Information extraction from text

Spring 2003, Part 2 Helena Ahonen-Myka

- 1. Some IE systems (sentence level phase)
 - FASTUS
 - CIRCUS
- 2. Learning of extraction rules
 - AutoSlog
 - AutoSlog-TS

2

1.1 FASTUS

- "Finite State Automaton Text Understanding System"
- SRI International (USA)
- MUC-4

FASTUS

- components:
 - dictionaries: part-of-speech for a word etc.
 - also inflected forms of the words
 - a set of domain patterns
 - a set of finite-state transducers

4

FASTUS: classification

- dassification of documents into relevant and irrelevant
 - Is this document relevant?
 - For each sentence: is this sentence relevant?
 - if the document contains a relevant sentence, the document is (potentially) relevant
 - Is this sentence relevant?
 - A set of triggering words are selected from the domain patterns ("killed", "kidnapped", "dead"...)
 - Irrelevant sentences are removed

.

FASTUS: sentence analysis

- lexical analysis: for each word, pick up information from the dictionaries (is this a noun, verb...?)
- first set of finite transductors is used:
 - Name recognition (proper names, locations, etc.)
 - Noun group transductor (37 states)
 - Verb group transductor (18 states)

FASTUS: sentence analysis

- "A bomb was placed by a group of urban guerillas on the power tower."
 - a bomb (a-det bomb-noun): noun group
 - was placed: verb group
 - a group of urban guerillas: noun group
 - the power tower: noun group

7

FASTUS: domain pattern recognition

- a finite transducer is constructed for each pattern
 - state transitions are <head word, phrase type>
 pairs: bomb-nounGroup, placed-passiveVerbGroup
- pattern: bomb was placed by <Perpetrator> on <PhysicalTarget>
 - bomb-nounGroup placed-passiveVerbGroup by <Perpetrator> on <PhysicalTarget>
- would instantiate
 - Perpetrator = "a group of urban guerillas"
 - PhysicalTarget = "the power tower"

.

FASTUS

- In theory, many (most?) natural languages cannot be modelled using finite-state models (regular languages)
 - e.g. center embedding: "A mayor, who was kidnapped yesterday, was found dead today."
- In practice, arbitrarily deep structures do not exist -> finite-state models can be used
 - A mayor, who was kidnapped
 - A mayor was found dead today

9

FASTUS

- conceptually simple
- effective
- developed (originally) in three weeks

10

1.2 CIRCUS

- University of Massachusetts (USA)
- MUC-3 and MUC-4

Concept node definitions

- To extract information from text, CIRCUS relies on a domain-specific dictionary of concept node definitions (~domain patterns)
- Each concept node definition contains a set of slots to extract information from the surrounding context
 - e.g., slots for perpetrators, victims, ...
 - each slot has
 - a syntactic expectation: where the filler is expected to be found in the linguistic context
 - a set of hard and soft constraints for its filler

12

- Concept node
 - name: \$KIDNAP\$
 - trigger word: kidnapped
 - slot-constraints:
 - class organization *Subject*
 - class terrorist *Subject*
 - class proper-name *Subject*
 - class human *Subject*
 - class human *DirectObject*
 - class proper-name *DirectObject*

Concept node definition for kidnapping verbs, cont.

- variable-slots:
 - Perpetrator *Subject*
 - Victim *DirectObject*
- constant-slots:
- type kidnapping
- enabled-by:
 - active

Instantiated concept nodes

- each concept node definition has one or more triggering words
- given a sentence as input, CIRCUS
 - activates a concept node definition for each triggering word found in the sentence
 - generates a set of instantiated concept nodes as its
- if multiple triggering words appear in sentence, then CIRCUS can generate multiple concept nodes for that sentence
- if no triggering words are found in the sentence, no output is generated

Instantiated concept nodes

- Given a sentence:
 - "Some guerillas kidnapped the diplomat."
- 'kidnapped' is found to be a triggering word for the concept node definition \$kidnap\$
- the following instantiated concept node is generated:
 - \$kidnap\$
 - Perpetrator: "some guerillas"
 - Victim: "the diplomat"

Knowledge needed for analysis

- for each word in the dictionary:
 - which parts-of-speech are associated with the word?
 - disambiguation routines to handle part-of-speech ambiguities
 - if the word is a triggering word: which concept node definition it triggers?
 - if the word is a noun or adjective, it has to be described in terms of one or more semantic
 - e.g. for a noun: animate, human, terrorist
 - syntactic predictions: which words can follow?

Syntax processing in CIRCUS

- stack-oriented syntax analysis
- no parse tree is produced
- uses local syntactic knowledge to recognize noun phrases, prepositional phrases and verb
- the constituents are stored in global buffers that track the subject, verb, direct object, indirect object and prepositional phrases of the sentence
 - *Subject*, *Verb*, *DirectObject*, ...

Syntax processing

- To process the sentence that begins"John brought..."
- CIRCUS scans the sentence from left to right and
- uses syntactic predictions to assign words and phrases to syntactic constituents
- initially, the stack contains a single prediction: the hypothesis for a subject of a sentence

19

Syntax processing

- when CIRCUS sees the word "John", it
 - accesses its part-of-speech lexicon, finds that "John" is a proper noun
 - loads the standard set of syntactic predictions associated with proper nouns onto the stack
 - recognizes "John" as a noun phrase
 - because the presence of a NP satisfies the initial prediction for a subject, CIRCUS places "John" in the subject buffer (*Subject*) and pops the satisfied syntactic prediction from the stack

20

Syntax processing

- Next, CIRCUS processes the word "brought", finds that it is a verb, and assigns it to the verb buffer (*Verb*)
- in addition, the current stack contains the syntactic expectations associated with "brought": (the following constituent is...)
 - a direct object
 - a direct object followed by a "to" preposition phrase
 - a "to" preposition phrase followed by a direct object
 - an indirect object followed by a direct object

21

For instance,

- John brought a cake.
- John brought a cake to the party.
- John brought to the party a cake.
 - this is actually ungrammatical, but it has a meaning...
- John brought Mary a cake.

22

Syntactic expectations associated with "brought"

- 1. if NP is seen, NP is added to *DO*;
 - predict: if EndOfSentence, NIL -> *IO*
- 2. if NP, NP -> *DO*;
 - predict: if PP(to), PP -> *PP*, NIL -> *IO*
- 3. if PP(to), PP -> *PP*;
 - predict: if NP, NP -> *DO*
- 4. if NP, NP -> *IO*;
 - predict: if NP, NP -> *DO*

All alternatives are considered

- If the sentence continued: "John brought Mary"
 - "Mary" (NP) would be assigned to both *DirectObject* and *IndirectObject* buffers
- the syntactic expectations of (1),(2), and (3) above would be pushed to the stack
- depending on the words that follow "Mary", the contents of either *DirectObject* or *IndirectObject* are overwritten
 - "John brought Mary." ("Mary" = DO)
 - "John brought Mary to the party." ("Mary" = DO)
 - "John brought Mary a cake." ("Mary" = 10)

Filling template slots

- As soon as CIRCUS recognizes a syntactic constituent and places it in one of the global buffers, any active concept node that expects a slot filler from that buffer is examined
- the slot is filled if the constituent satisfies the slot's hard and soft semantic constraints
 - a hard constraint must be satisfied
 - a soft constraint defines a preference for a slot filler

25

Filling template slots

- "Some guerillas kidnapped the diplomat."
- analysis:
 - 1. "some guerillas" -> *Subject* buffer
 - 2. "kidnapped" -> triggers \$kidnap\$ concept node def
 expects slot fillers from *Subject* and *DirectObject* buffers
 - 3. contents of *Subject* buffer -> Perpetrator
 - 4. "the diplomat" -> *DirectObject* buffer
 - 5. contents of *DirectObject* buffer -> Victim

26

Filling template slots

- A set of enabling conditions: describe the linguistic context in which the concept node should be triggered
 - \$kidnap\$ concept node should be triggered by "kidnap" only when the verb occurs in an active construction
 - a different concept node would be needed to handle a passive sentence construction

27

Hard and soft constraints

- soft constraints
 - Perpetrator should be an 'organization', 'terrorist', 'proper name', or 'human'
 - the dictionary may indicate that "guerilla" is a 'terrorist' or 'human'
 - Victim should be a 'human' or 'proper name'
 - "diplomat" is 'human'
- hard constraint
 - e.g. that some prepositional phrase filling a slot must begin with the preposition "to"

20

Filling template slots

- when a concept node satisfies certain instantiation criteria, it is freezed with its assigned slot fillers -> it becomes part of the semantic presentation of the sentence
- note: a concept node is not an entire answer template, just one part of it (representing information extracted from one clause)

Handling embedded clauses

 When sentences become more complicated, CIRCUS has to partition the stack processing in a way that recognizes embedded syntactic structures

30

Handling embedded clauses

- John asked Bill to eat the leftovers.
 - "Bill" is the subject of "eat"
- That's the gentleman that the woman invited to go to the show.
 - "gentleman" is the direct object of "invited" and the subject of "go"
- That's the gentleman that the woman declined to go to the show with.

31

Handling embedded clauses

- the stack of syntactic predictions is viewed as a single control kernel whose expectations change in response to specific lexical items as the analysis moves through the sentence
- when the analysis comes to a subordinate clause, the top-level kernel creates a subkernel that takes over to process the inferior clause -> a new parsing environment

32

Concept node classes

- Concept node definitions can be categorized into the following taxonomy of concept node types
 - verb-triggered (active, passive, active-or-passive)
 - noun-triggered
 - adjective-triggered
 - gerund-triggered
 - threat and attempt concept nodes

33

Active-verb triggered concept nodes

- A concept node triggered by a specific verb in an active voice
- typically a prediction for finding the Perpetrator in *Subject* and the Victim or PhysicalTarget in *DirectObject*
- for all verbs important to the domain
 - kidnap, kill, murder, bomb, detonate, massacre, ...

24

Concept node definition for kidnapping verbs

- Concept node
 - name: \$KIDNAP\$
 - slot-constraints:
 - class organization *Subject*
 - class terrorist *Subject*
 - class proper-name *Subject*
 - class human *Subject*
 - class human *DirectObject*
 - class proper-name *DirectObject*

35

Concept node definition for kidnapping verbs, cont.

- variable-slots
 - Perpetrator *Subject*
 - Victim *DirectObject*
- constant-slots:
 - type kidnapping
- enabled-by:
 - active
 - not in reduced-relative

Is the verb active?

- Function active tests
 - the verb is in past tense
 - any auxiliary preceding the verb is of the correct form (indicating active, not passive)
 - the verb is not in the infinitive form
 - the verb is not preceded by "being"
 - the sentence is not describing threat or attempt
 - no negation, no future

Passive verb-triggered concept nodes

- Almost every verb that has a concept node definition for its active form should also have a concept node definition for its passive form
- these typically predict for finding the Perpetrator in a by-*PrepPhrase* and the Victim or PhysicalTarget in *Subject*

Concept node definition for killing verbs in passive

- Concept node
 - name \$KILL-PASS-1\$
 - slot-constraints:
 - class organization *PrepPhrase*
 - class terrorist *PrepPhrase*
 - class proper-name *PrepPhrase*
 - class human *PrepPhrase*
 - class human *Subject*
 - class proper-name *Subject*

Concept node definition for killing verbs in passive

- variable-slots:
 - Perpetrator *PrepPhrase* is-preposition "by"?
 - Victim *Subject*
- constant-slots:
 - type murder
- enabled-by:
 - passive
 - subject is not "no one"

Fillers for several slots

- "Castellar was killed by ELN guerillas with a knife"
- a separate concept node for each PrepPhrase
- Concept node
 - name \$KILL-PASS-2\$
 - slot-constraints:
 - class human *Subject*
 - class proper-name *Subject*
 - class weapon *PrepPhrase*

Fillers for several slots

- variable-slots:
 - Instrument *PrepPhrase* is-preposition "by" and "with"?
 - Victim *Subject*
- constant-slots: type murder
- enabled-by:
 - passive
 - subject is not "no one"

Noun-triggered concept nodes

- The following concept node definition is triggered by nouns
 - massacre, murder, death, murderer, assassination, killing, and burial
- looks for the Victim in an of-PrepPhrase

Concept node definition for murder nouns

- Concept node
 - name \$MURDER\$
 - slot-constraints:
 - class human *PrepPhrase*
 - dass proper-name *PrepPhrase*
 - variable-slots:
 - Victim *PrepPhrase*, preposition "of" follows triggering word?
 - constant-slots: type murder
 - enabled-by: noun-triggered, not-threat

- Sometimes a verb is too general to make a good trigger
 - "Castellar was found dead."
- it may be easier to use an adjective to trigger a concept node and check for the presence of specific verbs (in EnabledBy)

Other concept nodes

- Gerund-triggered concept nodes
 - for important gerunds
 - killing, destroying, damaging,...
- Threat and attempt concept nodes
 - require enabling conditions that check both the specific event (e.g. murder, attack, kidnapping) and indications that the event is a threat or
 - "The terrorists intended to storm the embassy."

CIRCUS

- shallow, local syntactic analysis is fast
- system was also effective: one of the best in MUC-3 and MUC-4
- manual construction of the dictionary of concept node definitions is a problem
 - for MUC-4, 2 graduate students worked 1500 hours
 - -> system is not portable

Learning of extraction rules

- IE systems depend on a domain-specific knowledge
 - acquiring and formulating the knowledge may require many person-hours of highly skilled people (usually both domain and the IE system expertize is needed)
 - the systems cannot be easily scaled up or ported to new domains
 - automating the dictionary construction is needed

Learning of extraction rules

- AutoSlog
- AutoSlog-TS

2.1 AutoSlog

- Ellen Riloff, University of Massachusetts
 - Automatically constructing a dictionary for information extraction tasks, 1993
- continues the work with CIRCUS

50

AutoSlog

- Automatically constructs a domain-specific dictionary for IE
- given a training corpus, AutoSlog proposes a set of dictionary entries that are capable of extracting the desired information from the training texts
- if the training corpus is representative of the target texts, the dictionary should work also with new texts

Concept node dictionary

- the UMASS/MUC4 system used 2 dictionaries
 - a part-of-speech lexicon: 5436 lexical definitions, including semantic features for domain-specific words
 - a dictionary of 389 concept node definitions
- For MUC4, the concept node dictionary was manually constructed by 2 graduate students: 1500 person-hours

E2

AutoSlog

- Two central observations:
 - the most important facts about a news event are typically reported during the initial event description
 - the first reference to a major component of an event (e.g. a victim or perpetrator) usually occurs in a sentence that describes the event
 - the first reference to a targeted piece of information is most likely where the relationship between that information and the event is made explicit

F7

AutoSlog

- The immediate linguistic context surrounding the targeted information usually contains the words or phrases that describe its role in the event
 - e.g. "A U.S. diplomat was kidnapped by FMLN guerillas"
 - the word 'kidnapped' is the key word that relates the victim (A U.S. diplomat) and the perpetrator (FMLN guerillas) to the kidnapping event
 - 'kidnapped' is the triggering word

Algorithm

 Given a set of training texts and their associated answer keys, AutoSlog proposes a set of concept node definitions that are capable of extracting the information in the answer keys from the texts

Algorithm

- Given a string from an answer key template
 - AutoSlog finds the first sentence in the text that contains the string
 - the sentence is handed over to CIRCUS which generates a conceptual analysis of the sentence
 - using the analysis, AutoSlog identifies the first clause in the sentence that contains the string

56

Algorithm

- a set of heuristic rules are applied to the clause to suggest a good triggering word for a concept node definition
- if none of the heuristic rules is satisfied then AutoSlog searches for the next sentence in the text and process is repeated

Heuristic rules

- each heuristic rule looks for a specific linguistic pattern in the clause surrounding the targeted string
- if a heuristic identifies its pattern in the clause then it generates
 - a triggering word
 - a set of enabling conditions

...

Conceptual anchor point heuristics

- Suppose
 - the clause "the diplomat was kidnapped"
 - the targeted string "the diplomat"
- the targeted string appears as the subject and is followed by a passive verb 'kidnapped'
- a heuristic that recognizes the pattern
 subject> passive-verb is satisfied
 - returns the word 'kidnapped' as the triggering word, and
 - as enabling condition: a passive construction

9

Linguistic patterns

- <subj> passive-verb
- <subj> active-verb
- ullet <subj> verb infinitive ullet <perpetrator> attempted
- <subj> aux noun
- passive-verb <dobj>active-verb <dobj>
- infinitive <dobj>
- - <victim> was victim

<victim> was murdered

<perpetrator> bombed

■ killed <victim>

to kill

- bombed <target>
- to kill <victim>

- verb infinitive <dobj>
- threatened to attack <target>
- gerund <dobj>
- killing <victim>
- noun aux <dobi>
- fatality was <victim>
- noun prep <np>
- bomb against <target>
- active-verb prep <np> = killed with <instrument>
- passive-verb prep <np> was aimed at <target>

Building concept node definitions

- a slot to extract the information
 - a name of the slot comes from the answer key template
 - "the diplomat" is Victim -> Variable-slot: Victim
 - the syntactic constituent from the linguistic pattern, e.g. the filler is the subject of the clause
 - "the diplomat" is subject
 - -> Variable-slot: Victim *Subject*

Building concept node definitions

- hard and soft constraints for the slot
 - e.g. constraints to specify a legitimate victim
- - e.g. the type of the event (bombing, kidnapping) from the answer key template
 - uses domain-specific mapping from template slots to the concept node types
 - not always the same: a concept node is only a part of the representation

..., public buildings were bombed and a car-bomb was...

Filler of the slot 'Target' in the answer key template: 'public buildings' CONCEPT NODE

Name: target-subject-passive-verb-bombed

Trigger: bombed

Variable-slots: Target *Subject*

Slot-constraints: class phys-target *Subject*

Constant-slots: type bombing Enabled-by: passive

A bad definition

"they took 2-year-old gilberto molasco, son of patricio rodriguez, .."

CONCEPT NODE

Name: victim-active-verb-dobj-took

Trigger: took

Variable-slots: victim *DirectObject*

Slot-constraints: class victim *DirectObject*

Constant-slots: type kidnapping

Enabled-by: active

A bad definition

- a concept node is triggered by the word "took" as an active verb
- this concept node definition is appropriate for this sentence, but in general we don't want to generate a kidnapping node every time we see the word "took"

Bad definitions

- AutoSlog generates bad definitions for many reasons
 - a sentence contains the targeted string but does not describe the event
 - a heuristic proposes a wrong triggering word
 - CIRCUS analyzes the sentence incorrectly
- Solution: human-in-the-loop

67

Empirical results

- Training data: 1500 texts (MUC-4) and their associated answer keys
 - 6 slots were chosen
 - 1258 answer keys contained 4780 string fillers
- result:
 - 1237 concept node definitions

68

Empirical results

- human-in-the-loop:
 - 450 definitions were kept
 - time spent: 5 hours (compare: 1500 hours for a hand-crafted dictionary)
- the resulting concept node dictionary was compared with a hand-crafted dictionary within the UMass/MUC-4 system
 - precision, recall, F-measure almost the same

2.2 AutoSlog-TS

 Riloff (University of Utah):
 Automatically generating extraction patterns from untagged text, 1996

70

Extracting patterns from untagged text

- AutoSlog needs manually tagged or annotated information to be able to extract patterns
- manual annotation is expensive, particularly for domain-specific applications like IE
 - may also need skilled people
 - ~8 hours to annotate 160 texts (AutoSlog)

+

Extracting patterns from untagged text

- The annotation task is complex
- e.g. for AutoSlog the user must annotate relevant noun phrases
 - What constitutes a relevant noun phrase?
 - Should modifiers be included or just a head noun?
 - All modifiers or just the relevant modifiers?
 - Determiners? Appositives?

Extracting patterns from untagged text

- The meaning of simple NP's may change substantially when a prepositional phrase is attached
 - "the Bank of Boston" vs. "river bank"
 - Which references to tag?
 - Should the user tag all references to a person?

73

AutoSlog-TS

- Needs only a preclassified corpus of relevant and irrelevant texts
 - much easier to generate
 - relevant texts are available online for many applications
- generates an extraction pattern for every noun phrase in the training corpus
- the patterns are evaluated by processing the corpus and generating relevance statistics for each pattern

Process

- Stage 1:
 - the sentence analyzer produces a syntactic analysis for each sentence and identifies the noun phrases
 - for each noun phrase, the heuristic (AutoSlog) rules generate a pattern (a concept node) to extract the noun phrase
 - if more than one rule matches the context, multiple extraction patterns are generated
 - <subj> bombed, <subj> bombed embassy

Process

- Stage 2:
 - the training corpus is processed a second time using the new extraction patterns
 - the sentence analyzer activates all patterns that are applicable in each sentence
 - relevance statistics are computed for each pattern
 - the patterns are ranked in order of importance to the domain

Relevance statistics

- relevance rate: Pr (relevant text | text contains pattern i) = rfreq_i / totfreq_i
 - rfreq_i: the number of instances of pattern i that were activated in the relevant texts
 - totfreq_i: the total number of instances of pattern i in the training corpus
- domain-specific expressions appear substantially more often in relevant texts than in irrelevant texts

Ranking of patterns

- The extraction patterns are ranked according to the formula:
 - relevance rate * log (frequency)
 - or zero, if relevance rate < 0.5
 - in this case, the pattern is negatively correlated with the domain (assuming the corpus is 50%
- the formula promotes patterns that are
 - highly relevant or highly frequent

The top 25 extraction patterns

- <subj> exploded
- murder of <np>
- assassination of <np>
- <subj> was killed
- <subj> was kidnapped
- attack on <np>
- <subj> was injured
- exploded in <np>

79

The top 25 extraction patterns, continues

- death of <np>
- <subj> took place
- caused <dobj>
- claimed <dobj>
- <subj> was wounded
- <subj> occurred
- <subj> was located
- took_place on <np>

80

The top 25 extraction patterns, continues

- responsibility for <np>
- occurred on <np>
- was wounded in <np>
- destroyed <dobj>
- <subj> was murdered
- one of <np>
- <subj> kidnapped
- exploded on <np>
- <subj> died

81

Human-in-the-loop

- The ranked extraction patterns were presented to a user for manual review
- the user had to
 - decide whether a pattern should be accepted or rejected
 - label the accepted patterns
 - murder of <np> -> <np> means the victim

က

AutoSlog-TS: conclusion

- Empirical results comparable to AutoSlog
 - recall slightly worse, precision better
- the user needs to
 - provide sample texts (relevant and irrelevant)
 - spend some time filtering and labeling the resulting extraction patterns