Information extraction from

* text

Spring 2003, Part 2
Helena Ahonen-Myka

In this part

|
= 1. Some IE systems (sentence level phase)
= FASTUS
= CIRCUS
= 2. Learning of extraction rules
= AutoSlog
= AutoSlog-TS

| 1.1 FASTUS

= “Finite State Automaton Text
Understanding System”

= SRI International (USA)
= MUC-4

FASTUS

= components:
» dictionaries: part-of-speech for a word etc.
» also inflected forms of the words
= a set of domain patterns
» a set of finite-state transducers

L FASTUS: classification

—
= classification of documents into relevant and
irrelevant
» Is this document relevant?
= For each sentence: is this sentence relevant?

= if the document contains a relevant sentence, the
document is (potentially) relevant

» Is this sentence relevant?

= A set of triggering words are selected from the domain
patterns (“killed”, “kidnapped”, “dead”...)

» Irrelevant sentences are removed

FASTUS: sentence analysis

= lexical analysis: for each word, pick up
information from the dictionaries (is this
a noun, verb...?)

n first set of finite transductors is used:

» Name recognition (proper names,
locations, etc.)

= Noun group transductor (37 states)
= Verb group transductor (18 states)

L FASTUS: sentence analysis

|
= "A bomb was placed by a group of
urban guerillas on the power tower.”
= a bomb (a-det bomb-noun): noun group
= was placed: verb group
= a group of urban guerillas: noun group
= the power tower: noun group

FASTUS: domain pattern
recognition

= a finite transducer is constructed for each
pattern
» state transitions are <head word, phrase type>
pairs: bomb-nounGroup, placed-passiveVerbGroup
= pattern: bomb was placed by <Perpetrator>
on <PhysicalTarget>
» bomb-nounGroup placed-passiveVerbGroup by
<Perpetrator> on <PhysicalTarget>
= would instantiate
» Perpetrator = “a group of urban guerillas”
» PhysicalTarget = “the power tower”

| FASTUS

|
= In theory, many (most?) natural languages
cannot be modelled using finite-state models
(regular languages)
» e.g. center embedding: “A mayor, who was
kidnapped yesterday, was found dead today.”
= In practice, arbitrarily deep structures do not
exist -> finite-state models can be used
= A mayor, who was kidnapped
» A mayor was found dead today

FASTUS

= conceptually simple
= effective
= developed (originally) in three weeks

| 1.2 CIRCUS

-
= University of Massachusetts (USA)

= MUC-3 and MUC-4

Concept node definitions
|

= To extract information from text, CIRCUS relies
on a domain-specific dictionary of concept node
definitions (~domain patterns)

= Each concept node definition contains a set of
slots to extract information from the surrounding
context
= e.g., slots for perpetrators, victims, ...
» each slot has

= a syntactic expectation: where the filler is expected to be
found in the linguistic context
» a set of hard and soft constraints for its filler

Concept node definition for

L kidnapping verbs
|

= Concept node
= hame: $KIDNAP$
= trigger word: kidnapped
= slot-constraints:
class organization *Subject*
class terrorist *Subject*
class proper-name *Subject*
class human *Subject*
class human *DirectObject*
class proper-name *DirectObject*

Concept node definition for
kidnapping verbs, cont.

» Variable-slots:
» Perpetrator *Subject*
= Victim *DirectObject*
» constant-slots:
= type kidnapping
= enabled-by:

= active

L Instantiated concept nodes

|
» each concept node definition has one or more
triggering words
= given a sentence as input, CIRCUS

= activates a concept node definition for each triggering word
found in the sentence

= generates a set of instantiated concept nodes as its
output
» if multiple triggering words appear in sentence, then
CIRCUS can generate multiple concept nodes for that
sentence
» if no triggering words are found in the sentence, no
output is generated

Instantiated concept nodes

= Given a sentence:
= “Some guerillas kidnapped the diplomat.”
» ‘kidnapped’ is found to be a triggering word
for the concept node definition $kidnap$
= the following instantiated concept node is
generated:
» $kidnap$
» Perpetrator: “some guerillas”
= Victim: “the diplomat”

Knowledge needed for
L analysis

= for each word in the dictionary:

» which parts-of-speech are associated with the
word?

» disambiguation routines to handle part-of-speech
ambiguities

» if the word is a triggering word: which concept
node definition it triggers?

» if the word is a noun or adjective, it has to be
described in terms of one or more semantic
features

= e.g. for a noun: animate, human, terrorist
» syntactic predictions: which words can follow?

Syntax processing in CIRCUS

[

= stack-oriented syntax analysis

= No parse tree is produced

= uses local syntactic knowledge to recognize
noun phrases, prepositional phrases and verb
phrases

= the constituents are stored in global buffers
that track the subject, verb, direct object,
indirect object and prepositional phrases of the
sentence

» *Subject*, *Verb*, *DirectObject*, ...

L Syntax processing

|
= To process the sentence that begins
= “John brought...”

= CIRCUS scans the sentence from left to right
and

uses syntactic predictions to assign words and
phrases to syntactic constituents

initially, the stack contains a single prediction:
the hypothesis for a subject of a sentence

Syntax processing
|
» when CIRCUS sees the word “John”, it

= accesses its part-of-speech lexicon, finds that "John” is a
proper noun

= loads the standard set of syntactic predictions associated
with proper nouns onto the stack

= recognizes "John” as a noun phrase

» because the presence of a NP satisfies the initial
prediction for a subject, CIRCUS places “John” in the
subject buffer (*Subject*) and pops the satisfied
syntactic prediction from the stack

20

L Syntax processing

|

= Next, CIRCUS processes the word “brought”,
finds that it is a verb, and assigns it to the verb
buffer (*Verb*)

= in addition, the current stack contains the
syntactic expectations associated with
"brought”: (the following constituent is...)
» a direct object
» a direct object followed by a "to” preposition phrase
= a "to” preposition phrase followed by a direct object
» an indirect object followed by a direct object

21

For instance,

= John brought a cake.
= John brought a cake to the party.

= John brought to the party a cake.

= this is actually ungrammatical, but it has a
meaning...

= John brought Mary a cake.

22

Syntactic expectations
L associated with “brought”

t
= 1. if NP is seen, NP is added to *DO¥*;
= predict: if EndOfSentence, NIL -> *10*
» 2. if NP, NP -> *DO*;
= predict: if PP(to), PP -> *PP*, NIL -> *IO*
n 3. if PP(t0), PP -> *PP*;
= predict: if NP, NP -> *DO*
n 4. if NP, NP -> *IO*;
= predict: if NP, NP -> *DO*

23

All alternatives are considered

[
= If the sentence continued: “John brought Mary”
» "Mary” (NP) would be assigned to both *DirectObject*
and *IndirectObject* buffers
= the syntactic expectations of (1) ,(2), and (3)
above would be pushed to the stack
= depending on the words that follow “Mary”, the
contents of either *DirectObject* or
IndirectObject are overwritten
= “John brought Mary.” ("Mary” = DO)
= “John brought Mary to the party.” ("Mary” = DO)
= “John brought Mary a cake.” ("Mary” = 10)

24

L Filling template slots

|

» As soon as CIRCUS recognizes a syntactic
constituent and places it in one of the global
buffers, any active concept node that expects
a slot filler from that buffer is examined

» the slot is filled if the constituent satisfies the
slot’s hard and soft semantic constraints

» a hard constraint must be satisfied

» a soft constraint defines a preference for a slot
filler

25

Filling template slots
|
= "Some guerillas kidnapped the diplomat.”
= analysis:
» 1. "some guerillas” -> *Subject* buffer
» 2. "kidnapped” -> triggers $kidnap$ concept node def
= expects slot fillers from *Subject* and *DirectObject* buffers
» 3. contents of *Subject* buffer -> Perpetrator
» 4. "the diplomat” -> *DirectObject* buffer
» 5. contents of *DirectObject* buffer -> Victim

26

L Filling template slots

|
= A set of enabling conditions: describe
the linguistic context in which the
concept node should be triggered
= $kidnap$ concept node should be triggered
by “kidnap” only when the verb occurs in
an active construction

= a different concept node would be needed
to handle a passive sentence construction

27

Hard and soft constraints

= soft constraints
» Perpetrator should be an ‘organization’, ‘terrorist’,
‘proper name’, or ‘human’

» the dictionary may indicate that “guerilla” is a ‘terrorist’
or ‘human’

» Victim should be a ‘human’ or ‘proper name’
» “diplomat” is human’
= hard constraint

= e.g. that some prepositional phrase filling a slot
must begin with the preposition "to”

28

L Filling template slots

-
= when a concept node satisfies certain
instantiation criteria, it is freezed with its
assigned slot fillers -> it becomes part of the
semantic presentation of the sentence

= note: a concept node is not an entire answer
template, just one part of it (representing
information extracted from one clause)

29

Handling embedded clauses

= When sentences become more
complicated, CIRCUS has to partition
the stack processing in a way that
recognizes embedded syntactic
structures

30

L Handling embedded clauses

I
= John asked Bill to eat the leftovers.

= "Bill” is the subject of "eat”
= That’s the gentleman that the woman
invited to go to the show.

= "gentleman” is the direct object of “invited”
and the subject of “go”

= That's the gentleman that the woman
declined to go to the show with.

31

Handling embedded clauses

» the stack of syntactic predictions is viewed as
a single control kernel whose expectations
change in response to specific lexical items as
the analysis moves through the sentence

= when the analysis comes to a subordinate
clause, the top-level kernel creates a
subkernel that takes over to process the
inferior clause -> a new parsing environment

32

L Concept node classes

|
= Concept node definitions can be categorized

into the following taxonomy of concept node
types

» verb-triggered (active, passive, active-or-passive)
» houn-triggered

» adjective-triggered

» gerund-triggered

» threat and attempt concept nodes

33

Active-verb triggered concept
nodes

= A concept node triggered by a specific
verb in an active voice

n typically a prediction for finding the
Perpetrator in *Subject* and the Victim
or PhysicalTarget in *DirectObject*

= for all verbs important to the domain

= kidnap, kill, murder, bomb, detonate,
massacre, ...

34

Concept node definition for

L kidnapping verbs
L

= Concept node
= Name: $KIDNAP$

» slot-constraints:
» class organization *Subject*
» class terrorist *Subject*
» class proper-name *Subject*
» class human *Subject*
» class human *DirectObject*
» class proper-name *DirectObject*

35

Concept node definition for
kidnapping verbs, cont.

= variable-slots
» Perpetrator *Subject*
= Victim *DirectObject*
= constant-slots:
» type kidnapping
» enabled-by:
» active
= hot in reduced-relative

36

L Is the verb active?

|
» Function active tests
the verb is in past tense
any auxiliary preceding the verb is of the correct
form (indicating active, not passive)
the verb is not in the infinitive form
the verb is not preceded by "being”
the sentence is not describing threat or attempt
no negation, no future

37

Passive verb-triggered concept
nodes

= Almost every verb that has a concept
node definition for its active form
should also have a concept node
definition for its passive form

» these typically predict for finding the
Perpetrator in a by-*PrepPhrase* and
the Victim or PhysicalTarget in
Subject

38

Concept node definition for
L killing verbs in passive

= Concept node
» Name $KILL-PASS-1%

» slot-constraints:
» class organization *PrepPhrase*
» class terrorist *PrepPhrase*
» class proper-name *PrepPhrase*
» class human *PrepPhrase*
» class human *Subject*
» class proper-name *Subject*

39

Concept node definition for
killing verbs in passive

» variable-slots:
» Perpetrator *PrepPhrase* is-preposition "by”?
= Victim *Subject*
= constant-slots:
» type murder
= enabled-by:
= passive
» subject is not "no one”

40

L Fillers for several slots
-

= "Castellar was killed by ELN guerillas with a
knife”
= a separate concept node for each PrepPhrase
= Concept node
=« hame $KILL-PASS-2$
» slot-constraints:
» class human *Subject*
= class proper-name *Subject*
» class weapon *PrepPhrase*

41

Fillers for several slots

» variable-slots:
» Instrument *PrepPhrase* is-preposition “by” and “with”?
» Victim *Subject*
= constant-slots:
= type murder
» enabled-by:
= passive
= subject is not “no one”

42

L Noun-triggered concept nodes

I
= The following concept node definition is
triggered by nouns

= massacre, murder, death, murderer,
assassination, killing, and burial

= looks for the Victim in an of-PrepPhrase

43

Concept node definition for
murder nouns

= Concept node
= name $MURDER$
» slot-constraints:
= class human *PrepPhrase*
= class proper-name *PrepPhrase*
» variable-slots:
» Victim *PrepPhrase*, preposition “of” follows triggering word?
» constant-slots: type murder
» enabled-by: noun-triggered, not-threat

44

Adjective-triggered concept
nodes

= Sometimes a verb is too general to
make a good trigger
= “Castellar was found dead.”

= it may be easier to use an adjective to
trigger a concept node and check for
the presence of specific verbs (in

Other concept nodes

|
» Gerund-triggered concept nodes
= for important gerunds
= killing, destroying, damaging,...
» Threat and attempt concept nodes

= require enabling conditions that check both the
specific event (e.g. murder, attack, kidnapping)
and indications that the event is a threat or

EnabledBy) attempt
= "The terrorists intended to storm the embassy.”
L CIRCUS 2. Learning of extraction rules
= [

= shallow, local syntactic analysis is fast

= system was also effective: one of the best
in MUC-3 and MUC-4

= manual construction of the dictionary of
concept node definitions is a problem

= for MUC-4, 2 graduate students worked 1500
hours

= -> system is not portable

47

= IE systems depend on a domain-specific
knowledge
» acquiring and formulating the knowledge may
require many person-hours of highly skilled people
(usually both domain and the IE system expertize
is needed)

» the systems cannot be easily scaled up or ported
to new domains

= automating the dictionary construction is needed

48

L Learning of extraction rules

|
= AutoSlog

= AutoSlog-TS

49

2.1 AutoSlog

= Ellen Riloff, University of Massachusetts

= Automatically constructing a dictionary for
information extraction tasks, 1993

= continues the work with CIRCUS

50

L AutoSlog

|

= Automatically constructs a domain-specific
dictionary for IE

= given a training corpus, AutoSlog proposes a
set of dictionary entries that are capable of
extracting the desired information from the
training texts

= if the training corpus is representative of the
target texts, the dictionary should work also
with new texts

51

Concept node dictionary

= the UMASS/MUC4 system used 2 dictionaries

= a part-of-speech lexicon: 5436 lexical definitions,
including semantic features for domain-specific
words

= a dictionary of 389 concept node definitions

= For MUC4, the concept node dictionary was
manually constructed by 2 graduate students:
1500 person-hours

52

L AutoSlog

t
= Two central observations:

» the most important facts about a news event are
typically reported during the initial event
description

» the first reference to a major component of an event

(e.g. a victim or perpetrator) usually occurs in a
sentence that describes the event

= the first reference to a targeted piece of information is
most likely where the relationship between that
information and the event is made explicit

53

AutoSlog

» The immediate linguistic context surrounding the
targeted information usually contains the words or
phrases that describe its role in the event

= e.g. "A U.S. diplomat was kidnapped by FMLN guerillas”

» the word ‘kidnapped’ is the key word that relates the
victim (A U.S. diplomat) and the perpetrator (FMLN
guerillas) to the kidnapping event

» 'kidnapped’ is the triggering word

54

L Algorithm

= Given a set of training texts and their
associated answer keys, AutoSlog
proposes a set of concept node
definitions that are capable of
extracting the information in the answer
keys from the texts

55

Algorithm

= Given a string from an answer key template

» AutoSlog finds the first sentence in the text that
contains the string

» the sentence is handed over to CIRCUS which
generates a conceptual analysis of the sentence

= using the analysis, AutoSlog identifies the first
clause in the sentence that contains the string

56

L Algorithm

» a set of heuristic rules are applied to the clause to
suggest a good triggering word for a concept node
definition

» if none of the heuristic rules is satisfied then
AutoSlog searches for the next sentence in the
text and process is repeated

57

Heuristic rules

= each heuristic rule looks for a specific
linguistic pattern in the clause
surrounding the targeted string

= if a heuristic identifies its pattern in the
clause then it generates
= a triggering word
= a set of enabling conditions

58

Conceptual anchor point
L heuristics

=
= Suppose
» the clause "the diplomat was kidnapped”
» the targeted string "the diplomat”
= the targeted string appears as the subject and is
followed by a passive verb ‘kidnapped’
= a heuristic that recognizes the pattern
<subject> passive-verb is satisfied

» returns the word 'kidnapped’ as the triggering word,
and

= as enabling condition: a passive construction

59

Linguistic patterns

[

<subj> passive-verb = <victim> was murdered

<subj> active-verb » <perpetrator> bombed

<subj> verb infinitive = <perpetrator> attempted
to kil

<subj> aux noun = <victim> was victim

passive-verb <dobj> = killed <victim>

active-verb <dobj> = bombed <target>

infinitive <dobj> = to kill <victim>

60

10

| Linguistic patterns
|
verb infinitive <dobj> a threatened to attack

<target>
gerund <dobj> n killing <victim>
noun aux <dobj> = fatality was <victim>
noun prep <np> = bomb against <target>

active-verb prep <np> » killed with <instrument>
passive-verb prep <np> = was aimed at <target>

61

Building concept node

definitions
|
= a Slot to extract the information

» a name of the slot comes from the answer

key template
» "the diplomat” is Victim -> Variable-slot: Victim

= the syntactic constituent from the linguistic
pattern, e.g. the filler is the subject of the
clause

» "the diplomat” is subject
-> Variable-slot: Victim *Subject*

62

Building concept node
L definitions

= hard and soft constraints for the slot
= e.g. constraints to specify a legitimate victim
= atype

» e.g. the type of the event (bombing, kidnapping)
from the answer key template

» uses domain-specific mapping from template slots
to the concept node types

» not always the same: a concept node is only a part of
the representation

63

Example

|
..., public buildings were bombed and a car-bomb was...

Filler of the slot *Target’ in the answer key template:”’public buildings”
CONCEPT NODE

Name: target-subject-passive-verb-bombed

Trigger: bombed

Variable-slots: Target *Subject*

Slot-constraints: class phys-target *Subject*

Constant-slots: type bombing

Enabled-by: passive

64

L A bad definition

—
“they took 2-year-old gilberto molasco, son of patricio rodriguez, ..”

CONCEPT NODE

Name: victim-active-verb-dobj-took
Trigger: took

Variable-slots: victim *DirectObject*
Slot-constraints: class victim *DirectObject*
Constant-slots: type kidnapping

Enabled-by: active

65

A bad definition

= @ concept node is triggered by the word
"took” as an active verb

= this concept node definition is
appropriate for this sentence, but in
general we don't want to generate a
kidnapping node every time we see the
word "took”

66

11

L Bad definitions
!

» AutoSlog generates bad definitions for
many reasons

= a sentence contains the targeted string but
does not describe the event

= a heuristic proposes a wrong triggering
word

» CIRCUS analyzes the sentence incorrectly
= Solution: human-in-the-loop

67

Empirical results

= Training data: 1500 texts (MUC-4) and
their associated answer keys
= 6 slots were chosen

= 1258 answer keys contained 4780 string
fillers

= result:
= 1237 concept node definitions

68

L Empirical results
!

= human-in-the-loop:
» 450 definitions were kept
= time spent: 5 hours (compare: 1500 hours for a

hand-crafted dictionary)

= the resulting concept node dictionary was
compared with a hand-crafted dictionary
within the UMass/MUC-4 system
» precision, recall, F-measure almost the same

69

2.2 AutoSlog-TS

= Riloff (University of Utah):
Automatically generating extraction
patterns from untagged text, 1996

70

Extracting patterns from

L untagged text
L

= AutoSlog needs manually tagged or
annotated information to be able to
extract patterns

= manual annotation is expensive,
particularly for domain-specific
applications like IE
= may also need skilled people
= ~8 hours to annotate 160 texts (AutoSlog)

71

Extracting patterns from
untagged text

= The annotation task is complex

» e.g. for AutoSlog the user must
annotate relevant noun phrases
= What constitutes a relevant noun phrase?

» Should modifiers be included or just a head
noun?

= All modifiers or just the relevant modifiers?
» Determiners? Appositives?

72

12

Extracting patterns from

L untagged text
!

= The meaning of simple NP’s may
change substantially when a
prepositional phrase is attached
= “the Bank of Boston” vs. “river bank”
» Which references to tag?
= Should the user tag all references to a

AutoSlog-TS
|
= Needs only a preclassified corpus of relevant and
irrelevant texts
» much easier to generate
» relevant texts are available online for many applications
= generates an extraction pattern for every noun
phrase in the training corpus

person? = the patterns are evaluated by processing the
corpus and generating relevance statistics for
each pattern
73 74
| Process Process
| |
= Stage 1: = Stage 2:

» the sentence analyzer produces a syntactic
analysis for each sentence and identifies the noun
phrases

» for each noun phrase, the heuristic (AutoSlog)
rules generate a pattern (a concept node) to
extract the noun phrase

= if more than one rule matches the context, multiple
extraction patterns are generated

= <subj> bombed, <subj> bombed embassy

75

= the training corpus is processed a second
time using the new extraction patterns

= the sentence analyzer activates all patterns
that are applicable in each sentence

= relevance statistics are computed for each
pattern

» the patterns are ranked in order of
importance to the domain

76

L Relevance statistics
-

= relevance rate: Pr (relevant text | text
contains pattern i) = rfreq_i / totfreq_i

» rfreq_i : the number of instances of pattern i that
were activated in the relevant texts

» totfreq_i: the total number of instances of pattern
i in the training corpus
= domain-specific expressions appear
substantially more often in relevant texts than
in irrelevant texts

77

Ranking of patterns

= The extraction patterns are ranked
according to the formula:
= relevance rate * log (frequency)

= Or zero, if relevance rate < 0.5

= in this case, the pattern is negatively correlated
with the domain (assuming the corpus is 50%
relevant)

= the formula promotes patterns that are
» highly relevant or highly frequent

78

13

L The top 25 extraction patterns
!

= <subj> exploded

= murder of <np>

= assassination of <np>
= <subj> was killed

= <subj> was kidnapped
= attack on <np>

= <subj> was injured

= exploded in <np>

79

The top 25 extraction
patterns, continues

= death of <np>

= <subj> took place

= caused <dobj>

= claimed <dobj>

= <subj> was wounded
= <subj> occurred

= <subj> was located
= took_place on <np>

80

The top 25 extraction
patterns, continues

responsibility for <np>
occurred on <np>
was wounded in <np>
destroyed <dobj>
<subj> was murdered
one of <np>

<subj> kidnapped
exploded on <np>
<subj> died

81

Human-in-the-loop

= The ranked extraction patterns were
presented to a user for manual review
= the user had to

= decide whether a pattern should be
accepted or rejected

= label the accepted patterns
» murder of <np> -> <np> means the victim

82

L AutoSlog-TS: conclusion

t
= Empirical results comparable to
AutoSlog
= recall slightly worse, precision better
= the user needs to

= provide sample texts (relevant and
irrelevant)

= spend some time filtering and labeling the
resulting extraction patterns

83

14

