhood, nicaragua, region,
town

45

Mutual bootstrapping

• the best extraction pattern found is then
used to propose new NPs that belong to
the category (= should be added to the
semantic lexicon)

• in the following algorithm:
– SemLex = semantic lexicon for the category
– Cat_EPlist = the extraction patterns chosen

for the category so far

46

Algorithm

• Generate all candidate extraction patterns
from the training corpus using AutoSlog

• Apply the candidate extraction patterns to
the training corpus and save the patterns
with their extractions to EPdata

• SemLex = {seed_words}
• Cat_EPlist = {}

47

Algorithm, continues

• Mutual Bootstrapping Loop
– 1. Score all extraction patterns in EPdata
– 2. best_EP = the highest scoring extraction

pattern not already in Cat_EPlist
– 3. Add best_EP to Cat_EPlist
– 4. Add best_EP’s extractions to SemLex
– 5. Go to step 1

48

Mutual bootstrapping

• at each iteration, the algorithm saves the
best extraction pattern for the category to
Cat_EPlist

• all of the extractions of this pattern are
assumed to be category members and are
added to the semantic lexicon

9

49

Mutual bootstrapping

• in the next iteration, the best pattern that is
not already in Cat_EPlist is identified
– based on both the original seed words + the

new words that have been added to the
lexicon

• the process repeats until some end
condition is reached

50

Scoring

• based on how many different lexicon
entries a pattern extracts

• the metric rewards generality
– a pattern that extracts a variety of category

members will be scored higher than a pattern
that extracts only one or two different
category members, no matter how often

51

Scoring

• head phrase matching:
– X matches Y if X is the rightmost substring of Y
– ”New Zealand” matches ”eastern New Zealand”

and ”the modern day New Zealand”
– … but not ”the New Zealand coast” or ”Zealand”
– important for generality

• each NP was stripped of leading articles,
common modifiers (”his”, ”other”,…) and
numbers before being saved to the lexicon

52

Scoring

• the same metric was used as in AutoSlog-TS
– score(patterni) = Ri * log(Fi)

• Fi: the number of unique lexicon entries
among the extractions produced by pattern i

• Ni: the total number of unique NPs that pattern
i extracted

• Ri = Fi / Ni

53

Example

• 10 seed words were used for the location
category (terrorist texts):
– bolivia, city, colombia, district, guatemala,

honduras, neighborhood, nicaragua, region,
town

• the first five iterations...

54

Example

Best pattern ”headquartered in <x> (F=3, N=4)

Known locations nicaragua

New locations san miguel, chapare region, san miguel city

Best pattern ”gripped <x>” (F=2, N=2)

Known locations colombia, guatemala

New locations none

10

55

Example

Best pattern ”downed in <x>” (F=4, N=6)

Known locations nicaragua, san miguel*, city

New locations area, usulutan region, soyapango

Best pattern ”to occupy <x>” (F=4, N=6)

Known locations nicaragua, town

New locations small country, this northern area,

san sebastian neighborhood, private property

56

Example

Best pattern ”shot in <x>” (F=5, N=12)

Known locations city, soyapango*

New locations jauja, central square, head, clash, back,

central mountain region, air,

villa el_salvador district,

northwestern guatemala, left side

57

Strengths and weaknesses
• the extraction patterns have identified

several new location phrases
– jauja, san miguel, soyapango, this northern area

• but several non-location phrases have also
been generated
– private property, head, clash, back, air, left side
– most mistakes due to ”shot in <x>”

• many of these patterns occur infrequently in
the corpus

58

Multi-level bootstrapping

• the mutual bootstrapping algorithm works
well but its performance can deteriorate
rapidly when non-category words enter the
semantic lexicon

• once an extraction pattern is chosen for
the dictionary, all of its extractions are
immediately added to the lexicon
– few bad entries can quickly infect the

dictionary

59

Multi-level bootstrapping

• for example, if a pattern extracts dates as
well as locations, then the dates are added
to the lexicon and subsequent patterns are
rewarded for extracting these dates

• to make the algorithm more robust, a
second level of bootstrapping is used

60

Multi-level bootstrapping

• the outer bootstrapping mechanism
(”meta-bootstrapping”)
– compiles the results from the inner (mutual)

bootstrapping process
– identifies the five most reliable lexicon entries
– these five NPs are retained for the permanent

semantic lexicon
– the entire mutual bootstrapping process is

then restarted from scratch (with new lexicon)

11

61

Multi-level bootstrapping

• number of iterations: 50 (for instance)
• output:

– extraction patterns generated by the last
iteration

• extraction patterns from the previous iterations are
thrown away

– permanent semantic lexicon

62

Scoring for reliability
• to determine which NPs are most reliable, each

NP is scored based on the number of different
category patterns that extracted it (Ni):

– intuition: a NP extracted by e.g. three different
category patterns is more likely to belong to the
category than a NP extracted by only one pattern

– additionally: a small factor to account for the strength
of the patterns that extracted the NP

() ()∑
=

+=
iN

k
ki patternscoreNPscore

1

)(*01.1

63

Multi-level bootstrapping

• the main advantage of meta-bootstrapping
comes from re-evaluating the extraction
patterns after each mutual bootstrapping
process

• in practice, the ordering of patterns
changes: more general patterns float to
the top as the semantic lexicon grows

64

Multi-level bootstrapping:
conclusion

• both a semantic lexicon and a dictionary of
extraction patterns are acquired
simultaneously

• resources needed:
– corpus of (unannotated) training texts
– a small set of words for a category
– manual check of the lexicon entries (fast?)

