Information extraction from text

Spring 2003, Part 1 Helena Ahonen-Myka

Course organization

- Lectures: 31.1., 21.2., 17.3., 18.3.12-16 (Helena Ahonen-Myka)
- Exercise sessions: 21.2., 17.3., 18.3.
 - 10-12 (Lili Aunimo)
- Exercises given each week
 - everybody tells a URL, where the solutions appear
 - deadline each week on Thursday midnight

2

Course organization

- Requirements
 - lectures and exercise sessions are voluntary
 - from the weekly exercises, one needs to get at least 10 points
 - each exercise gives max 2 points
 - 2 exercises/week
- Exam 28.3. (16-20 Auditorio)
- Exam: max 40 pts; exercises: max 20 pts
 - points required: exam min 20p, exercises min 10 p

3

Overview

- 1. Information extraction (IE) process
- 2. Examples of IE systems
- 3. Learning approaches
- 4. IE from semi-structured text
- 5. Other related applications and approaches: IE on the web, question answering systems, (news) event detection and tracking

4

1. Information extraction process

- What is our task?
- IE compared to other related fields
- General IE process
- More detailed view of the stages (example)
- Evaluation, portability

Reference

- The following is largely based on
 - Ralph Grishman: Information extraction: Techniques and Challenges. In Information Extraction, a multidisciplinary approach to an emerging information technology. Lecture Notes in AI, Springer-Verlag, 1997.

Task

 "Information extraction involves the creation of a structured representation (such as a database) of selected information drawn from the text"

Example: terrorist events

19 March - A bomb went off this morning near a power tower in San Salvador leaving a large part of the city without energy, but no casualties have been reported. According to unofficial sources, the bomb - allegedly detonated by urban guerrilla commandos - blew up a power tower in the northwestern part of San Salvador at 0650 (1250 GMT).

8

Example: terrorist events

Incident type bombing
Date March 19

Location El Salvador: San Salvador (city)
Perpetrator urban guerilla commandos

bomb

Physical target power tower

Human target

Effect on physical target destroyed

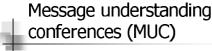
Effect on human target no injury or death

Instrument

Example: terrorist events

- A document collection is given
- For each document, decide if the document is about terrorist event
- For each terrorist event, determine
 - type of attack
 - date
 - location, etc.
- = fill in a template (~database record)

10


Other examples

- International joint ventures
 - facts to be found: partners, the new venture, its product or service, etc.
- executive succession
 - who was hired/fired by which company for which position

Message understanding conferences (MUC)

- The development of IE systems has been shaped by a series of evaluations, the MUC conferences
- MUCs have provided IE tasks and sets of training and test data + evaluation procedures and measures
- participating projects have competed with each other but also shared ideas

- MUC-1 (1987): tactical naval operations reports (12 for training, 2 for testing)
 - 6 systems participated
- MUC-2 (1989): the same domain (105 messages for training, 25 for training)
 - 8 systems participated

13

Message understanding conferences (MUC)

- MUC-3 (1991); domain was newswire stories about terrorist attacks in nine Latin American countries
 - 1300 development texts were supplied
 - three test sets of 100 texts each
 - 15 systems participated
- MUC-4 (1992); the domain was the same
 - different task definition and corpus etc.
 - 17 systems participated

14

Message understanding conferences (MUC)

- MUC-5 (1993)
 - 2 domains: joint ventures in financial newswire stories and microelectronics products announcements
 - 2 languages (English and Japanese)
 - 17 systems participated (14 American, 1 British, 1 Canadian, 1 Japanese)
 - larger corpora

15

Message understanding conferences (MUC)

- MUC-6 (1995); domain was management succession events in financial news stories
 - several subtasks
 - 17 systems participated
- MUC-7 (1998); domain was air vehicle (airplane, satellite,...) launch reports

16

IE compared to other related fields

- IE vs. information retrieval
- IE vs. full text understanding

IE vs. information retrieval

- Information retrieval (IR)
 - given a user query, an IR system selects a (hopefully) relevant subset of documents from a larger set
 - the user then browses the selected documents in order to fulfil his or her information need
- IE extracts relevant information from documents -> IR and IE are complementary technologies

18

IE vs full text understanding

- In IE
 - generally only a fraction of the text is relevant
 - information is mapped into a predefined, relatively simple, rigid target representation
 - the subtle nuances of meaning and the writer's goals in writing the text are of secondary interest

19

IE vs full text understanding

- In text understanding
 - the aim is to make sense of the entire text
 - the target representation must accommodate the full complexities of language
 - one wants to recognize the nuances of meaning and the writer's goals

20

General IE process

- Rough view of the IE process:
 - the system extracts individual "facts" from the text of a document through local text analysis
 - the system integrates these facts, producing larger facts or new facts (through inference)
 - the facts are translated into the required output format

21

Process: more detailed view

- The individual facts are extracted by creating a set of patterns to match the possible linguistic realizations of the facts
 - it is not practical to describe these patterns directly as word sequences
 - the input is structured; various levels of constituents and relations are identified
 - the patterns are stated in terms of these constituents and relations

22

Process: stages

- Local text analysis phase (separately for each sentence):
 - 1. lexical analysis
 - assigning part-of-speech and other features to words/phrases through morphological analysis and dictionary lookup
 - 2. name recognition
 - identifying names and other special lexical structures such as dates, currency expressions, etc.

Process: stages

- 3. full syntactic analysis or some form of partial parsing
 - partial parsing: e.g. identify noun groups, verb groups, head-complement structures
- 4. task-specific patterns are used to identify the facts of interest

Process: stages

- Integration phase: examines and combines facts from the entire document
 - 5. coreference analysis
 - use of pronouns, multiple descriptions of the same event
 - 6. inferencing from the explicitly stated facts in the document

25

Some terminology

- domain
 - general topical area (e.g. financial news)
- scenario
 - specification of the particular events or relations to be extracted (e.g., joint ventures)
- template
- final, tabular (record) output format of IE
- template slot, argument (of a template)
 - e.g. location, human target

26

Pattern matching and structure building

- lexical analysis
- name recognition
- (partial) syntactic analysis
- scenario pattern matching
- coreference analysis
- inferencing and event merging

Running example

"Sam Schwartz retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc. He will be succeeded by Harry Himmelfarb."

28

Target templates

Event leave job
Person Sam Schwartz

Position executive vice president Company Hupplewhite Inc.

Event start job

Person Harry Himmelfarb
Position executive vice president
Company Hupplewhite Inc

.

Lexical analysis

- The text is divided into sentences and into tokens ("words")
- each token is looked up in the dictionary to determine its possible parts-of-speech and features
 - general-purpose dictionaries
 - special dictionaries
 - major place names, major companies, common first names, company suffixes ("Inc.")

Lexical analysis

Sam: known first name -> personSchwartz: unknown capitalized word

retired: verbas: prepositionexecutive: adjectivevice: adjective

president: noun (person?)

31

Name recognition

- Various types of proper names and other special forms, such as dates and currency amounts, are identified and dassified
- classes e.g. person name, company name
- names appear frequently in many types of texts: identifying and classifying them simplifies further processing
 - instead of several distinct words, the whole name can be processed as one entity
- names are also important as template slot values for many extraction tasks

32

Name recognition

 Names are identified by a set of patterns (regular expressions) which are stated in terms of parts-of-speech, syntactic features, and orthographic features (e.g. capitalization)

33

Name recognition

- Personal names might be identified
 - by a preceding title: Mr. Herrington Smith
 - by a common first name: Fred Smith
 - by a suffix: Snippety Smith Jr.
 - by a middle initial: Humble T. Hopp

24

Name recognition

- Company names can usually be identified by their final token(s), such as
 - Hepplewhite Inc.
 - Hepplewhite Corporation
 - Hepplewhite Associates
 - First Hepplewhite Bank
- however, some major company names ("General Motors") are problematic
 - dictionary of major companies is needed

35

Name recognition

- <name type="person"> Sam Schwartz </name> retired as executive vice president of the famous hot dog manufacturer, <name type="company"> Hupplewhite Inc.</name>
- He will be succeeded by <name type="person">Harry Himmelfarb</name>.

Name recognition

- Subproblem: identify the aliases of a name (name coreference)
 - Larry Liggett = Mr. Liggett
 - Hewlett-Packard Corp. = HP
- alias identification may also help name classification
 - "Humble Hopp reported..." (person or company?)
 - subsequent reference: "Mr. Hopp" (-> person)

37

Syntactic analysis

- identifying syntactic structure:
 - "grouping words", forming phrases
 - noun phrases: sam schwartz, executive vice president; approximately 5 kg, more than 30 peasants
 - verb groups: retired, will be succeeded
 - finding grammatical functional relations
 - subject, (direct/indirect) object, main verb

38

Syntactic analysis

- Identifying some aspects of syntactic structure simplifies the subsequent phase of fact extraction
 - the slot values to be extracted often correspond to noun phrases
 - the relationships often correspond to grammatical functional relations
- but: identification of the complete syntactic structure of a sentence is difficult

39

Syntactic analysis

- Problems e.g. with prepositional phrases to the right of a noun
 - "I saw the man in the park with a telescope."
 - the prepositional phrases can be associated both with "man" and with "saw"

40

Syntactic analysis

- In extraction systems, there is a great variation in the amount of syntactic structure which is explicitly identified
 - some systems do not have any separate phase of syntactic analysis
 - others attempt to build a complete parse of a sentence
 - most systems fall in between and build a series of parse fragments

41

Syntactic analysis

- Systems that do partial parsing
 - build structures about which they can be quite certain, either from syntactic or semantic evidence
 - for instance, structures for noun groups (a noun + its left modifiers) and for verb groups (a verb with its auxiliaries)
 - both can be built using just local syntactic information
 - in addition, larger structures can be built if there is enough semantic information

Syntactic analysis

- The first set of patterns labels all the basic noun groups as noun phrases (np)
- the second set of patterns labels the verb groups (vg)

Syntactic analysis

- <np entity="e1"> Sam Schwartz </np>
 <vg>retired</vg> as <np entity="e2">
 executive vice president</np> of
 <np entity="e3">the famous hot dog
 manufacturer</np>,
 <np entity="e4"> Hupplewhite Inc.</np>
- <np entity="e5">He</np>
 <vg>will be succeeded</vg> by
 <np entity="e6">Harry Himmelfarb</np>.

44

Syntactic analysis

- Associated with each constituent are certain features which can be tested by patterns in subsequent stages
 - for verb groups: tense
 (past/present/future), voice
 (active/passive), baseform/stem
 - for noun phrases: baseform/stem, is this phrase a name?, number (singular/plural)

45

Syntactic analysis

For each NP, the system creates a semantic entity

entity e1 type: person name: "Sam Schwartz" entity e2 type: position value: "executive vice president"

entity e3 type: manufacturer entity e4 type: company name:"Hupplewhite Inc."

entity e5 type: person

entity e6 type: person name: "Harry Himmelfarb"

46

Syntactic analysis

- Semantic constraints
 - the next set of patterns build up larger noun phrase structures by attaching right modifiers
 - because of the syntactic ambiguity of right modifiers, these patterns incorporate some semantic constraints (domain specific)

Syntactic analysis

- In our example, two patterns will recognize the appositive construction:
 - company-description, company-name,
- and the prepositional phrase construction:
 - position of company
- in the second pattern:
 - position matches any NP whose entity is of type "bosition"
 - company respectively

Syntactic analysis

- the system includes a small semantic type hierarchy (is-a hierarchy)
 - e.g. manufacturer is-a company
 - the pattern matching uses the is-a relation, so any subtype of company (such as manufacturer) will be matched

Syntactic analysis

- in the first pattern
 - company-name. NP of type "company" whose head is a name
 - e.g. "Hupplewhite Inc."
 - company-description. NP of type"company" whose head is a common noun.
 - e.g. "the famous hot dog manufacturer"

50

Syntactic analysis

- after the first pattern is matched:
 - 2 NPs combined into one: the famous hot dog manufacturer, Hupplewhite Inc.
- further, after the second pattern:
 - executive vice president of the famous hot dog manufacturer, Hupplewhite Inc.
 - a new NP + the relationship between the position and the company

51

Syntactic analysis

- <np entity="e1"> Sam Schwartz </np>
 <vg>retired</vg> as <np entity="e2">
 executive vice president of the famous
 hot dog manufacturer, Hupplewhite
 Inc.</np>
- <np entity="e5">He</np> <vg>will be succeeded</vg> by <np entity="e6"> Harry Himmelfarb</np>.

E2

Syntactic analysis

Entities are updated as follows:

entity e1 type: person name: "Sam Schwartz"
entity e2 type: position value: "executive vice president"
company: e3

name: "Hupplewhite Inc."

entity e3 type: manufacturer

entity e5 type: person

entity e6 type: person name: "Harry Himmelfarb"

-

Scenario pattern matching

- Role of scenario patterns is to extract the events or relationships relevant to the scenario
- in our example, there will be 2 patterns
 - *person* retires as *position*
 - person is succeeded by person
- person and position are pattern elements which match NPs with the associated type
- "retires" and "is succeeded" are pattern elements which match active and passive verb groups, respectively

Scenario pattern matching

- person retires as position
 - Sam Schwartz retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc.
 - -> event leave-job (person, position)
- person is succeeded by person
 - He will be succeeded by Harry Himmelfarb
 - -> event succeed (person, person)

55

event e8

type: succeed

Scenario pattern matching

entity e1 type: person name: "Sam Schwartz"
entity e2 type: position value: "executive vice president"
company: e3
entity e3 type: manufacturer name: "Hupplewhite Inc."

entity e5 type: person
entity e6 type: person name: "Harry Himmelfarb"

event e7 type: leave-job person: e1 position: e2

person1: e6 person2: e5

Scenario patterns for terrorist attacks

- for instance, in Fastus IE system, 95 scenario patterns
 - killing of <HumanTarget>
 - <GovOfficial> accused <PerpOrg>
 - bomb was placed by <Perp> on <PhysicalTarget>
 - <Perp> attacked <HumanTarget>'s <PhysicalTarget> with <Device>
 - <HumanTarget> was injured

57

Coreference analysis

- Task of resolving anaphoric references by pronouns and definite noun phrases
 - in our example: "he" (entity e5)
 - coreference analysis will look for the most recent previously mentioned entity of type person, and will find entity e1
 - references to e5 are changed to refer to e1 instead
- also the *is-a* hierarchy is used

E0

Coreference analysis

entity e1 type: person entity e2 type: position name: "Sam Schwartz"
value: "executive vice president"

company: e3

entity e3 type: manufacturer

name:"Hupplewhite Inc."

entity e6 type: person

name: "Harry Himmelfarb"

event e7 type: leave-job event e8 type: succeed person: e1 position: e2 person1: e6 person2: e1

59

Inferencing and event merging

- Partial information about an event may be spread over several sentences
 - this information needs to be combined before a template can be generated
- some of the information may also be implicit
 - this information needs to be made explicit through an inference process

Inferencing and event merging

- In our example, we need to determine what the "succeed" predicate implies, e.g.
- "Sam was president. He was succeeded by Harry."
 - -> Harry will become president
- "Sam will be president; he succeeds Harry"
 - -> Harry was president.

62

Inferencing and event merging

- Such inferences can be implemented by production rules:
 - leave-job(X-person,Y-job) & succeed(Z-person,X-person) => start-job(Z-person,Y-job)
 - start-job(X-person,Y-job) & succeed(X-person,Z-person) => leave-job(Z-person,Y-job)

63

Inferencing and event merging entity e1 type: person entity e2 type: position name: "Sam Schwartz" value: "executive vice president" company: e3

entity e3 type: manufacturer entity e6 type: person

name:"Hupplewhite Inc."
name: "Harry Himmelfarb"

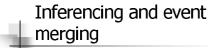
event e7 type: leave-job event e8 type: succeed event e9 type: start-job person: e1 position: e2 person1: e6 person2: e1 person: e6 position: e2

64

Target templates

Event leave job
Person Sam Schwartz
Position executive vice president
Company Hupplewhite Inc.

Event


Person Harry Himmelfarb
Position executive vice president
Company Hupplewhite Inc.

start job

. .

Inferencing and event merging

- Our simple scenario did not require us to take account of the time of each event
- for many scenarios, time is important
 - explicit times must be reported, or
 - the sequence of events is significant
- time information may be derived from many sources

- Sources of time information
 - absolute dates and times ("on April 6, 1995")
 - relative dates and times ("last week")
 - verb tenses
 - knowledge about inherent sequence of events
- since time analysis may interact with other inferences, it will normally be performed as part of the inference stage of processing

67

(MUC) Evaluation

- Participants are initially given
 - a detailed description of the scenario (the information to be extracted)
 - a set of documents and the templates to be extracted from these documents (the training corpus)
- system developers then get some time (1-6 months) to adapt their system to the new scenario

68

(MUC) Evaluation

- After this time, each participant
 - gets a new set of documents (the test corpus)
 - uses their system to extract information from these documents
 - returns the extracted templates to the conference organizer
- the organizer has manually filled a set of templates (the answer key) from the test corpus

69

(MUC) Evaluation

- Each system is assigned a variety of scores by comparing the system response to the answer key
- the primary scores are precision and recall

70

(MUC) Evaluation

- N_key = total number of filled slots in the answer key
- N_response = total number of filled slots in the system response
- N_correct = number of correctly filled slots in the system response (= the number which match the answer key)

74

(MUC) Evaluation

- precision = N_correct / N_response
- recall = N_correct / N_key
- F score is a combined recall-precision score:
 - $F = (2 \times precision \times recall) / (precision + recall)$

- One of the barriers to making IE a practical technology is the cost of adapting an extraction system to a new scenario
- in general, each application of extraction will involve a different scenario
- implementing a scenario should not require too much time and not the skills of the extraction system designers

Portability

- The basic question in developing a customization tool is the form and level of the information to be obtained from the user
- goal: the customization is performed directly by the user (rather than by an expert system developer)

74

Portability

- if we are using a pattern matching system, most work will probably be focused on the development of the set of patterns
- also changes
 - to the dictionaries
 - to the semantic hierarchy
 - to the set of inference rules
 - to the rules for creating the output templates

Portability

- We cannot expect the user to have experience with writing patterns (regular expressions with associated actions) and familiarity with formal syntactic structure
- one possibility is to provide a graphical representation of the patterns but still too many details of the patterns are shown
- possible solution: learning from examples

Portability

- Learning of patterns
 - information is obtained from examples of sentences of interest and the information to be extracted
- for instance, in a system "AutoSlog" patterns are created semiautomatically from the templates of the training corpus

Portability

- In AutoSlog
 - given a template slot which is filled with words from the text (e.g. a name), the program would search for these words in the text and would hypothesize a pattern based on the immediate context of these words
 - the patterns are presented to a system developer,
 who can accept or reject the pattern

Portability

- The earlier MUC conferences involved large training corpora (over 1000 documents and their templates)
- however, the preparation of large, consistent training corpora is expensive
 large corpora would not be available for most real tasks

 - users are willing to prepare a few examples (20-30?) only

Next time...

■ We will talk about the ways to automatize the phases of the IE process, i.e. the ways to make systems more portable and faster to implement