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Definition
Given a setD of examples, a languageL of possible pat-
terns, and a minimum frequencymin_ fr, every pattern
θ ∈ L that occurs at least in the minimum number
of examples, i.e., ∣{e ∈ D ∣ θ occurs in e}∣ ≥ min_ fr,
is a frequent pattern. Discovery of all frequent pat-
terns is a common data mining task. In its most typical
form, the patterns are7frequent itemsets. A more gen-
eral formulation of the problem is 7constraint-based
mining.

Motivation and Background
Frequent patterns can be used to characterize a given set
of examples: they are the most typical feature combina-
tions in the data.

Frequent patterns are o�en used as components in
larger data mining or machine learning tasks. In partic-
ular, discovery of 7frequent itemsets was actually �rst
introduced as an intermediate step in7association rule
mining (Agrawal, Imieliński & Swami, ) (“frequent
itemsets” were then called “large”). �e frequency and
con�dence of every valid association rule X → Y are
obtained simply as the frequency of X ∪Y and the ratio
of frequencies of X ∪ Y and X, respectively.

Frequent patterns can be useful as 7features for
further learning tasks.�eymay capture shared proper-
ties of examples better than individual original features,
while the frequency threshold gives some guarantee that
the constructed features are not so likely just noise.
However, other criteria besides frequency are o�en used
to choose a good set of candidate patterns.

Structure of Problem
A frequent pattern o�en is essentially a set of binary
7features. Given a set I of all available features, the pat-
tern language L then is the power set of I . An example
in dataD covers a pattern θ ∈ L if it has all the features
of θ. In such cases, the frequent pattern discovery task
reduces to the task of discovering 7frequent itemsets.
�erefore, the structure of the frequent pattern discov-
ery problem is best described using the elementary case
of frequent itemsets.

Let I be the set of all items (or binary features); sub-
sets of I are called itemsets (or examples or patterns,
depending on the context). �e input to the frequent
itemset mining problem is a multiset D of itemsets
(examples described by their features), and a frequency
threshold. �e task is to output all frequent itemsets
(patterns) and their frequencies, i.e., all subsets of I
that exceed the given frequency threshold in the given
dataD.

Example  Assume the following problem speci�cation:

● Set of all items I = {A,B,C,D}.
● Data D = {{A,B,C},{A,D},{B,C,D},{A,B,C},
{C,D},{B,C}}.

● Frequency threshold is .

All possible itemsets and their frequencies:
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Itemset Frequency

{A} 

{B} 

{C} 

{D} 

{A,B} 

{A,C} 

{A,D} 

{B,C} 

Itemset Frequency

{B,D} 

{C,D} 

{A,B,C} 

{A,B,D} 

{A,C,D} 

{B,C,D} 

{A,B,C,D} 

�e frequent itemsets are {A}, {B}, {C}, {D},
{A,B}, {A,C}, {B,C}, {C,D}, {A,B,C}.

�e7hypothesis space for itemsets obviously is the
power set of I , and it has an exponential size (∣I∣) in the
number of items. Since all frequent itemsets are output,
this is also the size of the output in the worst case (e.g.,
if the frequency threshold is zero, or if all examples in
D equal I), as well as the worst case time complexity.

In practical applications of frequent itemset mining,
the size of the output as well as the running times are
much smaller, but they strongly depend on the proper-
ties of the data and the frequency threshold.�e useful
range of thresholds varies enormously among di�erent
datasets. In many applications – such as 7basket anal-
ysis – the number ∣I ∣ of di�erent items can be in thou-
sands, even millions, while the typical sizes of examples
are atmost in dozens. In such sparse datasets a relatively
small number of frequent itemsets can reveal the most
outstanding co-occurrences; e.g., there are not likely to
be very large sets of books typically bought by the same
customers. In dense datasets, in turn, the number of fre-
quent patterns can be overwhelming and also relatively
uninformative. E.g., consider the dense dataset of books
that have not been purchased by a customer: there are a
huge number of sets of books that have not been bought
by the same customers.

Theory/solutions
�emost widely known solution for �nding all frequent
itemsets is the 7Apriori algorithm (Agrawal, Mannila,

Srikant, Toivonen, & Verkamo, ). It is based on the
monotonicity of itemset frequencies (a7generalization
relation): the frequency of a set is at most as high as
the frequency of any of its subsets. Conversely, if a set is
known to be infrequent, then none of its supersets can
be frequent.

Apriori views the 7hypothesis space of item-
sets as a (re�nement) lattice de�ned by set contain-
ment, and performs a7general-to-speci�c search using
7breadth-�rst search. In other words, it starts with sin-
gleton itemsets, the most general and frequent sets, and
proceeds to larger and less frequent sets. �e search is
pruned whenever a set does not reach the frequency
threshold: all supersets of such sets are excluded from
further search. Apriori deviates from standard breadth-
�rst search by evaluating all sets of equal size in a single
batch, i.e., it proceeds in a levelwisemanner.�is has no
e�ect on the search structure or results, but can reduce
disk access considerably for large databases. See the
entry7Apriori Algorithm for an outline of themethod.

Example  Figure  illustrates the search space for the
data D of Example . Dark nodes represent frequent
itemsets, i.e., the answer to the frequent itemset mining
problem. Apriori traverses the space a level at a time. For
instance, on the second level, it �nds out that {A,D} and
{B,D} are not frequent. It therefore prunes all their super-
sets, i.e., does not evaluate sets {A,B,D}, {A,C,D}, and
{B,C,D} on the third level.

Other search strategies have also been applied.
A 7depth-�rst search without the subset check allows
faster identi�cation of candidates, at the expense of hav-
ing more candidates to evaluate and doing that without
natural batches (e.g., Zaki, ). FP-growth (Han, Pei,
Yin, & Mao, ) uses a tree structure to store the
information in the dataset, and uses it to recursively
search for frequent itemsets.

�e search strategy of Apriori is optimal in a cer-
tain sense. Consider the number of sets evaluated, and
assume that for any already evaluated set we know
whether it was frequent or not but do not consider its
frequency. Apriori evaluates the frequencies of all fre-
quent itemsets plus a number of candidates that turn
out to be infrequent. It turns out that every infrequent
candidate must actually be evaluated under the given
assumptions: knowing which other sets are frequent
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{A, B, C,D}

{A}

{A, B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A, B, C} {A, B,D} {A,C,D} {B,C,D}

{B} {C} {D}

Frequent Pattern. Figure . The search space of frequent itemsets for data D of the running example. Dark nodes:

frequent itemsets; white nodes: infrequent itemsets

andwhich are not does not help, regardless of the search
order. �is observation leads to the concept of bor-
der: the border consists of all those itemsets whose all
proper subsets are frequent and whose all proper super-
sets are infrequent (Gunopulos et al., ; Mannila &
Toivonen, ).�e border can further be divided into
two: the positive border contains those itemsets in the
border that are frequent, the negative border contains
those that are not. �e positive border thus consists of
the most speci�c patterns that are frequent, and corre-
sponds to the “S” set of7version spaces.

Example  Continuing our running example, Figure 
illustrates the border between the frequent and infrequent
sets. Either the positive or the negative border can alone
be used to specify the collection of frequent itemsets: every
frequent itemset is a subset of a set in the positive border
({A,B,C}, {C,D}), while every infrequent itemset is a
superset of a set in the negative border ({A,D}, {B,D}).

One variant of frequent itemset mining is to out-
put the positive border only, i.e., to �nd the maximal
frequent itemsets (Bayardo, ). �is can be imple-
mented with search strategies that do not need to eval-
uate the whole space of frequent patterns. �is can be
useful especially if the number of frequent itemsets is
very large, or if the maximal frequent itemsets are large
(in which case the number of frequent itemsets is large,
too, since the number of subsets is exponential in the
length of themaximal set). As a trade-o�, the result does
not directly indicate frequencies of itemsets.

Condensed Representations: Closed Sets and Nonderiv-

able Sets Closed sets and nonderivable sets are a pow-
erful concept for working with frequent itemsets, espe-
cially if the data is relatively dense or there are strong
dependencies. Unlike the aforementioned simplemodel
for borders, here also the known frequencies of sets are
used tomake inferences about frequencies of other sets.

As a motivation for closed sets (Pasquier, Bastide,
Taouil, & Lakhal, ), consider a situation where the
frequency of itemset {i, j} equals the frequency of item j.
�is implies that whenever j occurs, so does i.�us, any
set A∪ {j} that contains item j also contains item i, and
the frequencies of sets A ∪ {j} and A ∪ {i, j} must be
equal. As a result, it su�cies to evaluate sets A ∪ {j} to
obtain the frequencies of sets A ∪ {i, j}, too.

More formally, the closure of setA is its largest super-
set with identical frequency. A is closed i� it is its own
closure, i.e., if every proper superset of A has a smaller
frequency than A.�e utility of closed sets comes from
the fact that frequent closed sets and their frequen-
cies are a su�cient representation of all frequent sets.
Namely, if B is a frequent set then its closure is a fre-
quent closed set in Cℓ, where Cℓ denotes the collection
of all frequent closed itemsets. B’s frequency is obtained
as fr(B) = max{fr(A) ∣ A ∈ Cℓ and B ⊆ A}. If B is not
a frequent set, then it has no superset in Cℓ. 7Formal
concept analysis studies and uses closed sets and other
related concepts.

Generators are a complementary concept, and also
constitute a su�cient representation of frequent item-
sets. (To be more exact, in addition to frequent genera-
tors, generators in the border are also needed). Set A is
a generator (also known as a key pattern or a free set) if
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{A, B, C,D}

{A, B} {A,C} {A,D} {B,C} {B,D} {C,D}

{A, B, C} {A, B,D} {A,C,D} {B,C,D}

{B} {C} {D}{A}

Frequent Pattern. Figure . The positive border ({A,B,C}, {C,D}) and negative border ({A,D}, {B,D}) of frequent
itemsets

all its proper subsets have a larger frequency thanA has.
�us, in an equivalence class of itemsets, de�ned by the
set of examples in which they occur, the maximal ele-
ment is unique and is the closed set, and the minimal
elements are generators.�e property of being a gener-
ator is monotone in the same way that being frequent is,
and generators can be found with simple modi�cations
to the Apriori algorithm.

Example  Figure  illustrates the equivalence classes
of itemsets by circles. For instance, the closure of itemset
{A,B} is {A,B,C}, i.e., whenever {A,B} occurs in the
data, C also occurs, but no other items. Given just the
frequent closed sets and their frequencies, the frequency
of, say, {B} is obtained by �nding its smallest frequent
closed superset. It is {B,C}, with frequency , which is
also B’s frequency. Alternatively, using generators as the
condensed representation, the frequency of itemset {B,C}
can be obtained by �nding its maximal generator subset,
i.e., {B}, with which it shares the same frequency.

Nonderivability of an itemset (Calders & Goethals,
) is a more complex but o�en also a more power-
ful concept than closed sets. Given the frequencies of
(some) subsets of itemset A, the frequency of A may
actually be uniquely determined, i.e., there is only one
possible consistent value. A practical method of try-
ing to determine the frequency is based on deriving
upper and lower bounds with inclusion–exclusion for-
mula from the known frequencies of some subsets, and
checking if these coincide. An itemset is derivable if this

is indeed the case, otherwise it is nonderivable. Obvi-
ously, the collection of nonderivable frequent sets is a
su�cient representation for all frequent sets.

Bounds for the absolute frequency of set I are
obtained from its subsets as follows, for any X ⊆ I:

fr(I) ≤ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is odd, ()

fr(I) ≥ ∑
J :X⊆J⊂I

(−)∣I∖J∣+fr(J) if ∣I ∖ X∣ is even. ()

Using all subsets X of I, one can obtain a number of
upper and lower bounds. If the least upper bound equals
the greatest lower bound, then set I is derivable. �e
conceptual elegance of this solution lies in the fact that
derivable sets follow logically from the nonderivable
ones – the aforementioned formula is one way of �nd-
ing (some) such situations – whereas with closed sets
the user must know the closure properties.

Generalizations of Frequent Patterns �e concept of
frequent patterns has been extended in two largely
orthogonal directions. One is to more complex patterns
and data, such as frequent sequences, trees (see 7tree
mining), graphs (see 7graph mining), and �rst-order
logic (Dehaspe & Toivonen, ). �e other direction
to generalize the concept is to 7constraint-based min-
ing, where other and more complex conditions are con-
sidered beyond frequency. We encourage the interested
reader to continue at the entry for 7constraint-based
mining, which also gives further insight into many of
themore theoretical aspects of frequent patternmining.
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{A}: 3 {B }: 4 {C}: 5 {D}: 3

{A, B }: 2 {A,C }: 2 {B,C }: 4 {C,D }: 2

{A, B, C }: 2

{A,D } {B,D }

{A, B,D } {A,C,D } {B,C,D }

{A, B, C,D }

Frequent closed set    = {{A},{C},{D},{B, C},{C,D},{A, B, C}}.
Frequent generators: {{A},{B},{C},{D},{A,B},{A,C},{C,D}}.

Frequent Pattern. Figure . Frequencies and equivalence classes of frequent itemsets in dataD of the running exam-

ple, and the corresponding closed sets and generators

Programs and Data
Frequent itemset mining implementations repository:
http://fimi.cs.helsinki.fi/
Weka: http://www.cs.waikato.ac.nz/ml/weka/
Christian Borgelt’s implementations:
http://www.borgelt.net/software.html
Data mining template library:
http://dmtl.sourceforge.net/

Applications
Frequent patterns are a general purpose tool for data
exploration, with applications virtually everywhere.
Market 7basket analysis was the �rst application, tele-
com alarm correlation and gene mapping are examples
of quite di�erent application �elds.

Future Directions
Work on frequent pattern mining is being expanded in
several directions. New types of pattern languages are
being developed, either to meet some speci�c needs or
to increase the expressive power.Many of these develop-
ments aremotivated by di�erent types of data and appli-
cations.Withinmachine learning, frequent patterns are
increasingly being used as a tool for feature construc-
tion in complex domains. For an end-user application,
methods for choosing and ranking the most interest-
ing patterns among thousands or millions of them is
a crucial problem, for which there are no perfect solu-
tions (cf. Geng & Hamilton, ). At the same time,

theoretical understanding of the problem and solu-
tions of frequent pattern discovery still has room for
improvement.

Cross References
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7Constraint-Based Mining
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7Knowledge Discovery in Databases
7Tree Mining
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