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Information extraction from
semi-structured text

» IE from Web pages

= HTML tags, fixed phrases etc. can be used
to guide extraction

= IE from other semi-structured data

= €.g. email messages, rental ads, seminar
announcements

| WHISK
|

= Soderland: Learning information

extraction rules for semi-structured and

free text, Machine Learning, 1999

Semi-structured text
| (online rental ad)
|

Capitol Hill - 1 br twnhme. Fplc D/W W/D. Undrgrnd Pkg
incl $675. 3 BR, upper fIr of turn of ctry HOME. incl gar,
grt N. Hill loc $995. (206) 999-9999 <br>

<i> <font size=2> (This ad last ran on 08/03/97.)

</font> </i> <hr>

L 2 case frames extracted:
-

= Rental:
= Neighborhood: Capitol Hill

= Bedrooms: 1
= Price: 675
= Rental:
= Neighborhood: Capitol Hill
» Bedrooms: 3

» Price: 995

Semi-structured text

= the sample text (rental ad) is not
grammatical nor has a rigid structure

= we cannot use a natural language parser
as we did before

= simple rules that might work for structured
text do not work here




L Rule representation
!

= WHISK rules are based on a form of
regular expression patterns that identify
= the context of relevant phrases
= the exact delimiters of the phrases

Rule for number of bedrooms and
associated price

|
nID:: 1

= Pattern:: * (Digit) ' BR' * '$' ( Number)
= Output:: Rental {Bedrooms $1}{Price $2}

= ¥ : skip any number of characters until the next
occurrence of the following term in the pattern
(here: the next digit)
= single quotes: literal -> exact (case insensitive) match
» Digit: a single digit; Number: possibly multi-digit

Rule for number of bedrooms and

L associated price
|
» parentheses (unless within single quotes) indicate
a phrase to be extracted
= the phrase within the first set of parentheses
(here: Digit ) is bound to the variable $1 in the output
portion of the rule
» if the entire pattern matches, a case frame is
created with slots filled as labeled in the output
portion
» if part of the input remains, the rule is re-applied
starting from the last character matched before

2 case frames extracted:

= Rental:

» Bedrooms: 1

= Price: 675
= Rental:

» Bedrooms: 3

= Price: 995

L Disjunction
t
= The user may define a semantic class

= a set of terms that are considered to be
equivalent

» Digit and Number are special semantic classes
(built-in in WHISK)

= user-defined class: Bdrm =
(brs|br|bds|bdrm|bd|bedrooms|bedroom|bed)

= a set does not have to be complete or perfectly
correct: still it may help WHISK to generalize
rules

Rule for neighborhood, number of
bedrooms and associated price

= ID:: 2

= Pattern:: *( Nghbr) *( Digit) ' ' Bdrm *
'$" ( Number)

= Output:: Rental {Neighborhood $1}
{Bedrooms $2}{Price $3}

= assuming the semantic classes Nghbr
(neighborhood names for the city) and Bdrm




L IE from Web

|
information agents

extraction rules: wrappers

learning of extraction rules: wrapper
induction

wrapper maintenance

active learning
unsupervised learning

Information agents
|

= data is extracted from a web site and transformed
into structured format (database records, XML
documents)

= the resulting structured data can then be used to
build new applications without having to deal with
unstructured data
= e.g., price comparisons

= challenges:
» thousands of changing heterogeneous sources

= scalability: speed is important -> no complex
processing possible

L What is a wrapper?

|
= a wrapper is a piece of software that can

translate an HTML document into a
structured form (~database tuple)

= critical problem:

» How to define a set of extraction rules that
precisely define how to locate the information on
the page?

= for any item to be extracted, one needs an
extraction rule to locate both the beginning
and end of the item

= extraction rules should work for all of the pages in
the source 15

Learning extraction rules:
wrapper induction

= adaptive IE
= learning from examples

= manually tagged: it is easier to annotate
examples than write extraction rules
= how to minimize the amount of tagging or
entirely eliminate it?
» active learning
» unsupervised learning

L Wrapper induction system

|-
= input: a set of web pages labeled with

examples of the data to be extracted

» the user provides the initial set of labeled
examples

» the system can suggest additional pages
for the user to label

= output: a set of extraction rules that
describe how to locate the desired
information on a web page

Wrapper induction system

= after the system creates a wrapper, the
wrapper verification system uses the
wrapper to learn patterns that describe
the data being extracted
» if a change is detected, the system can
automatically repair a wrapper by

= Using the same patterns to locate examples on
the changed pages and

= re-running the wrapper induction system




L Wrapper induction methods

I
= Kushmerick et al: LR and HLRT wrapper

classes
= Knoblock et al: STALKER

Wrapper classes LR and HLRT

= Kushmerick, Weld, Doorenbos: Wrapper
induction for information extraction,
1JCAI 97

= Kushmerick: Wrapper induction:
Efficiency and expressiveness,
Workshop on Al & Information
integration, AAAI-98
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L LR (left-right) class

|

= a wrapper consists of a sequence of delimiter
strings for finding the desired content

» in the simplest case, the content is arranged
in a tabular format with A columns

= the wrapper scans for a pair of delimiters for
each column

» total of 2K delimiters
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LR wrapper induction

= the wrapper construction problem:

n input: example pages

associated with each information resource is
a set of K attributes, each representing a
column in the relational model

a tuple is a vector (A4, ..., Ay of K'strings

» string A, is the value of tuple’s & attribute

= tuples represent rows in the relational model

the label of a page is the set of tuples it
contains
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L Example: country codes

—

<HTML> <TITLE>Some Country Codes</TITLE>
<BODY>

<B>Congo</B> <I>242</I><BR>
<B>Egypt</B> <I>20</I><BR>
<B>Belize</B> <I>501</I><BR>
<B>Spain</B> <I>34</I><BR>
<HR></BODY></HTML>

23

Label of the example page

{<Congo, 242>,
<Egypt, 20>,
<Belize, 501>,

<Spain, 34>}

24




Execution of the wrapper:
L procedure ccwrap_LR

« 1. scan for the string /,=<B> from the beginning
of the document

= 2.scan ahead until the next occurrence of
r=</B>

» 3. extract the text between these positions as
the value of the 15t column of the 15t row

= 4. similarly: scan for /,=<I> and r=</I> and
extract the text between these positions as the
value of the 2 column of the 1st row

» 5. the process starts over again and terminates
when /; is missing (= end of document)
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ccwrap_LR (page P)
while there are more occurrences in P of <B>
for each ( /, r) in {(<B>,</B>), (<I>,</I>)}
scan in P to next occurrence of /,
save position as start of A attribute
scan in P to next occurrence of 7,
save position as end of & attribute

return extracted pairs {..., ( country, code ), ...}

L General template

|
= generalization of ccwrap_LR:

» delimiters can be arbitrary strings
= any number Kof attributes

= the values /, ..., /[ indicate the left-
hand attribute delimiters

= the values r,,..., riindicate the right-
hand delimiters
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executelR (( /,7y),..., { lyty), page P)
while there are more occurrences in Pof /,
foreach ( [, rpyin{(/yry )y Clgticd}
scan in P to next occurrence of /,
save position as start of next value A,
scan in P to next occurrence of 7,
save position as end of next value A,
return extracted tuples {..., ( Ay...,.A), ...}

L LR wrapper induction

=

= the behavior of ccwrap_LR can be
entirely described in terms of four
strings <B>,</B>,<I>,</I>

= the LR wrapper induction problem thus
becomes one of identifying 2K delimiter
strings /, 1y ..,/ I ON the basis of a set
E={..,P, L,...} of examples
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LR wrapper induction

= LR learning is efficient:
» the algorithm enumerates over potential
values for each delimiter
= selects the first that satisfies a constraint that
guarantees that the wrapper will work correctly
on the training data
= the 2K delimiters can all be learned
independently

30




L Limitations of LR classes

|
= an LR wrapper requires a value for /,
that reliably indicates the beginning of
the 1%t attribute
= this kind of delimiter may not be available

= what if a page contains some bold text in
the top that is not a country?

= it is possible that no LR wrapper exists
which extracts the correct information

= -> more expressive wrapper classes
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HLRT (head-left-right-tail)
class of wrappers

<HTML> <TITLE>Some Country Codes</TITLE>
<BODY> <B>Country Code List</B> <P>
<B>Congo</B> <I>242</I><BR>
<B>Egypt</B> <I>20</I><BR>
<B>Belize</B> <I>501</I><BR>
<B>Spain</B> <I>34</I><BR>

<HR> <B>End</B> </BODY></HTML>
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L HLRT class of wrappers
|

» HLRT (head-left-right-tail) class uses two
additional delimiters to skip over potentially
confusing text in either the head (top) or tail
(bottom) of the page

» head delimiter A

« tail delimiter ¢

in the example, a head delimiter A=<P>
could be used to skip over the initial <B> at
the top of the document

-> /; = <B> would work correctly
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HLRT wrapper

<HTML><TITLE>Some Country Codes</TITLE>
<BODY><B>Country Code List</B><P>
<B>Congo</B> <I>242</I><BR>
<B>Egypt</B> <I>20</I><BR>
<B>Belize</B> <I>501</I><BR>
<B>Spain</B> <I>34</I><BR>
<HR><B>End</B> </BODY></HTML>

34

| HLRT wrapper

-
= labeled examples:

» <Congo,242>, <Egypt,20>, <Belize,501>,
<Spain,34>
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ccwrap_HLRT (page P)
skip past first occurrence of <P> in P
while next <B> is before next <HR> in P

foreach ( J, r,yin {{ <B>, </B> ), ( <I>, </I> )}
skip past next occurrence of / in P

extract attribute from P to next occurrence of 7

return extracted tuples




executeHLRT (( A, t /,, ry, ..., |, 1}), page P)
skip past first occurrence of Ain P

while next /; is before next £in P
for each ( J, ri) in{( fy 1) s Clo 1) 3
skip past next occurrence of /. in P

extract attribute from P to next occurrence of r;

return extracted tuples

HLRT wrapper induction

= task: how to find the parameters /, ¢
ly ty vy g 12

minput: aset £={..., (P, L,) ..} of
examples, where each P, is a page and
each L, is a label of A,

» output: a wrapper Wsuch that
wep,)=L,forevery (P, L,)in E
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BuildHLRT(labeled pages £= {..., { P,.L,) ,..})
fork=1to K
r, = any common prefix of the strings following each
(but not contained in any) attribute &
for k =2to K
/, = any common suffix of the strings preceding each
attribute &
for each common suffix /, of the pages” heads
for each common substring 4 of the pages’ heads
for each common substring £ of the pages’ tails
if (a) A precedes /, in each of the pages’ heads; and
(b) ¢ precedes /, in each of the pages’ tails; and
(c) toceurs between Aand /;in no page’s head;
(d) /, doesnt follow ¢ in any inter-tuple separator
then retum <A, & /,, 1y, Iy 1>

Problems

= missing attributes

= multi-valued attributes

= multiple attribute orderings

= disjunctive delimiters

= nonexistent delimiters

= typographical errors and exceptions
= sequential delimiters

» hierarchically organized data
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Problems

= Missing attributes
» complicated pages may involve missing or null
attribute values
» if the corresponding delimiters are missing, a
simple wrapper will not process the remainder of
the page correctly
» a French e-commerce site might only specify the
country in addresses outside France
= Multi-valued attributes
» a hotel guide might list the cities served by a
particular chain, instead of giving <chain, city>
pairs for each city

L
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Problems

= Multiple attribute orderings
» a movie site might list the release date before the
title for movies prior to 2003, but after the title for
recent movies
» Disjunctive delimiters
» the same attribute might have several possible
delimiters
= an e-commerce site might list prices with a bold
face, except that discount prices are rendered in
red

42




L Problems

®a Nonexistent delimiters

» the simple wrappers assume that some irrelevant
background tokens separate the content to be
extracted

» this assumption may be violated
= €.g. how can the department code be separated
from the course number in strings such as
COMP4016 and GEOL2001?
= Typographical errors and exceptions
= errors may occur in the delimiters

= even a small badly formatted part may make a
simple wrapper to fail on entire page
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Problems

= Sequential delimiters

» the simple wrappers assumed a single delimiter
per attribute

» it might be better to scan for several delimiters in
sequence

= e.g. to extract the name of a restaurant from a
review, it might be simpler to scan for <B>, then
to scan for <BIG> from that position, and finally
to scan for <FONT>, rather than to force the
wrapper to find a single delimiter

» Hierarchically organized data

» an attribute could be an embedded table
44

| STALKER

I
= hierarchical wrapper induction

= Muslea, Minton, Knoblock:
A Hierarchical approach to wrapper
induction
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STALKER

= a page is a tree-like structure
» leaves are the items that are to be extracted
= internal nodes represent lists of A-tuples
= each item in a tuple can be either a leaf or

another list (= embedded list)

= a wrapper can extract any leaf by
determining the path from the root to the
corresponding leaf
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| Tokenization of text
L

= adocument is a sequence of tokens
» words (strings)
» humbers
»« HTML tags
= punctuation symbols
= token classes generalize tokens:
» Numeric, AlphaNumeric, Alphabetic, Word
» AllCaps, Capitalized
» HtmiTag
= Symbol

» also: user-defined classes
47

N o A WN =

1 <p> Name: <b> Yala </b><p> Cuisine: Thai<p><i>
: 4000 Colfax, Phoenix, AZ 85258 (602) 508-1570

1 <fi> <br> <i>

: 523 Vernon, Las Vegas, NV 89104 (702) 578-2293

1 <fi> <br> <i>

: 403 Pico, LA, CA 90007 (213) 798-0008

1 <fi>




L Extraction rules

|

= the extraction rules are based on landmarks
(= groups of consecutive tokens)
» landmarks enable a wrapper to locate the content

of an item within the content of its parent

= e.g. identify the beginning of the restaurant
name:
» R1 = SkipTo(<b>)
» start from the beginning of the parent (= whole

document) and skip everything until you find the
<b> landmark

49

Extraction rules

» the effect of applying R1 consists of
consuming the prefix of the parent, which
ends at the beginning of the restaurant’s
name

= similarly: the end of a node’s content
« R2 = SkipTo(</b>)

» R2is applied from the end of the documents
towards its beginning

» R2 consumes the suffix of the parent

50

L Extraction rules

|
= R1: a start rule; R2: an end rule
= the rules are not unique, e.g., R1 can be
replaced by the rules
» R3 = SkipTo(Name) SkipTo(<b>)
» R4 = SkipTo(Name Symbo/ Htm/Tag)
= these rules match correctly

» start rules SkipTo(:) and SkipTo(<i>) would
match incorrectly

» start rule SkipTo(<table>) would fail
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Disjunctive rules

= extraction rules allow the use of disjunctions
= e.g. if the names of the recommended
restaurants appear in bold, but the other in
italics, all the names can be extracted using
the rules
» start rule: either SkipTo(<b>) or SkipTo(<i>)
» end rule: either SkipTo(</b>) or
SkipTo(Cuisine) SkipTo(</i>)
= a disjunctive rule matches if at least one of its
disjuncts matches
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L Extracting list items

t
= e.g. the wrapper has to extract all the area
codes from the sample document
» the agent starts by extracting the entire list of
addresses LIST(Addresses):
» start rule: SkipTo(<p><i>) and
= end rule: SkipTo(</i>)
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Extracting list items

» the wrapper has to iterate through the content of
LIST(Addresses) and to break it into individual
addresses

= in order to find the start of each address, the wrapper
repeatedly applies a start rule SkipTo(<i>)

each successive rule-matching starts where the previous one

ended

similarly the end of each address: end rule SkipTo(</i>)

» three addresses found: lines 2, 4, and 6

» the wrapper applies to each address the area-code

start rule SkipTo('(") and end rule SkipTo()")

54




L More difficult extractions

|
= instead of area codes, assume the wrapper

has to extract ZIP codes
= e.g. 85258 from 'AZ 85258’

= list extraction and list iteration remain
unchanged

= ZIP code extraction is more difficult, because
there is no landmark that separates the state
from the ZIP code

= SkipTo rules are not expressive enough, but
they can be extended to a more powerful

extraction language
55

More difficult extractions

|
= e.g., we can use either the rule

» R5 = SkipTo(,) SkipUntil(Mumeric), or
» R6 = SkipTo(AllCaps) NextLandmark(Numeric)

= R5: “ignore all tokens until you find the landmark
‘', and then ignore everything until you find, but
do not consume, a number”

= R6: “ignore all tokens until you encounter an
AllCaps word, and make sure that the next
landmark is a number”
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| Advantages of STALKER rules

|
= nesting is possible
= hierarchical extraction allows to wrap
information sources that have arbitrary
many levels of embedded data

» free ordering of items

= as each node is extracted independently of
its siblings, also documents that have
missing items or items appearing in various
orders can be processed
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Landmarks and landmark
automata

= each argument of a SkipTo() function is a
landmark

» a group of SkipTo()s represents a landmark
automaton
= a group must be applied in a pre-established order
» = extraction rules are landmark automata

= alinear landmark = a sequence of tokens and
wildcards
» a wildcard = a class of tokens (Mumeric, Htm/Tag...)
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L Landmark automaton
L

» a landmark automaton LA is a nondeterministic finite
automaton with the following properties:
» the initial state s, has a branching-factor of &
» exactly kaccepting states (one/branch)
= all kbranches that leave s, are sequential LAs

» from each non-accepting state S, there are exactly two possible
transitions: a loop to itself, and a transition to the next state

linear landmarks label each non-looping transition

all looping transitions have the meaning “consume all
tokens until you encounter the linear landmark that
leads to the next state”
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Learning extraction rules

= input: a set of sequences of tokens that
represent the prefixes that must be
consumed by the new rule

= the user has to
= select a few sample pages

= Use a graphical user interface (GUI) to
mark up the relevant data

» GUI generates the input format

60
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The user has marked up the area codes:

E1: 513 Pico, <b>Venice</b>, Phone: 1-<b>800</b>-555-1515
E2: 90 Colfax, <b>Palms</b>, Phone: (818) 508-1570

E3: 523 1st St., <b> LA </b>, Phone: 1-<b>888</b>-578-2293
E4: 403 Vernon, <b> Watts </b>, Phone: (310) 798-0008

Training examples: the prefixes of the addresses that end immediately
before the area code (underlined)

Learning algorithm

= STALKER uses sequential covering

= begins by generating a linear LA that
covers as many as possible of the 4
positive examples

» tries to create another linear LA for the
remaining examples, and so on

= once all examples are covered, the
disjunction of all the learned LA4s is
returned
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L Learning algorithm
|

= the algorithm tries to learn a minimal
number of perfect disjuncts that
cover all examples

= a perfect disjunct is a rule that
= covers at |least one training example and

= 0N any example the rule matches, it
produces the correct result
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Learning algorithm; example

= the algorithm generates first
» the rule R1 = SkipTo('(), which
» accepts the positive examples E2 and E4

= rejects both E1 and E3, because R1 cannot be matched
on them

= 2 jteration:

= only the uncovered examples E1 and E3 are
considered

= rule R2 = SkipTo(Phone) SkipTo(<b>)
= rule “either R1 or R2" is returned
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STALKER (Examples)
Let RetVal = & (a set of rules)
While Examples = &
aDisjunct = LearnDisjunct(Examples)
remove all examples covered by aDisjunct
add aDisjunct to RetVal

return RetVal

LearnDisjunct (Examples)

Terminals = Wildcards U GetTokens (Examples)
Candidates = GetInitialCandidates (Examples)
While Candidates = & Do

Let D = BestDisjunct (Candidates)

If D is a perfect disjunct Then return D

For each t in Terminals Do

Candidates = Candidates U Refine(D, t)
remove D from Candidates

return best disjunct

11



| LearnDisjunct
|
= GetTokens

= returns all tokens that appear at least once
in each training example

= GetlnitialCandidates

LearnDisjunct

= BestDisjunct
= returns a disjunct that accepts the largest number
of positive examples
» if there are many, returns the one that accepts
fewer false positives

= returns one candidate for each token that » Refine )
B » landmark refinements: make landmarks more
ends a prefix in the examples, and specific
= one candidate for each wildcard that « topology refinements: add new states in the
matches such a token automaton
67 68
L Refinements Example

. 'a refining terminal t: a token or a wildcard
= landmark refinement
= makes a landmark | more specific by concatenating t
either at the beginning or at the end of |
= topology refinement

» adds a new state S and leaves the existing landmarks
unchanged

» if a disjunct has a transition from A to B labeled by a
landmark | (A — ! B), then the topology refinement
creates two new disjuncts in which the transition is
replaced either by A 'S >tBorbyA >tS !B
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= 1%t jteration: LearnDisjunct() generates
4 initial candidates

= one for each token that ends a prefix (in
R1 and R2)

= one for each wildcard that matches such a
token (in R3 and R4)

= R1 is a perfect disjunct -> LearnDisjunct()
returns R1 and 1st iteration ends
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L Example
t
= 2" jteration: LearnDisjunct() is invoked with
the uncovered training examples E1 and E3
= computes the set of refining terminals
» {Phone <b> </b> :, . Htm/Tag Word Symbol}
= generates the initial candidate rules R5 and R6

= both candidates accept the same false positives
-> refinement is needed
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Example

= 2" jteration continues: LearnDisjunct()
» selects randomly the rule to be refined: R5

= refines R5: topological refinements R7, ...,
R16 and landmark refinements R17 and
R18

= R7 is a perfect disjunct
= returns rule “either R1 or R7”

72
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L Wrapper maintenance

|
» information agents have no control over the
sources from which they extract data
» the wrappers rely on the details of the
formatting of a page
» if the source modifies the formatting, the wrapper
will fail
= two challenges
= Wrapper verification
= wrapper re-induction
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Wrapper verification

= determine whether the wrapper is still
operating correctly

= problem:

» either the formatting (delimiters) or the content to
be extracted may have changed

» the verification algorithm should be able to
distinguish between these two

= e.g. agent checks the Microsoft stock price three
times at a stock-quote server:

= values: +3.10, -0.61, <b><IMG src—"advert.gif” />

= How to know that the first two are OK, but the third
probably indicates a defective wrapper?
74

L Wrapper verification
|

= possible solution:

» the algorithm learns a probabilistic model of the
data extracted by wrapper during a period when it
is knowing to be operating correctly

model captures various properties of the training
data: length or fraction of numeric characters of
the extracted data

to verify afterwards, the extracted data is
evaluated against the learned model to estimate
the probability that the wrapper is operating
correctly
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Wrapper re-induction

= |earning a revised wrapper
= possible solution:

= after the wrapper verification algorithm notices
that the wrapper is broken, the learned model is
used to identify probable target fragments in the
new and unannotated documents
this training data is then post-processed to
remove noise, and the data is given to a wrapper
induction algorithm
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| What about XML?

—
= XML does not eliminate the need for Web IE
» there will still be numerous old sites that will never
export their data in XML
» different sites may still use different document
structures
= person’s name can be one element or two elements (first
name, family name)
» different information agents may have different
needs (e.g. the price with or without the currency
symbol)
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