Information extraction from text

Spring 2003, Part 3 Helena Ahonen-Myka

Information extraction from semi-structured text

- IE from Web pages
 - HTML tags, fixed phrases etc. can be used to guide extraction
- IE from other semi-structured data
 - e.g. email messages, rental ads, seminar announcements

2

WHISK

 Soderland: Learning information extraction rules for semi-structured and free text, Machine Learning, 1999

Semi-structured text (online rental ad)

Capitol Hill - 1 br twnhme. Fplc D/W W/D. Undrgrnd Pkg incl \$675. 3 BR, upper flr of turn of ctry HOME. incl gar, grt N. Hill loc \$995. (206) 999-9999
<i><i><fort size=2> (This ad last ran on 08/03/97.)</fort> </i>

2 case frames extracted:

- Rental:
 - Neighborhood: Capitol Hill
 - Bedrooms:
 - Price: 675
- Rental:
 - Neighborhood: Capitol Hill
 - Bedrooms:
 - Price:
- 3 995

Semi-structured text

- the sample text (rental ad) is not grammatical nor has a rigid structure
 - we cannot use a natural language parser as we did before
 - simple rules that might work for structured text do not work here

Rule representation

- WHISK rules are based on a form of regular expression patterns that identify
 - the context of relevant phrases
 - the exact delimiters of the phrases

7

■ ID:: 1

■ Pattern:: * (*Digit*) 'BR' * '\$' (*Number*)

■ Output:: Rental {Bedrooms \$1}{Price \$2}

- *: skip any number of characters until the next occurrence of the following term in the pattern (here: the next digit)
- single quotes: literal -> exact (case insensitive) match
- Digit: a single digit; Number: possibly multi-digit

8

Rule for number of bedrooms and associated price

- parentheses (unless within single quotes) indicate a phrase to be extracted
 - the phrase within the first set of parentheses (here: Digit) is bound to the variable \$1 in the output portion of the rule
- if the entire pattern matches, a case frame is created with slots filled as labeled in the output portion
- if part of the input remains, the rule is re-applied starting from the last character matched before

4

2 case frames extracted:

■ Rental:

■ Bedrooms: 1 ■ Price: 675

■ Rental:

■ Bedrooms: 3 ■ Price: 995

- The user may define a semantic class
 - a set of terms that are considered to be equivalent
 - Digit and Number are special semantic classes (built-in in WHISK)
 - user-defined class: Bdrm = (brs|br|bds|bdrm|bd|bedrooms|bedroom|bed)
 - a set does not have to be complete or perfectly correct: still it may help WHISK to generalize rules

Rule for neighborhood, number of bedrooms and associated price

- ID:: 2
- Output:: Rental {Neighborhood \$1} {Bedrooms \$2}{Price \$3}
 - assuming the semantic classes Nghbr (neighborhood names for the city) and Bdm

IE from Web

- information agents
- extraction rules: wrappers
- learning of extraction rules: wrapper induction
- wrapper maintenance
- active learning
- unsupervised learning

13

Information agents

- data is extracted from a web site and transformed into structured format (database records, XML documents)
- the resulting structured data can then be used to build new applications without having to deal with unstructured data
 - e.g., price comparisons
- challenges:
 - thousands of changing heterogeneous sources
 - scalability: speed is important -> no complex processing possible

14

What is a wrapper?

- a wrapper is a piece of software that can translate an HTML document into a structured form (~database tuple)
- oritical problem:
 - How to define a set of extraction rules that precisely define how to locate the information on the page?
- for any item to be extracted, one needs an extraction rule to locate both the beginning and end of the item
 - extraction rules should work for all of the pages in the source

Learning extraction rules: wrapper induction

- adaptive IE
- learning from examples
 - manually tagged: it is easier to annotate examples than write extraction rules
 - how to minimize the amount of tagging or entirely eliminate it?
 - active learning
 - unsupervised learning

Wrapper induction system

- input: a set of web pages labeled with examples of the data to be extracted
 - the user provides the initial set of labeled examples
 - the system can suggest additional pages for the user to label
- output: a set of extraction rules that describe how to locate the desired information on a web page

Wrapper induction system

- after the system creates a wrapper, the wrapper verification system uses the wrapper to learn patterns that describe the data being extracted
 - if a change is detected, the system can automatically repair a wrapper by
 - using the same patterns to locate examples on the changed pages and
 - re-running the wrapper induction system

Wrapper induction methods

- Kushmerick et al: LR and HLRT wrapper
- Knoblock et al: STALKER

Wrapper classes LR and HLRT

- Kushmerick, Weld, Doorenbos: Wrapper induction for information extraction, IJCAI -97
- Kushmerick: Wrapper induction: Efficiency and expressiveness, Workshop on AI & Information integration, AAAI-98

LR (left-right) class

- a wrapper consists of a sequence of delimiter strings for finding the desired content
- in the simplest case, the content is arranged in a tabular format with K columns
- the wrapper scans for a pair of delimiters for each column
 - total of 2K delimiters

LR wrapper induction

- the wrapper construction problem:
 - input: example pages
- associated with each information resource is a set of K attributes, each representing a column in the relational model
- a tuple is a vector $\langle A_{1^{\prime}},...,A_{K^{\prime}}\rangle$ of K strings string A_{k} is the value of tuple's k^{th} attribute

 - tuples represent rows in the relational model
- the label of a page is the set of tuples it contains

Example: country codes

- <HTML><TITLE>Some Country Codes</TITLE>
- <BODY>
- Congo <I>242</I>

- Egypt <I>20</I>

- Belize <I>501</I>

- Spain <I>34</I>

- <HR></BODY></HTML>

Label of the example page

{<Congo, 242>,

<Egypt, 20>,

<Belize, 501>,

<Spain, 34>}

Execution of the wrapper: procedure ccwrap_LR

- 1. scan for the string /_I= from the beginning of the document
- 2. scan ahead until the next occurrence of r_I =</br>
- 3. extract the text between these positions as the value of the 1st column of the 1st row
- 4. similarly: scan for /_Z < I> and r_Z = ⟨I⟩ and extract the text between these positions as the value of the 2rd column of the 1st row
- 5. the process starts over again and terminates when l₁ is missing (= end of document)

25

ccwrap_LR (page P)

while there are more occurrences in P of for each < I_{l_ℓ} $r_k >$ in $\{<$ B>,,<E>,<E>,<E>,<E>,<E>,<E
 save position as start of k^{th} attribute scan in P to next occurrence of r_k save position as end of k^{th} attribute return extracted pairs $\{..., <$ country, code $\}_r$... $\}$

General template

- generalization of ccwrap_LR:
 - delimiters can be arbitrary strings
 - any number K of attributes
- the values I₁, ..., I_K indicate the lefthand attribute delimiters
- the values r₁,..., r_K indicate the righthand delimiters

27

executeLR ($\langle I_{\mathcal{Y}}r_{1}\rangle_{r...}, \langle I_{\mathcal{K}}r_{\mathcal{K}}\rangle_{r}$ page P) while there are more occurrences in P of I_{1} for each $\langle I_{\mathcal{K}}r_{k}\rangle$ in $\{\langle I_{\mathcal{Y}}r_{1}\rangle_{r...}, \langle I_{\mathcal{K}}r_{\mathcal{K}}\rangle\}$ scan in P to next occurrence of I_{k} save position as start of next value A_{k} scan in P to next occurrence of r_{k} save position as end of next value A_{k} return extracted tuples $\{..., \langle A_{\mathcal{Y}}...,A_{\mathcal{K}}\rangle_{r}...\}$

LR wrapper induction

- the LR wrapper induction problem thus becomes one of identifying 2K delimiter strings $I_{\nu}r_{\nu}...,I_{K}r_{K}$ on the basis of a set $E = \{...,P_{n'},L_{n'}...\}$ of examples

LR wrapper induction

- LR learning is efficient:
 - the algorithm enumerates over potential values for each delimiter
 - selects the first that satisfies a constraint that guarantees that the wrapper will work correctly on the training data
 - the 2K delimiters can all be learned independently

Limitations of LR classes

- an LR wrapper requires a value for I₁ that reliably indicates the beginning of the 1st attribute
 - this kind of delimiter may not be available
 - what if a page contains some bold text in the top that is not a country?
 - it is possible that no LR wrapper exists which extracts the correct information
 - -> more expressive wrapper classes

31

HLRT (head-left-right-tail) class of wrappers

<HTML><TITLE>Some Country Codes</TITLE>

<BODY> Country Code List <P>

Congo <I>242</I>

Egypt <I>20</I>

Belize <I>501</I>

Spain <I>34</I>

<HR> End </BODY></HTML>

32

HLRT class of wrappers

- HLRT (head-left-right-tail) class uses two additional delimiters to skip over potentially confusing text in either the head (top) or tail (bottom) of the page
 - head delimiter h
 - tail delimiter t
- in the example, a head delimiter /=<P>
 could be used to skip over the initial at
 the top of the document
 - $-> /_1 = <$ B> would work correctly

33

HLRT wrapper

<HTML><TITLE>Some Country Codes</TITLE>

<BODY>Country Code List<P>

Congo <I>242</I>

Egypt <I>20</I>

Belize <I>501</I>

Spain <I>34</I>

<HR>End </BODY></HTML>

24

HLRT wrapper

- labeled examples:
 - <Congo,242>, <Egypt,20>, <Belize,501>, <Spain,34>

35

$\mathbf{ccwrap_HLRT}\ (\mathsf{page}\ P)$

skip past first occurrence of <P> in P while next is before next <HR> in P

for each $\left<\:\mathit{I}_{k'}\:\mathit{r}_{k}\:\right>$ in { $\left<\:\mathsf{CB>}\:,\:\mathsf{C/B>}\:\right>\:,\:\left<\:\mathsf{CI>}\:,\:\mathsf{C/I>}\:\right>\:\right\}$

skip past next occurrence of I_k in P

extract attribute from $\ensuremath{\textit{P}}$ to next occurrence of $\ensuremath{\textit{r}}_k$

return extracted tuples

executeHLRT ($\langle h, t, l_{J'}, r_{J'}, ..., l_{K'}, r_{K'} \rangle$, page P) skip past first occurrence of h in P while next l_{I} is before next t in P for each $\langle l_{K'}, r_{k} \rangle$ in $\{\langle l_{J'}, r_{I} \rangle, ..., \langle l_{K'}, r_{K'} \rangle\}$ skip past next occurrence of l_{k} in P extract attribute from P to next occurrence of r_{k} return extracted tuples

HLRT wrapper induction

- task: how to find the parameters h, t, l_{y} , r_{ty} , ..., l_{g} , r_{K} ?
- input: a set $E = \{..., \langle P_n, L_n \rangle, ...\}$ of examples, where each P_n is a page and each L_n is a label of P_n
- output: a wrapper W such that $W(P_n) = L_n$ for every $\langle P_n, L_n \rangle$ in E

38

BuildHLRT(labeled pages $E = \{..., \langle P_{n'}L_n \rangle,...\}$)

for k = 1 to K

 r_k = any common prefix of the strings following each (but not contained in any) attribute k

for k = 2 to K

 I_k = any common suffix of the strings preceding each attribute k

for each common suffix I_2 of the pages' heads for each common substring h of the pages' heads for each common substring t of the pages' tails

- if (a) h precedes l_1 in each of the pages' heads; and
- (b) t precedes l_1 in each of the pages' tails; and
- (c) t occurs between h and l_1 in no page's head;
- (d) l_1 doesn't follow t in any inter-tuple separator then return $\langle h, t, l_2, r_2, ..., l_{k'}, r_{k'} \rangle$

Problems

- missing attributes
- multi-valued attributes
- multiple attribute orderings
- disjunctive delimiters
- nonexistent delimiters
- typographical errors and exceptions
- sequential delimiters
- hierarchically organized data

Problems

- Missing attributes
 - complicated pages may involve missing or null attribute values
 - if the corresponding delimiters are missing, a simple wrapper will not process the remainder of the page correctly
 - a French e-commerce site might only specify the country in addresses outside France
- Multi-valued attributes
 - a hotel guide might list the cities served by a particular chain, instead of giving <chain, city> pairs for each city

Problems

- Multiple attribute orderings
 - a movie site might list the release date before the title for movies prior to 2003, but after the title for recent movies
- Disjunctive delimiters
 - the same attribute might have several possible delimiters
 - an e-commerce site might list prices with a bold face, except that discount prices are rendered in red

- Nonexistent delimiters
 - the simple wrappers assume that some irrelevant background tokens separate the content to be extracted
 - this assumption may be violated
 - e.g. how can the department code be separated from the course number in strings such as COMP4016 and GEOL2001?
- Typographical errors and exceptions
 - errors may occur in the delimiters
 - even a small badly formatted part may make a simple wrapper to fail on entire page

43

Problems

- Sequential delimiters
 - the simple wrappers assumed a single delimiter per attribute
 - it might be better to scan for several delimiters in sequence
 - e.g. to extract the name of a restaurant from a review, it might be simpler to scan for , then to scan for <BIG> from that position, and finally to scan for , rather than to force the wrapper to find a single delimiter
- Hierarchically organized data
 - an attribute could be an embedded table

44

STALKER

- hierarchical wrapper induction
- Muslea, Minton, Knoblock:
 A Hierarchical approach to wrapper induction

45

STALKER

- a page is a tree-like structure
 - leaves are the items that are to be extracted
 - internal nodes represent lists of k-tuples
 - each item in a tuple can be either a leaf or another list (= embedded list)
- a wrapper can extract any leaf by determining the path from the root to the corresponding leaf

46

Tokenization of text

- a document is a sequence of tokens
 - words (strings)
 - numbers
 - HTML tags
 - punctuation symbols
- token classes generalize tokens:
 - Numeric, AlphaNumeric, Alphabetic, Word
 - AllCaps, Capitalized
 - HtmlTag
 - Symbol
 - also: user-defined classes

7

1: Name: Yala Cuisine: Thai <i>

2: 4000 Colfax, Phoenix, AZ 85258 (602) 508-1570

3: </i>
 <i>

4: 523 Vernon, Las Vegas, NV 89104 (702) 578-2293

5: </i>
 <i>

6: 403 Pico, LA, CA 90007 (213) 798-0008

7: </i>

Extraction rules

- the extraction rules are based on landmarks (= groups of consecutive tokens)
 - landmarks enable a wrapper to locate the content of an item within the content of its parent
- e.g. identify the beginning of the restaurant name:
 - R1 = SkipTo()
 - start from the beginning of the parent (= whole document) and skip everything until you find the

49

Extraction rules

- the effect of applying R1 consists of consuming the prefix of the parent, which ends at the beginning of the restaurant's name
- similarly: the end of a node's content
 - R2 = SkipTo()
 - R2 is applied from the end of the documents towards its beginning
 - R2 consumes the suffix of the parent

50

Extraction rules

- R1: a start rule; R2: an end rule
- the rules are not unique, e.g., R1 can be replaced by the rules
 - R3 = SkipTo(Name) SkipTo()
 - R4 = SkipTo(Name Symbol HtmlTag)
- these rules match correctly
 - start rules SkipTo(:) and SkipTo(<i>) would match incorrectly
 - start rule SkipTo() would fail

51

Disjunctive rules

- extraction rules allow the use of disjunctions
- e.g. if the names of the recommended restaurants appear in bold, but the other in italics, all the names can be extracted using the rules
 - start rule: either SkipTo() or SkipTo(<i>)
 - end rule: either SkipTo() or SkipTo(Cuisine) SkipTo(</i></i>
- a disjunctive rule matches if at least one of its disjuncts matches

E2

Extracting list items

- e.g. the wrapper has to extract all the area codes from the sample document
- the agent starts by extracting the entire list of addresses LIST(Addresses):
 - start rule: SkipTo(<i>) and
 - end rule: SkipTo(</i>)

Extracting list items

- the wrapper has to iterate through the content of LIST(Addresses) and to break it into individual addresses
 - in order to find the start of each address, the wrapper repeatedly applies a start rule SkipTo(<i>)
 - each successive rule-matching starts where the previous one ended
 - similarly the end of each address: end rule SkipTo(</i>
 </i>
 - three addresses found: lines 2, 4, and 6
- the wrapper applies to each address the area-code start rule SkipTo('(') and end rule SkipTo(')')

54

More difficult extractions

- instead of area codes, assume the wrapper has to extract ZIP codes
 - e.g. '85258' from 'AZ 85258'
- list extraction and list iteration remain unchanged
- ZIP code extraction is more difficult, because there is no landmark that separates the state from the ZIP code
- SkipTo rules are not expressive enough, but they can be extended to a more powerful extraction language

More difficult extractions

- e.g., we can use either the rule
 - R5 = SkipTo(,) SkipUntil(*Numeric*), or
 - R6 = SkipTo(AllCaps) NextLandmark(Numeric)
- R5: "ignore all tokens until you find the landmark
 ',', and then ignore everything until you find, but
 do not consume, a number"
- R6: "ignore all tokens until you encounter an AllCaps word, and make sure that the next landmark is a number"

56

Advantages of STALKER rules

- nesting is possible
 - hierarchical extraction allows to wrap information sources that have arbitrary many levels of embedded data
- free ordering of items
 - as each node is extracted independently of its siblings, also documents that have missing items or items appearing in various orders can be processed

7

- each argument of a SkipTo() function is a landmark
- a group of SkipTo()s represents a landmark automaton
 - a group must be applied in a pre-established order
 - extraction rules are landmark automata
- a linear landmark = a sequence of tokens and wildcards
 - a wildcard = a class of tokens (Numeric, HtmlTag...)

E0

Landmark automaton

- a landmark automaton L4 is a nondeterministic finite automaton with the following properties:
 - lacksquare the initial state s_{θ} has a branching-factor of k
 - exactly k accepting states (one/branch)
 - all k branches that leave s₀ are sequential LAs
 - from each non-accepting state S, there are exactly two possible transitions: a loop to itself, and a transition to the next state
 - linear landmarks label each non-looping transition
 - all looping transitions have the meaning "consume all tokens until you encounter the linear landmark that leads to the next state"

Learning extraction rules

- input: a set of sequences of tokens that represent the prefixes that must be consumed by the new rule
- the user has to
 - select a few sample pages
 - use a graphical user interface (GUI) to mark up the relevant data
- GUI generates the input format

The user has marked up the area codes:

E1: 513 Pico, Venice, Phone: 1-800-555-1515 E2: 90 Colfax, Palms, Phone: (818) 508-1570 E3: 523 1st St., LA , Phone: 1-888-578-2293 E4: 403 Vernon, Watts , Phone: (310) 798-0008

Training examples: the prefixes of the addresses that end immediately before the area code (underlined)

Learning algorithm

- STALKER uses sequential covering
 - begins by generating a linear LA that covers as many as possible of the 4 positive examples
 - tries to create another linear LA for the remaining examples, and so on
 - once all examples are covered, the disjunction of all the learned LAs is returned

Learning algorithm

- the algorithm tries to learn a minimal number of **perfect disjuncts** that cover all examples
- a perfect disjunct is a rule that
 - covers at least one training example and
 - on any example the rule matches, it produces the correct result

Learning algorithm; example

- the algorithm generates first
 - the rule R1 = SkipTo('('), which
 - accepts the positive examples E2 and E4
 - rejects both E1 and E3, because R1 cannot be matched on them
- 2nd iteration:
 - only the uncovered examples E1 and E3 are considered
 - rule R2 = SkipTo(Phone) SkipTo()
- rule "either R1 or R2" is returned

STALKER (Examples)

Let RetVal = \emptyset (a set of rules) While Examples $\neq \emptyset$

aDisjunct = LearnDisjunct(Examples) remove all examples covered by aDisjunct add aDisjunct to RetVal

return RetVal

LearnDisjunct (Examples)

Terminals = Wildcards ∪ **GetTokens** (Examples)

Candidates = GetInitialCandidates (Examples)

While Candidates ≠ Ø Do

Let D = BestDisjunct (Candidates)

If D is a perfect disjunct Then return D

For each t in Terminals Do

Candidates = Candidates \cup Refine(D, t)

remove D from Candidates

return best disjunct

LearnDisjunct

- GetTokens
 - returns all tokens that appear at least once in each training example
- GetInitialCandidates
 - returns one candidate for each token that ends a prefix in the examples, and
 - one candidate for each wildcard that matches such a token

67

LearnDisjunct

- BestDisjunct
 - returns a disjunct that accepts the largest number of positive examples
 - if there are many, returns the one that accepts fewer false positives
- Refine
 - landmark refinements: make landmarks more specific
 - topology refinements: add new states in the automaton

68

Refinements

- a refining terminal t: a token or a wildcard
- landmark refinement
 - makes a landmark I more specific by concatenating t either at the beginning or at the end of I
- topology refinement
 - adds a new state S and leaves the existing landmarks unchanged
 - if a disjunct has a transition from A to B labeled by a landmark I (A \rightarrow I B), then the topology refinement creates two new disjuncts in which the transition is replaced either by A \rightarrow I S \rightarrow I B or by A \rightarrow I S \rightarrow I B

69

Example

- 1st iteration: LearnDisjunct() generates
 4 initial candidates
 - one for each token that ends a prefix (in R1 and R2)
 - one for each wildcard that matches such a token (in R3 and R4)
 - R1 is a perfect disjunct -> LearnDisjunct() returns R1 and 1st iteration ends

70

Example

- 2nd iteration: LearnDisjunct() is invoked with the uncovered training examples E1 and E3
 - computes the set of refining terminals
 - Phone : , . HtmlTag Word Symbol}
 - generates the initial candidate rules R5 and R6
 - both candidates accept the same false positives
 refinement is needed

Example

- 2nd iteration continues: LearnDisjunct()
 - selects randomly the rule to be refined: R5
 - refines R5: topological refinements R7, ..., R16 and landmark refinements R17 and R18
 - R7 is a perfect disjunct
 - returns rule "either R1 or R7"

Wrapper maintenance

- information agents have no control over the sources from which they extract data
- the wrappers rely on the details of the formatting of a page
 - if the source modifies the formatting, the wrapper will fail
- two challenges
 - wrapper verification
 - wrapper re-induction

73

Wrapper verification

- determine whether the wrapper is still operating correctly
- problem:
 - either the formatting (delimiters) or the content to be extracted may have changed
 - the verification algorithm should be able to distinguish between these two
 - e.g. agent checks the Microsoft stock price three times at a stock-quote server:
 - values: +3.10, -0.61,
 - How to know that the first two are OK, but the third probably indicates a defective wrapper?

74

Wrapper verification

- possible solution:
 - the algorithm learns a probabilistic model of the data extracted by wrapper during a period when it is knowing to be operating correctly
 - model captures various properties of the training data: length or fraction of numeric characters of the extracted data
 - to verify afterwards, the extracted data is evaluated against the learned model to estimate the probability that the wrapper is operating correctly

75

Wrapper re-induction

- learning a revised wrapper
- possible solution:
 - after the wrapper verification algorithm notices that the wrapper is broken, the learned model is used to identify probable target fragments in the new and unannotated documents
 - this training data is then post-processed to remove noise, and the data is given to a wrapper induction algorithm

76

What about XML?

- XML does not eliminate the need for Web IE
 - there will still be numerous old sites that will never export their data in XML
 - different sites may still use different document structures
 - person's name can be one element or two elements (first name, family name)
 - different information agents may have different needs (e.g. the price with or without the currency symbol)