Processing of large document collections

Part 9 (Information extraction: learning extraction patterns) Helena Ahonen-Myka Spring 2006

Learning of extraction patterns

- motivation: portability of IE systems
- learning methods
 - AutoSlog
 - AutoSlog-TS
 - Multi-level bootstrapping

Portability of information extraction systems

- one of the barriers to making IE a practical technology is the cost of adapting an extraction system to a new scenario
- in general, each application of extraction will involve a different scenario
- implementing a scenario should not require too much time and not the skills of the extraction system designers

Portability of information extraction systems

- the basic question in developing a customization tool is the form and level of the information to be obtained from the user
- goal: the customization is performed directly by the user (rather than by an expert system developer)

Portability of information extraction systems

- if we are using a pattern matching system, most work will probably be focused on the development of the set of patterns
- also changes
 - to the dictionaries
 - to the semantic hierarchy
 - to the set of inference rules
 - to the rules for creating the output templates

.

Portability of information extraction systems

- we cannot expect the user to have experience with writing patterns (regular expressions with associated actions) and familiarity with formal syntactic structure
- one possibility is to provide a graphical representation of the patterns but still too many details of the patterns are shown
- possible solution: learning from examples

Learning from examples

- · learning of patterns
 - information is obtained from examples of sentences of interest and the information to be extracted
- for instance, in a system "AutoSlog" patterns are created semiautomatically from the templates of the training corpus

AutoSlog

- Ellen Riloff, University of Massachusetts

 Automatically constructing a dictionary for information extraction tasks, 1993
- idea:
 - given a template slot which is filled with words from the text (e.g. a name), the program searches for these words in the text and hypothesizes a pattern based on the immediate context of these words
 - the patterns are presented to a system developer, who can accept or reject the pattern
 - if the training corpus is representative of the target texts, the patterns should work also with new texts

Domain-specific knowledge

- the UMASS/MUC4 system used 2 dictionaries

 a part-of-speech lexicon: 5436 lexical definitions, including semantic features for domain-specific words
 - a dictionary of 389 extraction patterns (= concept node definitions)
- for MUC4, the set of extraction patterns was manually constructed by 2 graduate students: 1500 person-hours

Two observations

- two central observations:
 - the most important facts about a news event are typically reported during the initial event description
 - the first reference to a targeted piece of information (e.g. a victim) is most likely where the relationship between that information and the event is made explicit

10

Two observations

- the immediate linguistic context surrounding the targeted information usually contains the words or phrases that describe its role in the event
 - e.g. "A U.S. diplomat was kidnapped by FMLN guerillas"
 - the word 'kidnapped' is the key word that relates the victim (A U.S. diplomat) and the perpetrator (FMLN guerillas) to the kidnapping event
 - · 'kidnapped' is the triggering word

11

q

Algorithm

- given a set of training texts and their associated answer keys
 - AutoSlog proposes a set of patterns that are capable of extracting the information in the answer keys from the texts
- given a string from an answer key template (= targeted string)
 - AutoSlog finds the first sentence in the text that contains the string
 - the sentence is given to a syntactic analysis component which generates an analysis of the sentence
 - using the analysis, AutoSlog identifies the first clause in the sentence that contains the string
 12

Algorithm

- a set of heuristic rules are applied to the clause to suggest a good triggering word for an extraction pattern
- if none of the heuristic rules is satisfied then AutoSlog searches for the next sentence in the text and process is repeated

Heuristic rules

- each heuristic rule looks for a specific linguistic pattern in the clause surrounding the targeted string
- if a heuristic identifies its linguistic pattern in the clause then it generates
 - a triggering word
 - a set of enabling conditions

Heuristic rules Heuristic rule / extraction pattern suppose - the clause "the diplomat was kidnapped" <subj> passive-verb <victim> was murdered - the targeted string "the diplomat" · the targeted string appears as the subject and is <subj> active-verb <perpetrator> bombed followed by a passive verb 'kidnapped' <subj> verb infinitive <perpetrator> attempted to · a heuristic that recognizes the linguistic pattern kill <subject> passive-verb is satisfied <victim> was victim <subj> aux noun - returns the word 'kidnapped' as the triggering word, and killed <victim> passive-verb <dobj> - as enabling condition: a passive construction active-verb <dobj> bombed <target> infinitive <dobj> to kill <victim> 15 16

13

Building extraction patterns

- e.g. <victim> was kidnapped
- triggering word ('kidnapped') and enabling conditions (verb in passive) as above
- a slot to extract the information
 - the name of the slot comes from the answer key template
 - "the diplomat" is Victim -> slot: Victim
 - the syntactic constituent comes from the linguistic pattern, e.g. the filler is the subject of the clause
 - "the diplomat" is subject -> slot: Victim *Subject*

18

Building extraction patterns

- hard and soft constraints for the slot
 - e.g. constraints to specify a legitimate victim ('human',...)
- a type
 - e.g. the type of the event (bombing, kidnapping) from the answer key template

Example

..., public buildings were bombed and a car-bomb was...

Filler of the slot 'Phys_Target' in the answer key template:"public buildings"

Pattern (concept node definition):

Name: target-subject-passive-verb-bombed Trigger: bombed Slot: Phys_Target *Subject* Slot-constraints: class phys-target *Subject* Constant-slots: type bombing Enabled-by: passive

A bad pattern

"they took 2-year-old gilberto molasco, son of patricio rodriguez, ..."

Pattern (concept node definition):

Name: victim-active-verb-dobj-took Trigger: took Slot: victim *DirectObject* Slot-constraints: class victim *DirectObject*

Constant-slots: type kidnapping Enabled-by: active

21

19

A bad pattern

- a pattern is triggered by the word "took" as an active verb
- this pattern is appropriate for this sentence, but in general we don't want to generate a kidnapping node every time we see the word "took"

22

20

Bad patterns

- AutoSlog generates bad patterns for many reasons
 - a sentence contains the targeted string but does not describe the event
 - a heuristic proposes a wrong triggering word
 - syntactic analysis works incorrectly
- solution: human-in-the-loop

23

Empirical results

- human-in-the-loop:
 - 450 definitions were kept
 - time spent: 5 hours (compare: 1500 hours for a handcrafted set of patterns)
- the resulting set of extraction patterns was compared with a hand-crafted set within the UMass/MUC-4 system
 - precision, recall, F-measure almost the same

- AutoSlog-TS
- Riloff (University of Utah): Automatically generating extraction patterns from untagged text, 1996

Extracting patterns from untagged text

- AutoSlog needs manually tagged or annotated information to be able to extract patterns
- manual annotation is expensive, particularly for domain-specific applications like IE
 - may also need skilled people
 - ~8 hours to annotate 160 texts (AutoSlog)

27

25

AutoSlog-TS

- needs only a preclassified corpus of relevant and irrelevant texts
 - much easier to generate
 - relevant texts are available online for many applications
- generates an extraction pattern for every noun phrase in the training corpus
- the patterns are evaluated by processing the corpus and generating relevance statistics for each pattern

28

26

Process

• Stage 1:

- the sentence analyzer produces a syntactic analysis for each sentence and identifies the noun phrases
- for each noun phrase, the heuristic (AutoSlog) rules generate a pattern (a concept node) to extract the noun phrase
 - if more than one rule matches the context, multiple extraction patterns are generated
 - subj> bombed, <subj> bombed embassy

29

Process

Stage 2:

- the training corpus is processed a second time using the new extraction patterns
- the sentence analyzer activates (and counts) all patterns that are applicable in each sentence
- relevance statistics are computed for each pattern
- the patterns are ranked in order of importance to the domain

Relevance statistics

- relevance rate: $R_i = F_i / N_i$
 - F_i: the number of instances of pattern i that were activated in the relevant texts
 - $-\ensuremath{\,N_i\!\!:}$ the total number of instances of pattern i in the training corpus
- domain-specific expressions appear substantially more often in relevant texts than in irrelevant texts

Ranking of patterns

- the extraction patterns are ranked according to the formula:
 - $-\operatorname{score}_{i} = R_{i} * \log (F_{i})$
 - or zero, if $R_i < 0.5$
 - in this case, the pattern is negatively correlated with the domain (assuming the corpus is 50% relevant)
- the formula promotes patterns that are – highly relevant or highly frequent

The top 25 extraction patterns (MUC-4)

- <subj> exploded
- murder of <np>
- assassination of <np>
- <subj> was killed
- <subj> was kidnapped
- attack on <np>
- <subj> was injured
- exploded in <np>

33

31

The top 25 extraction patterns, continues

- death of <np>
- <subj> took place
- caused <dobj>
- claimed <dobj>
- <subj> was wounded
- <subj> occurred
- <subj> was located
- took_place on <np>

34

32

The top 25 extraction patterns, continues

- responsibility for <np>
- occurred on <np>
- was wounded in <np>
- destroyed <dobj>
- <subj> was murdered
- one of <np>
- <subj> kidnapped
- exploded on <np>
- <subj> died

35

Multi-level bootstrapping

 Riloff (Utah), Jones(CMU): Learning Dictionaries for Information Extraction by Multi-level Bootstrapping, 1999

Multi-level bootstrapping

- an algorithm that generates simultaneously
 - a semantic lexicon for several categories
 - extraction patterns for lexicon entries in each category
- input: unannotated training texts and a few seed words for each category of interest (e.g. location)

Mutual bootstrapping

- observation:
 - extraction patterns can generate new examples of a semantic category
 - new examples in turn can be used to identify new extraction patterns

Mutual bootstrapping

- process begins with a text corpus and a few predefined seed words for a semantic category
 - text corpus: e.g. terrorist events texts, web pages
 - semantic category : (e.g.) location, weapon, company

41

39

38

Mutual bootstrapping

- input for the next stage:
 - a set of extraction patterns, and for each pattern, the NPs it can extract from the training corpus
 - this set can be reduced by pruning the patterns that extract one NP only
 - general (enough) linguistic expressions are preferred

43

45

Mutual bootstrapping

- using the data, the extraction pattern is identified that is most useful for extracting known category members
 - known category members in the beginning = the seed words
 - e.g. in the example, 10 seed words were used for the location category (in terrorist texts): bolivia, city, colombia, district, guatemala, honduras, neighborhood, nicaragua, region, town

Mutual bootstrapping

- the best extraction pattern found is then used to propose new NPs that belong to the category (= should be added to the semantic lexicon)
- in the following algorithm:
 - SemLex = semantic lexicon for the category
 - Cat_EPlist = the extraction patterns chosen for the category so far

Algorithm

- Generate all candidate extraction patterns from the training corpus using AutoSlog
- Apply the candidate extraction patterns to the training corpus and save the patterns with their extractions to EPdata
- SemLex = {seed_words}
- Cat_EPlist = {}

Algorithm, continues

- Mutual Bootstrapping Loop
 - 1. Score all extraction patterns in EPdata
 - 2. best_EP = the highest scoring extraction pattern not already in Cat_EPlist
 - 3. Add best_EP to Cat_EPlist
 - 4. Add best_EP's extractions to SemLex
 - 5. Go to step 1

47

Mutual bootstrapping

- at each iteration, the algorithm saves the best extraction pattern for the category to Cat_EPlist
- all of the extractions of this pattern are assumed to be category members and are added to the semantic lexicon

48

Mutual bootstrapping

- in the next iteration, the best pattern that is not already in Cat_EPlist is identified
 - based on both the original seed words + the new words that have been added to the lexicon
- the process repeats until some end condition is reached

Scoring

- based on how many different lexicon entries a pattern extracts
- · the metric rewards generality
 - a pattern that extracts a variety of category members will be scored higher than a pattern that extracts only one or two different category members, no matter how often

50

Scoring

- · head phrase matching:
 - X matches Y if X is the rightmost substring of Y
 "New Zealand" matches "eastern New Zealand"
 - and "the modern day New Zealand"
 - ... but not "the New Zealand coast" or "Zealand"- important for generality
- each NP was stripped of leading articles, common modifiers ("his", "other",...) and numbers before being saved to the lexicon

Scoring

- the same metric was used as in AutoSlog-TS

 score(pattern_i) = R_i * log(F_i)
- F_i: the number of unique lexicon entries among the extractions produced by pattern i
- N_i: the total number of unique NPs that pattern i extracted
- $R_i = F_i / N_i$

52

Example

- 10 seed words were used for the location category (terrorist texts):
 - bolivia, city, colombia, district, guatemala, honduras, neighborhood, nicaragua, region, town
- the first five iterations...

53

49

Example

Best pattern	"headquartered in <x> (F=3, N=4)</x>	
Known locations	nicaragua	
New locations	san miguel, chapare region, san miguel city	
Best pattern	"gripped <x>" (F=2, N=2)</x>	
Known locations	colombia, guatemala	
New locations	none	
		- 54

Example			
Best pattern Known locations	"downed in <x>" (F=4, N=6) nicaragua, san miguel*, city</x>		
Best pattern	"to occupy <x>" (F=4, N=6)</x>		
Known locations New locations	nicaragua, town small country, this northern area, san sebastian neighborhood, private property	y	
		5	

Example

Best pattern "shot in <x>" (F Known locations city, soyapango* New locations jauja, central squ central mountain villa el_salvador

"shot in <x>" (F=5, N=12) city, soyapango* jauja, central square, head, clash, back, central mountain region, air, villa el_salvador district, northwestern guatemala, left side

56

58

Strengths and weaknesses

• the extraction patterns have identified several new location phrases

- jauja, san miguel, soyapango, this northern area

- but several non-location phrases have also been generated
 - private property, head, clash, back, air, left side
 most mistakes due to "shot in <x>"
- many of these patterns occur infrequently in the corpus

Multi-level bootstrapping

- the mutual bootstrapping algorithm works well but its performance can deteriorate rapidly when non-category words enter the semantic lexicon
- once an extraction pattern is chosen for the dictionary, all of its extractions are immediately added to the lexicon
 - few bad entries can quickly infect the dictionary

Multi-level bootstrapping

- for example, if a pattern extracts dates as well as locations, then the dates are added to the lexicon and subsequent patterns are rewarded for extracting these dates
- to make the algorithm more robust, a second level of bootstrapping is used

59

57

Multi-level bootstrapping

- the outer bootstrapping mechanism ("meta-bootstrapping")
 - compiles the results from the inner (mutual) bootstrapping process
 - identifies the five most reliable lexicon entries
 - these five NPs are retained for the permanent semantic lexicon
 - the entire mutual bootstrapping process is then restarted from scratch (with new lexicon)

Scoring for reliability

 to determine which NPs are most reliable, each NP is scored based on the number of different category patterns that extracted it (N_i):

$$score(NP_i) = \sum_{k=1}^{N_i} 1 + (.01*score(pattern_k))$$

- intuition: a NP extracted by e.g. three different category patterns is more likely to belong to the category than a NP extracted by only one pattern
 additionally: a small factor to account for the strength
- of the patterns that extracted the NP

62

Multi-level bootstrapping

- the main advantage of meta-bootstrapping comes from re-evaluating the extraction patterns after each mutual bootstrapping process
- in practice, the ordering of patterns changes: more general patterns float to the top as the semantic lexicon grows

63

Multi-level bootstrapping: conclusion

- both a semantic lexicon and a dictionary of extraction patterns are acquired simultaneously
- resources needed:
 - corpus of (unannotated) training texts
 - a small set of words for a category
 - manual check of the lexicon entries (fast?)