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4Department of Biotechnology and Systems Biology,

National Institute of Biology, Ljubljana, Slovenia
Email: {laura.langohr, hannu.toivonen}@cs.helsinki.fi,

{vid.podpecan, igor.mozetic, nada.lavrac}@ijs.si,

{marko.petek, kristina.gruden}@nib.si

Subgroup discovery methods find interesting subsets of objects of a given class.
Motivated by an application in bioinformatics, we first define a generalized
subgroup discovery problem. In this setting, a subgroup is interesting if its
members are characteristic for their class, even if the classes are not identical.
Then we further refine this setting for the case where subsets of objects, for
example, subsets of objects that represent different time points or different
phenotypes, are contrasted. We show that this allows finding subgroups of objects
that could not be found with classical subgroup discovery. To find such subgroups,
we propose an approach that consists of two subgroup discovery steps and an
intermediate, contrast set definition step. This approach is applicable in various
application areas. An example is biology, where interesting subgroups of genes
are searched by using gene expression data. We address the problem of finding
enriched gene sets that are specific for virus infected samples for a specific time
point or a specific phenotype. We report on experimental results on a time series
data set for virus infected Solanum tuberosum (potato) plants. The results on
S. tuberosum’s response to virus infection revealed new research hypotheses for

plant biologists.
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1. INTRODUCTION

Subgroup discovery [1, 2] is a typical task in data mining
for finding interesting subsets of objects. Classical
subgroup discovery methods consider a set of objects
interesting if they share a combination of attribute
values that is characteristic for some class. In contrast,
we aim to find subgroups of the following type: a
set of objects is interesting if each of its members is
characteristic for its own class, even if the classes are
not identical. This allows finding patterns that could
not be found with classical subgroup discovery.

For instance, in a data set of bank customers, it
may be the case that males tend to be characteristic
in the sense that the combination of their education,
occupation, and location is characteristic for either high
or low spenders. The setting proposed in this paper
allows discovering males as an interesting subgroup,
since being male implies that the person is characteristic

for his class. Classical subgroup discovery methods
would only be able to find separate subgroups for high
spenders and low spenders, and would miss that males,
in general, are characteristic for their classes.

This powerful effect is obtained by allowing the user
to specify subsets of objects she wants to contrast in
a flexible manner. First, these contrast sets can be
defined using not only the original attributes, but also
using information about characteristics with respect to
classes (i.e., classical subgroup memberships). Second,
contrast set definitions can use set theoretic operations.
For instance, an economist might be interested in
contrasting different time points (e.g., before, during,
and after the financial crisis). She could then specify
that she is interested in objects at a specific time
point in contrast to all other time points. In such
settings, classical subgroup discovery can contrast two
time points, or several time points in a pairwise fashion.
In the setting proposed here, and in the biological
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application that motivates our work, we are interested
in contrasting subgroups from several time points (or
several phenotypes) at the same time. We call this
generalized problem the contrasting subgroup discovery
problem.

To find such generalized subgroups of objects we
propose an approach that consists of two subgroup
discovery steps and an intermediate, contrast set
definition step. In the first step, interesting subgroups
are found in a classical manner, based on semantic
and statistical properties of objects. In the banking
example, we can use an existing subgroup discovery
method to find classical subgroups for the classes of
low and high spenders, and would do this for each time
point separately. In the second step, the user defines
two new classes of objects; these are the contrast classes
for the third step. As mentioned above, the definitions
of contrast classes can take into account several different
class attributes (such as different time points) as well as
subgroup memberships from the first step. In the third
and final step, a classical subgroup discovery method
is used to find interesting subgroups of objects of the
two contrast classes. As a result, the subgroups can
contain objects which are characteristic for their class,
regardless of their class.

In the next section, we give a brief overview of
classical subgroup discovery and describe how subgroup
discovery and contrast mining have been addressed in
different applications before (Section 2). In Section 3
we then propose the problem of contrasting subgroup
discovery more formally. We then show how well-known
algorithms can be combined to solve the problem as
outlined above (Section 4).

In the second half of the paper, we focus on an
important application in biology. In Section 5 we
describe a gene set enrichment problem where the goal
is to analyze contrasting gene sets, and we give an
instance of the proposed methodology to solve the
problem. In Section 6 we apply it on a time-series data
set from virus-infected potato plants (S. tuberosum) and
report experimental results. Finally, we conclude with
some notes about the results and future work.

2. BACKGROUND

Discovering patterns in data is a classical problem
in data mining and machine learning [3, 4]. To
represent patterns in an explanatory form they are
often described by rules X 7→ Y , where 7→ denotes an
implication and the antecedent X and the consequent
Y can represent sets of attribute values (e.g., terms), a
class, or sets of objects, depending on the problem at
hand.

Next, we define the problem of subgroup discovery
formally, review related work, and discuss how
our approach differs from other pattern discovery
approaches.

2.1. Subgroup Discovery

Subgroup discovery methods find rules of the form
Condition 7→ Subgroup, where the antecedent
Condition is a conjunction of attribute values and the
consequent Subgroup is a set of objects, which satisfy
some class-related interestingness measure.

Subgroups defined by individual attribute
values. Consider a set S of objects, annotated by a
set T of attribute values (e.g., terms). Each attribute
value t ∈ T defines a subgroup St ⊂ S that consists
of all objects s ∈ S where t is true, that is, all objects
annotated by the attribute value t:

St = {s ∈ S | s is annotated by t}. (1)

Example 1. Consider the bank customers of Table 1
which are annotated by the attributes Occupation and
Location and assigned the class high or low for the class
attribute Spending for two different time points, before
and after the financial crisis, respectively. The attribute
value Location = village defines the subgroup {19, 20} of
two bank customers and Occupation = education defines
a subgroup of five bank customers {6, 9, 11, 16, 18}.

Subgroups defined by logical conjunctions of
attribute values. Subgroups can be constructed
by intersections, which are described by logical
conjunctions of attribute values. Let S1, . . . , Sk be k
subgroups described by the attribute values t1, . . . , tk.
Then, the logical conjunction of k attribute values
defines the intersection of k subgroups:

t1 ∧ t2 ∧ . . . ∧ tk 7→ S1 ∩ S2 ∩ . . . ∩ Sk . (2)

Alternatively, we can write T ′ 7→ ST ′ , where T ′ is a
set of attribute values T ′ = {t1, . . . , tk} ⊂ T , whose
conjunction defines the subgroup ST ′ = S1∩S2∩. . .∩Sk.

Example 2. The set T ′ = {education, small city}
defines a subgroup of three bank customers {9, 16, 18}
in Table 1.

An object can be a member of several subgroups. A
subgroup might be a subset of another subgroup. In
particular, in case the attribute values are organized in
a hierarchy (or ontology), an object that is annotated by
the attribute value t is also considered to be annotated
by the ancestors of t in the hierarchy.

Example 3. Consider the hierarchies in Figure 1.
All individuals working in the retail sector also work
in the service and private sector.

An ontology is a representation of a conceptualization
and is often represented by a hierarchy, where nodes
represent concepts (e.g., occupations or locations) and
edges a subsumption relations (e.g., “is a” or “part
of”) between concepts [5]. See, for example, Figure 1,
where nurses as well as doctors are part of the health
sector, which is part of the public sector. Ontologies
can be used to incorporate background knowledge about
attribute values (such as concepts, terms, or something
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FIGURE 1: Example hierarchies of attribute values
which are in this case terms (adapted from [8]).

TABLE 1: Bank customers before and after financial
crisis described by attributes Occupation and Location,
and the class attribute Spending (adapted from [8]).

ID Occupation Location Spending
Before After

1 Industry Big city High High
2 Industry Big city High Low
3 Retail Big city High Low
4 Finance Big city High High
5 Doctor Big city High High
6 Education Big city High Low
7 Nurse Big city High Low
8 Industry Small city High High
9 Education Small city High Low

10 Retail Small city High Low
11 Education Big city Low Low
12 Nurse Big city Low Low
13 Unemployed Big city Low Low
14 Retail Small city Low Low
15 Doctor Small city Low Low
16 Education Small city Low Low
17 Unemployed Small city Low Low
18 Education Small city Low Low
19 Unemployed Village Low Low
20 Unemployed Village Low Low

else). Subgroup discovery methods often use hierarchies
to restrict the search space (see, e.g., [6, 7]), but
subgroup discovery does not require that the attribute
values are organized in a hierarchy.

Class-related interestingness measure. For each
subgroup one has to measure whether the subgroup
is interesting or not. Classical subgroup discovery
methods look for groups that are specific for a class
when compared to the rest of the objects.

Similarly to attribute values, classes define subgroups
(sets) of objects. Let c ∈ T be a specific class. Then
an object s ∈ S belongs to the subgroup defined by c if
and only if s is annotated by c.

Example 4. Consider again the bank customers in
Table 1. For the time point before the financial crisis the
class Spending = high defines the subgroup {1, . . . , 10}
and the class Spending = low defines the subgroup
{11, . . . , 20}.

In practice, a subgroup is often classified homoge-

neously. To formalize this idea, let

classes : P(S)→ Z+ × Z+ (3)

be a function that gives the class distribution of a given
set ST ′ ⊂ S of objects, that is, the number of objects
in ST ′ annotated by c and the number of objects in ST ′

not annotated by c. (Here P(S) is the powerset of S.)

Example 5. Consider the subgroup ST ′ =
{9, 16, 18} of three bank customers described by
T ′ = {education, small city} and the class Spend-
ing = high for the time point before the financial
crisis in Table 1. The class distribution of ST ′ is
classes(ST ′) = (1, 2) as one object of ST ′ is annotated
by Spending = high and two objects by Spending =
low. Similarly, the class distribution of S \ ST ′ is
classes(S \ ST ′) = (9, 8).

Definition 2.1. The classical class-related interest-
ingness measure is a function

fc : P(T )→ R,
T ′ 7→ g(classes(ST ′), classes(S \ ST ′))

(4)

for some function g. That is, fc is a function g(·) of the
class distributions within and outside of the subgroup.

The exact definition of g varies from problem variant
to another, but the common denominator is that it is
based on the class distributions alone.

Often the subgroups are analyzed by statistical tests,
like Fisher’s exact test, χ2 test, or the Binomial
probability. In our experiments, we use a p-value
estimate obtained by Fisher’s exact test [9] and a
simple permutation test as class-related interestingness
measure fc. Without loss of generality, in the rest of
the paper we assume smaller values of fc indicate more
interesting subgroups.

Given a class attribute c with two possible classes
tc, tc ∈ T the data is arranged in a contingency table
for each subgroup ST ′ ⊂ S, where classes(ST ′) =
{n11, n12}, classes(S\ST ′) = {n21, n22}, and n = |S| =
n11 + n12 + n21 + n22:

tc tc

ST ′ n11 n12
S \ ST ′ n21 n22

Fisher’s exact test then evaluates the probability of
obtaining the observed distribution (counts nij), or a
more extreme one, assuming that the marginal counts
(tc, tc, ST ′ , S \ ST ′) are fixed [9]. Therefore, first, the
probability of observed quantities is calculated by

P (X = n11) =
(
n11+n12

n11

)(
n21+n22

n21

)
/
(

n
n11+n21

)
. (5)

Then, the p-value is the sum of all probabilities for
the observed or more extreme (that is, X < n11)
observations:

p =
n11∑
i=0

P (X = i) . (6)
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Example 6. Consider the bank customers in Table 1
the time point before the financial crisis, the attribute
value set T’ = {village} and the classes tc = high versus
tc = low for the class attribute Spending. There are
two bank customers living in a village: St = Svillage =
{19, 20}, of which none is annotated by Spending =
high. Hence, Fisher’s exact p-value is p ≈ 0.237.

Permutation test. In our experiments, to address
the multiple testing problem, we perform a simple
permutation test that returns adjusted p-values
(see Appendix A for the details).

Subgroup discovery. We can now describe the
problem of subgroup discovery formally:

Definition 2.2. The subgroup discovery problem is
to output all sets T ′ ⊂ T of attribute values for which
fc(T

′) ≤ α for some given constant α.

Equivalently, the subgroups defined by the sets of
attribute values could be output, and in practice both,
the sets of attribute values and subgroups are often
shown as a result. An alternative formulation of the
problem is to output the k best subgroups instead of
using a fixed threshold.

Example 7. Consider again the bank customers in
Table 1. When using Fisher’s exact test, the adjusted
p-value as class-related interestingness measure fc(·),
and α = 0.3 (for the sake of simplicity we consider
a relatively high threshold in this toy example),
a subgroup discovery method finds four interesting
subgroups for the time point before the financial crisis:
village 7→ {19, 20}, unemployed 7→ {13, 17, 19, 20},
unemployed ∧ city 7→ {13, 17}, and unemployed ∧
village 7→ {19, 20} as well as two interesting subgroups
education 7→ {6, 9, 11, 16, 18} and education ∧ city 7→
{6, 9, 11, 16, 18} for the time point after the financial
crisis.

2.2. Other pattern mining approaches

Other pattern mining approaches mentioned below
can be classified as unsupervised and supervised.
Unsupervised methods (frequent item set mining and
association rule mining) take a data set without class
labels as input, while the input to supervised methods
(the other methods listed below) is a class labeled data
set. Note that the supervised methods can take multiple
classes into account by comparing two classes where one
is a union of several (sub)classes [20].

Frequent item set mining aims to find frequent
combinations of attribute values (items) such as
Occupation = industry ∧ Spending = high [15]. Similar
to the approach presented here, some methods intersect
transactions to find closed frequent item sets [16, 17,
18].

Emerging patterns are item sets for which
the support increase significantly from one class to
another [19].

Association rules describe associations, such as
X 7→ Y , where the antecedent X and consequent Y are
item sets (e.g., sets of terms) [21]. In categorical data
the antecedent and consequent are (attribute, attribute
value) pairs such as Occupation = industry 7→ Spending
= high [22, 23].

Exception rule mining aims to find unexpected
association rules which differ from a highly frequent
association rule [24]. That is, it finds unexpected
association rules X ∧ Z 7→ Y , where X 7→ Y ′ and
Z 67→ Y ′. Here, X and Z are item sets or (attribute,
attribute value) pairs, and Y and Y ′ are different (class
attribute, class) pairs. Consider for example, X as
Occupation = industry, Z as Location = city, Y as
Spending = high, and Y ′ as Spending = low.

Contrast set mining is an extension of association
rule mining and aims to understand the differences
between contrasting groups of objects [22, 25, 26, 23].
Contrast set mining and emerging pattern mining are
formally equivalent and can be effectively solved by
subgroup discovery methods [28, 23]. In contrast
set mining two contrast classes are defined, while in
subgroup discovery only one class and its complement
are used.

Examples of contrast set mining methods are Search
and Testing for Understandable Consistent Contrasts
(STUCCO) [22], Contrasting Grouped Association
Rules (CIGAR) [26], and Rules for Contrast Sets
(RCS) [27] which all derive rules of attribute-value
pairs for which the support differs meaningfully across
groups.

In a setting where several different class attributes
exist, these methods can be applied in a pairwise
manner. For example, one could contrast two different
levels of spending for different time points or different
locations separately. That is, these methods find rules
such as Occupation = industry ∧ Spending = high for
which the support is significantly larger within the
individuals that are described by Location = city than
Location = village.

We also aim to understand the differences between
several contrasting groups. However, in contrast to
contrast set mining and the other approaches described
here our aim is to find interesting subgroups of objects
which are characteristic for their class, regardless of
their class. Next we describe the problem formally.

3. PROBLEM DEFINITION

We now formulate the problem of contrasting subgroup
discovery in more exact terms. We replace the direct
dependency on the class distribution of the classical
subgroup discovery by a contrasting, indirect one. In
the classical, direct case, one is interested in sets of
attribute values that are characteristic for a class. Our
aim is is to understand phenomena in a setting where
several different classes (for example, different time
points) are given. That is, in the contrasting case,
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we want to find sets of attribute values that indicate
objects which are characteristic for their class, but not
necessarily the same one.

In order to formally define the task, we first introduce
a notation P for the set of objects characteristic for their
class:

P = {s ∈ S | there exists T ′ ⊂ T such that
fc(T

′) ≤ α and s ∈ ST ′},
(7)

where (as before) T denotes the set of attribute values
(e.g., terms), S the set of objects, ST ′ the set of objects
annotated by the attribute value set T ′ ⊂ T , fc(·)
the class-related interestingness measure, and α a given
constant.

Example 8. Consider again the bank customers in
Table 1 and the subgroups found with a classical
subgroup discovery method (see Example 7). Then,
the set of objects characteristic for their class is P =
{13, 17, 19, 20} for the time point before and P =
{6, 9, 11, 16, 18} for the time point after the financial
crisis.

Now the user can define two contrast classes Pc, Pc ⊂
P . The selection of these two contrast classes depends
on the objective and is left to the user. They can,
for example, take several classes (such as different time
points) into account.

Let c1, . . . , cm be m class attributes and P1, . . . , Pm
be the sets of objects characteristic for each of the class
attributes. Here, we define Pc and Pc in two different,
exemplary ways. First, Pc can be defined as the set of
objects occurring in interesting subgroups of all class
attributes:

Pc =
⋂

i∈{1,...,m}
Pi . (8)

This is useful when one wants to find interesting
subgroups which are common to all class attributes (for
example, a specific time point in contrast to all other
time points).

Second, Pc can be defined as the set of objects
occurring only in interesting subgroups of the kth class
attributes:

Pc = Pk \
⋃

i∈{1,...,m},
i6=k

Pi . (9)

This definition can be used to find interesting subgroups
which are specific for one class attribute in contrast to
all the other class attributes.

The contrast class Pc can be defined as the
complement of Pc, that is,

Pc = P \ Pc , (10)

when one is interested in subgroups specific for the
objects in Pc compared to all other objects of P . Or, if a
user is interested in contrasting two specific time points
even in a case were more time points exist. Then Pc
would be defined as one of those time points and Pc as
the other time point.

TABLE 2: Contrast classes of bank customers.

ID Occupation Location Contrast class

6 Education BigCity Pc

9 Education SmallCity Pc

11 Education BigCity Pc

13 Unemployed BigCity Pc

16 Education SmallCity Pc

17 Unemployed SmallCity Pc

18 Education SmallCity Pc

19 Unemployed Village Pc

20 Unemployed Village Pc

Example 9. In the case of bank customers and the
two classes before and after the financial crisis, we
obtain the set of objects characteristic for each class
attribute separately, that is, P1 = {13, 17, 19, 20} and
P2 = {6, 9, 11, 16, 18}. When specifying the contrast
classes Pc and Pc as Pc = P1 \ P2 and Pc = P2

(Equations 9 and 10), we contrast the time point before
the financial crisis against the time point after the
financial crisis and obtain Pc = {13, 17, 19, 20} as well
as Pc = {6, 9, 11, 16, 18} as also shown in Table 2. (Note
that we could alternatively contrast the time point after
against the time point before the financial crisis by
defining Pc = P2 \ P1 and Pc = P1.)

Let us define function characteristic(·) that gives the
number of objects characteristic for their class in the
contrasting classes Pc and Pc for a given set ST ′ :

characteristic : P(S)→ Z+ × Z+,
ST ′ 7→ (|ST ′ ∩ Pc|, |ST ′ ∩ Pc|).

(11)

Now, the contrasting interestingness measure, as well
as the contrasting subgroup discovery problem, can be
formulated as follows.

Definition 3.1. A contrasting interestingness mea-
sure is a function

fi : P(T )→ R,
T ′ 7→ g′( characteristic(ST ′),

characteristic(P \ ST ′))
(12)

for some function g′.

That is, the contrasting interestingness measure
analyzes whether a subgroup is interesting w.r.t. the
two contrast classes, which both consists only of objects
that are characteristic for their own class. This is
in contrast to the classical class-related interestingness
measure, which analyzes whether a subgroup is
interesting w.r.t. the object’s classes.

Example 10. Consider again the bank customers
and the two contrast classes Pc = {13, 17, 19, 20} and
Pc = {6, 9, 11, 16, 18} of Table 2. Then the attribute
value Occupation = education, for instance, defines a
set of five bank customers {6, 9, 11, 16, 18}, which are
all in Pc. Given the adjusted p-value as function g′, we
obtain fi(education) ≈ 0.0079.
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Definition 3.2. The contrasting subgroup discovery
problem is to output all sets T ′ ⊂ T of attribute values
for which fi(T

′) ≤ α′ for some given constant α′.

In other words, while classical subgroup discovery is
related to the question of how to find sets of objects
that are characteristic for a specific class, the problem
of contrasting subgroup discovery is related to asking
if sets of objects characteristic for (any) classes can be
found.

The relationship between the classical and contrast-
ing cases immediately implies that for any subgroup
found for the contrasting subgroup discovery problem,
its objects are characteristic for their class. On the
other hand, a set of attribute values may be a valid an-
swer to the contrasting problem even if it is not for the
classical problem.

That is exactly where the main conceptual contri-
bution of this paper is. Contrast subgroup discovery
allows finding subgroups of objects that could not be
found with classical subgroup discovery.

4. METHOD

Given a set of objects described by attribute values
(e.g., terms) and different classes of objects, our goal
is to find interesting subgroups of objects characteristic
for their class. Thereby we allow to take different class
attributes into account.

To find such subgroups we propose an approach that
consists of three steps: First, interesting subgroups
are found by a classical subgroup discovery method.
Second, contrast classes on those subgroups are defined
by set theoretic functions. Third, contrasting subgroup
discovery finds interesting subgroups in the contrast
classes. Next, we will describe each step in detail.

Classical Subgroup Discovery (Step 1). Given
some objects that are annotated by attribute values,
and assigned a class, a subgroup discovery method is
applied. Thereby, we consider only one class attribute
(e.g., Spending before the financial crisis with different
classes (e.g., Spending = high vs. Spending = low),
and apply a subgroup discovery method separately
for each class attribute (e.g., separately for each time
point). The subgroups are then analyzed by a statistical
test, like Fisher’s exact test followed by a permutation
test. (See Example 7 for exemplary results of classical
subgroup discovery.)

Construction of Contrast Classes (Step 2). Let
P1, . . . , Pm denote the objects characteristic for their
class of m class attributes (e.g., for m different time
points). Then, the two contrast classes Pc and Pc are
defined by two set theoretic functions, for example, by
Equations 9 and 10. (As stated before, the selection
of a particular set theoretic function depends on the
objective and is left to the user.)

Contrasting Subgroup Discovery (Step 3). In
this step we apply a second subgroup discovery instance
in order to analyze subgroups with respect to the

constructed contrast classes. Given the objects in the
two contrast classes Pc and Pc, we find interesting
subgroups of these objects by a second subgroup
discovery instance. Again, the p-values are calculated,
using a permutation test.

Assuming that both subgroup discovery instances
(Step 1 and 3) find all subgroups for which the classical
interesting measures hold (Equation 4), then the
proposed method does find all subgroups that satisfy
the indirect interestingness measure (Equation 12).

Example 11. In the case of bank customers we saw
already in Example 10 that education is obtained with
contrasting subgroup discovery when the two classes
Pc = {13, 17, 19, 20} and Pc = {6, 9, 11, 16, 18} are
contrasted. In this contrasting subgroup discovery the
following subgroups are found to be interesting:

education 7→ {6, 9, 11, 16, 18},
education ∧ city 7→ {6, 9, 11, 16, 18},
education ∧ big city 7→ {6, 11},
education ∧ small city 7→ {9, 16, 18},
public 7→ {6, 9, 11, 16, 18},
public ∧ city 7→ {6, 9, 11, 16, 18},
public ∧ big city 7→ {6, 11}, and
public ∧ small city 7→ {9, 16, 18}.

In contrast, with a classical subgroup discovery method
we obtain

village 7→ {19, 20},
unemployed 7→ {13, 17, 19, 20},
unemployed ∧ city 7→ {13, 17}, and
unemployed ∧ village 7→ {19, 20}

for the time point before the financial crisis and

education 7→ {6, 9, 11, 16, 18}, and
education ∧ city 7→ {6, 9, 11, 16, 18}

for the time point after the financial crisis
Hence, some of the subgroups found by the

contrasting subgroup discovery were already found by
the classical subgroup discovery (for example, education
∧ city). Other subgroups found by the contrasting
subgroup discovery are more specific than the one
found by the classical subgroup discovery (for example,
education ∧ big city). Again other subgroups found by
the contrasting subgroup discovery were not found at
all by the classical subgroup discovery (for example,
public ∧ big city) as its members are not characteristic
for either class (that is, some of them are assigned the
class Spending = high and some Spending = low).

Both, more specific and new subgroups might reveal
new research hypotheses for the user. For example,
public ∧ big city defines in classical subgroup discovery
a subgroup that is not interesting since its objects
are characteristic for either high or low spending. In
contrasting subgroup discovery it defines a subgroup
which is characteristic when the two contrasting classes
are analyzed. That is, this subgroup’s objects occur
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Contrasting Subgroup Discovery 7

only in subgroups that are characteristic for the time
point after the financial crisis, but not in one that is
characteristic for the time point before the financial
crisis. Hence, there has been some changes in those
subgroups between the two points. This directs the
user where to look for the the causes of the differences
between the time points. Other methods (and possibly
data) are needed to find those causes.

5. AN APPLICATION IN BIOLOGY

Application areas of subgroup discovery include
sociology [1, 2], marketing [29], vegetation data [30],
and transcriptomics [31]. In bioinformatics, high-
throughput techniques and simple statistical tests are
used to produce rankings of thousands of genes. Life-
scientists have to choose few genes for further (often
expensive and time consuming) experiments. In this
context, subgroup discovery is known as gene set
enrichment (see, e.g., [32, 33]).

A life-scientist might be interested in studying an
organism in virus infected and non-infected conditions
at different time points or in different phenotypes of
that organism. Here, our aim is to find enriched gene
sets characteristic for their class, regardless of their
class (for example, characteristic for either differently
expressed or not). Further, we allow the user to specify
subsets of objects she wants to contrast. The life-
scientist could then specify that she is interested in
objects at a specific time point in contrast to all other,
or for a specific phenotype in contrast to all other
phenotypes. With our proposed approach of contrasting
subgroup discovery we can then contrast several time
points or phenotypes at the same time.

Using subgroup discovery terminology, we consider
genes as objects, and their annotations by terms (e.g.,
by their molecular functions or biological processes) as
attribute values. Table 3 aligns the terms used in the
data mining and bioinformatics communities to provide
a better understanding of the terminologies.

Next, we describe measures used for transforming
the expression values of several samples (e.g., virus
infected vs. non-infected plants) into a class attribute,
called differential expression, how the constructed gene
sets are analyzed for statistical significance, and how
enriched gene sets can be found. Finally, we discuss
how our proposed method finds contrasting gene sets.

5.1. Measures of Differential Expression

After preprocessing the gene expression data (including
microarray image analysis and normalization) the genes
can be ranked according to their gene expression. The
data set of our experiments consists of four samples for
both experimental condition. That is, for each gene
we have gene expression levels for four replicates of
virus infected and for four replicates of non-infected
plants. Different methods can be used to transform

TABLE 3: Synonyms from different communities.

Subgroup Discovery Bioinformatics

object gene
or instance

attribute value annotation or biological
or feature value, concept, e.g., a GO term
e.g., a term in a hierarchy

class attribute gene expression under
a specific experimental
condition such as a specific
time point or phenotype

class differential/non-differential
or class attribute value, gene expression
e.g., positive/negative

subgroup of objects gene set

interesting subgroup enriched gene set

several samples into one class attribute. Here, we will
discuss two widely used ones.

Fold change (FC) is a metric for comparing the
expression level of a gene g between two distinct
experimental conditions, for example, virus infected and
non-infected [31]. FC is defined as the log ratio of the
average gene-expression levels with respect to the two
conditions [34]. Note that FC values do not indicate
the level of confidence in the designation of genes as
differently expressed or not.

The t-test is used to determine the statistical
significance of the gene expression between two distinct
experimental conditions [31]. Though, the power of
the test is relatively low for small sample sizes [34]. A
Bayesian t-test is advantageous if only few (that is, two
or three) samples are used, but no advantage is gained if
more replicates are used [35]. In our experiments we use
four replicates and therefore will use the simple t-test.

5.2. Analysis of Gene Set Enrichment

Given a list L = {g1, . . . , gn} of n genes in which
all genes of S are ranked by their expression levels
e1, . . . , en, we can analyze the enrichment of a gene set
ST ′ compared to the other genes S \ST ′ with statistical
tests like Fisher’s exact test [9]. Alternatively, gene set
enrichment analysis (GSEA) [36] or parametric analysis
of gene set enrichment (PAGE) [33] can be used. Both
methods use the ranking of differential expressions,
instead of a partition of the genes into two classes.

Fisher’s exact test. When analyzing the gene set
ST ′ compared to the other genes S \ ST ′ with Fisher’s
exact test, we need to divide the genes into two classes
tc and tc. Therefore, a cut off is set in the gene ranking:
genes in the upper part are defined as differentially
expressed and the genes in the lower part are defined
as not differentially expressed genes. Then the p-values
are calculated and a permutation test is performed.

GSEA evaluates whether objects of ST ′ are
randomly distributed throughout the list L or primarily
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found at the top or bottom of the list [36, 32].
An enrichment score (ES) is calculated, which is the
maximum deviation from zero of the fraction of genes
in the set ST ′ weighted by their correlation and the
fraction of genes not in the set:

ES(ST ′) = max
i∈{1,...,n}

∣∣∣ ∑
gj∈ST ′

j≤i

|ej |p
nw
−

∑
gj 6∈ST ′

j≤i

1
n−nw

∣∣∣
(13)

where nw =
∑

gj∈ST ′

|ej |p. If the enrichment score is small,

then ST ′ is randomly distributed across L. If it is high,
then the genes of ST ′ are concentrated in the beginning
or the end of the list L. The exponent p controls the
weight of each step. ES(ST ′) reduces to the standard
Kolmogorov-Smirnov statistic if p = 0:

ES(S) = max
i∈{1,...,n}

∣∣∣ ∑
gj∈ST ′

j≤i

1
|ST ′ |

−
∑

gj 6∈ST ′
j≤i

1
|S|−|ST ′ |

∣∣∣.
(14)

The significance of ES(ST ′) is then estimated by a
permutation test.

PAGE is a gene set enrichment analysis method
based on a parametric statistical analysis model [33].
For each gene set ST ′ a Z-score is calculated, which is
the fraction of mean deviation to the standard deviation
of the ranking score values:

Z(ST ′) = (µST ′ − µ) 1
σ

√
|ST ′ | (15)

where σ is the standard deviation and µ and µST ′ are
the means of the score values for all genes and for the
genes in set ST ′ , respectively. The Z-score is high if the
deviation of the score values is small or if the means
largely differ between the gene set and all genes. As
gene sets may vary in size, the fraction is scaled by
the square root of the set size. However, because of
this scaling the Z-score is also high if ST ′ is very large.
Assuming a normal distribution, a p-value for each gene
set is calculated. Finally, the p-values are corrected by
a permutation test.

Kim and Volsky [33] studied different data sets for
which PAGE generally detected a larger number of
significant gene sets than GSEA. On the other hand,
GSEA makes no assumptions about the variability and
can be used if the distribution is not normal or is
unknown.

Trajkovski et al. [7] used the sum of GSEA’s and
PAGE’s p-values, weighted by percentages (e.g., one
third of GSEA’s and two third of PAGE’s or half of
both). Hence, gene sets with small p-values for GSEA
and PAGE are output as enriched gene sets.

5.3. Finding Enriched Gene Sets with SEGS

In our experiments, we use the Searching for Enriched
Gene Sets (SEGS) method [7] to find interesting
subgroups of objects (that is, enriched gene sets) There,
a subgroup of objects is considered interesting, when the

subgroup is large enough, and its p-value obtained by
a statistical test is smaller than the given significance
level α.

SEGS uses hierarchies of attribute values (here,
terms) to construct subgroups by individual terms as
well as by logical conjunctions of terms. Ontologies
are extensively used in gene set enrichment [36,
33]. Commonly used ontologies include GO1 (Gene
Ontology) [37], KO2 (Kyoto Encyclopedia of Genes and
Genomes (KEGG) Orthology) [38], and GoMapMan3,
an extension of the MapMan [39] ontology, for plants.

SEGS combines terms from the same level as well
as from different levels into term conjunctions as
follows. Several ontologies can be modeled by a single
ontology [40]. To construct all possible subgroups one
merged ontology is used, where the root has n children,
one for each individual ontology. We start with the
root term and recursively replace each term by each of
its children.

We are not interested in constructing all possible
subgroups, but only those representing at least a
minimal number min of objects. This parameter min
is specified by the user. We conjunctively extend
a rule condition only if the subgroup defined by it
contains more than a minimum number of objects. If a
condition defines the same group of objects as a more
general condition, the more general condition is deleted.
Further, in each recursive step we add other terms to
the rule condition to obtain intersections of two or more
subgroups.

5.4. Finding Contrasting Gene Sets

To find contrasting gene sets, that is, to find enriched
gene sets (interesting subgroups) that are characteristic
for their class, we can apply our proposed method
described in Section 4.

Note that there are a couple of issues to take into
account in the case of gene set enrichment. In Step 1,
the classical subgroup discovery, the subgroups can
be analyzed by a statistical test, like Fisher’s exact
test followed by a permutation test or alternatively by
GSEA and PAGE in the case of a gene set enrichment
application. In Step 2 the user can then choose to
contrast different time points or different phenotypes.
In Step 3, the contrasting subgroup discovery, we need
to analyze the constructed gene sets by a statistical
test, like the Fisher’s exact test. There, GSEA and
PAGE cannot be used for analyzing the constructed
gene sets since we analyze the subgroups with respect
to two classes Pc and Pc (and not with respect to the
differential expression which would provide a ranking
for GSEA and PAGE).

1http://www.geneontology.org/
2http://www.genome.jp/kegg/ko.html
3http://www.gomapman.org/
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6. EXPERIMENTS AND RESULTS

For our experiments we used a Solanum tuberosum
(potato) time labeled gene expression data set for
virus infected and non-infected plants. S. tuberosum is
severely damaged by the Potato virus Y (PVY). When
infected, the plant shows severe symptoms within one
week and dies after several weeks. Biologists aim to
understand the plants disease response by utilizing gene
set enrichment.

The data set consists of three time points: one, three
and six days after virus infection when the viral infected
leaves as well as leaves from non-infected plants were
collected. The aim is to find enriched gene sets which
are common to virus infected plants compared to non-
infected plants and at the same time specific for one or
all time points. Hence, we transform the expression
values of our four samples (four virus infected and
four non-infected plants) into a class attribute, called
differential expression, for each time point separately
(see Section 5 for details). Afterwards we have three
class attributes, one for each time point, and can apply
our proposed contrasting subgroup discovery method to
contrast the different time points.

Recently, S. tuberosum’s genome has been completely
sequenced [41], but only few GO or KEGG annotations
of S. tuberosum genes exist. However, plenty of GO
and KEGG annotations exist for the well studied
model plant Arabidopsis thaliana. Therefore, we
perform two approaches: First, we use homologs
between S. tuberosum and A. thaliana and ontologies for
A. thaliana. Second, we build S. tuberosum ontologies
using homologue sequences in the NCBI (National
Center for Biotechnology Information) and their GO
annotations. For both approaches we carried out
gene set enrichment experiments in an Orange4WS4

workflow [42].
Our interest is in assisting biologists to generate

new research hypotheses. Therefore, we evaluate our
results by counting the quantities of gene sets which
are unexpected as well as those which are useful to a
plant biologist (as in [43]). In this context, unexpected
means that the knowledge was contained in GO, KEGG
or GoMapMan, but it was not shown previously to be
related to S. tuberosum’s response to viral infection. A
gene set is useful if it is of interest for the plant biologist,
that is, the gene set description tells him something
about the virus response, and/or he might want to have
a closer look at the genes of that gene set. We compare
the results obtained by our proposed method (Step 1
to 3) to those results obtained with a classical subgroup
discovery method (Step 1).

6.1. A. thaliana homologs approach

Experimental Setting. We use homologs between
S. tuberosum and A. thaliana to make gene set

4http://orange4ws.ijs.si/

TABLE 4: Quantities of enriched gene sets found with
the classical subgroup discovery (Step 1) and with the
contrasting subgroup discovery method (Step 3) for the
A. thaliana homologs approach with Fisher (F), GSEA
(G), PAGE (P), and GSEA and PAGE combined (C).

F G P C
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) Day 1 1 0 2 0

Day 3 0 0 1 0
Day 6 1 0 0 0
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n
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a
st

-
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g
S
D

(S
te

p
3
) Day 1 set difference 6 0 0 0

Day 3 set difference 0 0 0 0
Day 6 set difference 3 0 0 0
Intersection 0 0 0 0

TABLE 5: Quantities of useful enriched gene sets
found with the A. thaliana homologs approach. For the
contrasting subgroup discovery (Step 3) only enriched
gene sets are counted that are useful as well as new or
more specific in comparison to the classical subgroup
discovery (Step 1).

F G P C
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l

S
D

(S
te

p
1
) Day 1 0 0 0 0

Day 3 0 0 0 0
Day 6 1 0 0 0

co
n
tr

a
st

-
in

g
S
D

(S
te

p
3
) Day 1 set difference 2 0 0 0

Day 3 set difference 0 0 0 0
Day 6 set difference 2 0 0 0
Intersection 0 0 0 0

enrichment analysis for S. tuberosum possible. There
are more than 26, 000 homologs for more than 42, 000
S. tuberosum genes. Gene set enrichment analysis is
performed based on expression values in the data set,
the gene IDs of the A. thaliana homologs, and GO and
KEGG annotations for A. thaliana.

We restricted gene sets to contain at minimum three
genes (min = 3) as only these are biologically relevant,
the gene set description to contain at maximum
four terms, and the p-value to be 0.05 or smaller.
For analyzing the constructed gene sets obtained by
classical subgroup discovery (Step 1) we used Fisher’s
exact test, GSEA, PAGE, and the combined GSEA
and PAGE with equal percentages. Fisher’s exact test
was used to analyze gene set enrichment obtained by
contrasting subgroup discovery (Step 3).

We considered two types of contrast classes for gene
set enrichment (Step 2). First, the intersection: genes
that are common to all classes compared to the genes
occurring in some gene sets, but not in all (obtained
by Equation 8). Second, the set differences: genes that
are specific for one class compared to the genes of the
gene sets of the other classes (obtained by Equation 9).
The choice was made by the plant biologists, who are
interested in understanding which biological processes,
pathways, etc. are active at all time points, and which
are active only at a specific time point.
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Results. The quantities of enriched gene sets found
with the A. thaliana homologs approach are shown in
Table 4. The first subgroup discovery instance (Step 1),
that is, the classical subgroup discovery method, found
only few gene sets if any at all. All gene sets that
were found for the classical subgroup discovery method
(Step 1) are described by either

protein.synthesis.ribosomal protein.

prokaryotic (GoMapMan:29.2.1.1),

more general terms of this gene set description (that is,
for example, by GoMapMan:29.2.1), or by

Plant-pathogen interaction (KEGG:04626).

As we construct the set differences and intersection
from the gene sets found in Step 1, it is no surprise that
also the second subgroup discovery instance (Step 3),
the contrasting subgroup discovery method found only
few gene sets if any at all. Some of gene sets that were
found by the contrasting subgroup discovery method
(Step 3) are more specific than those found by the
classical subgroup discovery method (Step 1). For
instance,

protein.synthesis.ribosomal protein.

prokaryotic.chloroplast.50S subunit

(GoMapMan:29.2.1.1.1.2)

is more specific than GoMapMan:29.2.1.1, which is a
term located higher in the term hierarchy. Another
example is

calmodulin-dependent protein kinase

activity (GO:0004683)

∧ signalling.calcium (GoMapMan:30.3)

∧ Plant-pathogen interaction (KEGG:04626),

where KEGG:04626 got combined with terms from other
hierarchies. This combination was not statistically
significant for the classical subgroup discovery method
(Step 1), but is for the contrasting subgroup discovery
method (Step 3), when comparing the contrast sets
constructed in Step 2.

No gene sets at all were unexpected using the
A. thaliana homologs approach. A gene set is useful
if it is of interest for the plant biologist, that is, the
gene set description tells him something about the virus
response, and/or he might want to have a closer look at
the genes of that gene set. The quantities of unexpected
enriched gene sets found using the A. thaliana homologs
approach are shown in Table 5. The only gene set that
is useful for the classical subgroup discovery method
(Step 1) is

Plant-pathogen interaction (KEGG:04626).

which covers 51 genes with a p-value ≤ 10−6. This gene
set description is expected as it describes the plant’s
defense pathway to disease infections.

Two enriched gene sets were found to be useful for
the contrasting subgroup discovery method (Step 3) on
the first day:

protein.synthesis.ribosomal protein.

prokaryotic.chloroplast

(GoMapMan:29.2.1.1.1)

which covers 28 genes with a p-value ≤ 10−6. and its
more specific variant

protein.synthesis.ribosomal protein.

prokaryotic.chloroplast.50S subunit

(GoMapMan:29.2.1.1.1.2)

which covers 22 genes with a p-value ≤ 10−6. The more
general as well as the more specific gene set description
was output as they define different gene sets. More
precisely, the gene set of the more specific description is
a subset of the gene set of the more general description.

The two enriched and useful gene sets found for the
contrasting subgroup discovery method (Step 3) on day
six are

Plant-pathogen interaction (KEGG:04626)

∧ signalling.calcium (GoMapMan:30.3)

which covers 26 genes with a p-value ≤ 10−6, and

Plant-pathogen interaction (KEGG:04626)

∧ signalling.calcium (GoMapMan:30.3)

∧ Calmodulin-dependent protein kinase

activity (GO:0004683)

which is more specific than the previous one, and
covers only 14 genes with a p-value of 0.0001. All
these gene sets are described by more specific concepts
than those found with the classical subgroup discovery
method (Step 1) and hence give the plant biologists
more detailed information.

For the intersection in Step 3 we obtained no enriched
gene sets at all. This reflects the characteristics of
a defense response: The gene expression of the first
days (when activating the defense response) differs
from the gene expression on day six (when the defense
response is active) and therefore the intersection reveals
no enriched gene sets that are active at all time points.

6.2. S. tuberosum gene ontology approach

Experimental Setting. We built S. tuberosum on-
tologies independently using Blast2GO5 to obtain ho-
mologue sequences in NCBI and their GO annotations.
Enrichment analysis is then performed using S. tubero-
sum’s gene IDs and expression values, and GO and
KEGG annotations obtained with Blast2GO.

Again, we restricted gene sets to contain at minimum
three genes (min = 3), the gene set description to
contain at maximum four terms, and the p-value to be
0.05 or smaller. For analyzing the constructed gene sets
we used the Fisher’s exact test, GSEA, PAGE, and the
combined GSEA and PAGE with equal percentages, in
Step 1, and Fisher’s exact test in Step 3. We considered

5http://www.blast2go.org/
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the same two types of contrast classes for gene set
enrichment (Step 2) as in the A. thaliana approach:
the intersection (Equation 8) and the set differences
(obtained by Equation (9).

Results. The quantities of enriched gene sets found
with the S. tuberosum gene ontology approach are
shown in Table 6. In comparison to the A. thaliana
approach we found more enriched gene sets. This has
probably the following reason: Many potato genes have
no homologs in A. thaliana or the homologs are not
known yet, but with the S. tuberosum gene ontology
approach we obtain extensive GO annotation of the
genes.

However, when using GSEA (either alone or in
combination with PAGE) to analyze the constructed
gene sets of the first subgroup discovery instances
(Step 1), that is, the classical subgroup discovery
method, only few more enriched gene sets are found.
When Fisher’s exact test or PAGE are used instead,
more enriched gene sets are found. This suggests that
especially in the S. tuberosum gene ontology approach
one of these methods should be preferred.

When PAGE is used, several enriched gene sets are
found on day six by the classical subgroup discovery
method (Step 1). Even more enriched gene sets are
found by the contrasting subgroup discovery method
(Step 3) on day six when PAGE or Fisher’s exact test
are used in Step 1. (As stated before, in Step 3 always
Fisher’s exact test is used to analyze the constructed
gene sets.) The fact that more enriched gene sets are
found on day six reflects that S. tuberosum activates the
defense response in the first days, and the full effect can
be witnessed only on day six.

Several gene sets that are known to relate to
S. tuberosum’s response to virus infection were found,
including molecular functions, biological processes and
pathways with a central role in it, such as

auxin mediated signalling pathway

(GO:0009734)

which covers 42 genes with a p-value ≤ 10−6,

fatty acid catabolic process (GO:0009062)

∧ lipid metabolism.lipid degradation.

beta-oxidation (GoMapMan:11.9.4)

which covers 17 genes with a p-value of 0.0001, and

protein.postranslational modification

(GoMapMan:29.4)

∧ protein serine/threonine phosphatase

complex (GO:0008287)

which covers 16 genes with a p-value of 0.0001.
As before, we counted the quantities of enriched gene

sets which are unexpected to a plant biologist when
using the S. tuberosum gene ontology approach (see
Table 7). In contrast to the A. thaliana approach we
found some enriched genes set that are unexpected. For

TABLE 6: Quantities of enriched gene sets found with
the classical (Step 1) and with the contrasting subgroup
discovery method (Step 3) for the S. tuberosum gene
ontology approach with Fisher (F), GSEA (G), PAGE
(P), and GSEA and PAGE combined (C).
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TABLE 7: Quantities of unexpected enriched gene
sets found with the S. tuberosum gene ontology
approach. For the contrasting subgroup discovery
(Step 3) only enriched gene sets are counted that
are unexpected as well as new or more specific in
comparison to the classical subgroup discovery (Step 1).

F G P C

cl
a
ss

ic
a
l

S
D

(S
te

p
1
) Day 1 1 2 1 2

Day 3 0 0 0 0
Day 6 0 0 0 0

co
n
tr

a
st

-
in

g
S
D

(S
te

p
3
) Day 1 set difference 0 1 4 1

Day 3 set difference 0 0 0 0
Day 6 set difference 2 1 0 0
Intersection 0 0 0 0

TABLE 8: Quantities of useful enriched gene sets
found with the S. tuberosum gene ontology approach.
For the contrasting subgroup discovery (Step 3) only
enriched gene sets are counted that are useful as well
as new or more specific in comparison to the classical
subgroup discovery (Step 1).
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the classical subgroup discovery method (Step 1) we
found unexpected gene sets only on the first day, which
all relate to the Golgi complex, such as

protein.targeting.secretory pathway.golgi

(GoMapMan:29.3.4.2)

which covers 19 genes with a p-value ≤ 10−6.
For the contrasting subgroup discovery method

(Step 3) we found unexpected gene sets for the first
and sixth day. Some of those relate also to the Golgi
complex, but were not found with the classical subgroup
discovery method (Step 1), such as
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ER to Golgi vesicle-mediated transport

(GO:0006888)

∧ vesicle coat (GO:0030120)

which covers 14 genes with a p-value of 0.0001. Other
examples of unexpected gene sets are novel when
compared to the enriched gene sets found by the
classical subgroup discovery method (Step 1). Hence,
they might reveal new research hypotheses for the plant
biologists. Examples of such gene sets are

RNA.regulation of transcription.Chromatin

Remodeling Factors (GoMapMan:27.3.44)

which covers 15 genes with a p-value ≤ 10−6,

unidimensional cell growth (GO:0009826)

which covers 7 genes with a p-value of 0.0001, or

root development (GO:0048364)

∧ hormone metabolism.auxin (GoMapMan:17.2)

which covers 5 genes with a p-value of 0.001.
As before, we also counted the quantities of gene sets

which are useful to a plant biologist when using the
S. tuberosum gene ontology approach (see Table 8).

An enriched gene set that was found by the classical
subgroup discovery method (Step 1) and is considered
useful is

protein.targeting.secretory pathway.golgi

(GoMapMan:29.3.4.2)

which covers 19 genes with a p-value ≤ 10−6. Another
example is

RNA.regulation of transcription.

WRKY domain transcription factor family

(GoMapMan:27.3.32)

which covers 30 genes with a p-value of 0.0001.
Useful gene sets found by the contrasting subgroup

discovery method (Step 3), which are novel or more
specific when compared to the classical subgroup
discovery method (Step 1) include

protein.degradation.ubiquitin.E3.SCF.FBOX

(GoMapMan:29.5.11.4.3.2)

which covers 40 genes with a p-value ≤ 10−6,

enoyl-CoA hydratase activity (GO:0004300)

which covers 7 genes with a p-value ≤ 10−6,

post-embryonic development (GO:0009791)

∧ reproductive structure development

(GO:0048608)

∧ RNA (GoMapMan:27)

which covers 21 genes with a p-value ≤ 10−6, and

ER to Golgi vesicle-mediated transport

(GO:0006888)

∧ vesicle coat (GO:0030120)

which covers 14 genes with a p-value of 0.0001. From
these four gene sets the last one is more specific while
the first three gene sets are novel when compared to the
classical subgroup discovery method (Step 1).

Note that a gene set can be either expected and not
useful, unexpected, but not useful, expected, but useful,
or both, unexpected as well as useful. Gene sets that are
expected as well as not useful might be simply described
by too general terms, such as

protein.postranslational modification

(GoMapMan:29.4)

which covers 217 genes with a p-value ≤ 10−6. A gene
set can be expected and not useful also because it is not
informative for some other reason, such as

coated vesicle membrane (GO:0030662)

which covers 27 genes with a p-value of 0.0001, but is not
informative to plant biologists as it describes a cellular
component only. An example of an enriched gene set
that is unexpected, but not useful is

organ development (GO:0048513)

∧ RNA (GoMapMan:27)

which covers 21 genes with a p-value ≤ 10−6. It is not
useful because the biological term it is too general.

Gene sets that are unexpected, useful, or both, may
contain genes that are interesting for further (tough,
time-consuming) wet-lab experiments. From the gene
sets mentioned before, an example of an enriched gene
set that is expected, but useful is

RNA.regulation of transcription.

WRKY domain transcription factor family

(GoMapMan:27.3.32)

which is expected as it is known that these proteins
have an important role in virus defense, but still
useful as it tells the plant biologist that these proteins
are differentially expressed on day six. Examples of
enriched gene sets that are unexpected and useful are

post-embryonic development (GO:0009791)

∧ reproductive structure development

(GO:0048608)

∧ RNA (GoMapMan:27)

and

ER to Golgi vesicle-mediated transport

(GO:0006888)

∧ vesicle coat (GO:0030120).

These rules combine two or more ontology terms
that have not been associated with the viral infection
response of plants (to the knowledge of the plant
biologists). Therefore, the genes covered by these
gene set descriptions are potentially interesting to the
plant biologists and might help them to generate new
hypotheses.

The Computer Journal, Vol. 00, No. 00, 0000



Contrasting Subgroup Discovery 13

As in the A. thaliana approach, we did not obtain any
enriched gene sets for the intersection in Step 3. Again,
this reflects the characteristics of a defense response:
The gene expression of the first days differs from the
gene expression on day six.

7. CONCLUSIONS

We defined the problem of contrasting subgroup
discovery. That is, the aim is to find subgroups of
objects characteristic for their class, even if the classes
are not identical. Further, we allow the user to specify
contrast classes she is interested in, for example, to
contrast several time points. We proposed to find such
subgroups by combining well-known algorithms. We
showed that our approach finds subgroups of objects
that are characteristic for their class, even if the classes
are not identical. Our results on a time series data set
for virus infected S. tuberosum (potato) plants indicate
that such subgroups can be unexpected and useful for
biologists. Studying the genes of such subgroups may
reveal new research hypotheses for biologists.

Further experimental evaluation is planned, including
an extensive evaluation of the quality of gene set
descriptions which possibly relate to S. tuberosum’s
virus response, but are unexpected for a plant biologist.
Further, we will address the redundancy of gene set
descriptions, and we will investigate how redundancy
can be avoided, or at least decreased, for example, by
rule clustering or filtering. In addition, we will evaluate
the results at the gene level, including a selection of
genes for wet-lab experiments, which will affect the
understanding of the biological mechanisms of virus
response, particularly that of S. tuberosum. Finally,
we will perform further experiments on other, non-
biological data sets and use simple as well as more
complex set theoretic functions.
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[23] Böttcher, M. (2011) Contrast and change mining. Data
Mining and Knowledge Discovery , 1, 215–230.

[24] Suzuki, E. (1997) Autonomous discovery of reliable
exception rules. Proceedings of KDD ’97 , Newport
Beach, CA, USA 14–17 August, pp. 259–262, AAAI
Press, Menlo Park, CA, USA.

[25] Webb, G., Butler, S., and Newlands, D. (2003) On
detecting differences between groups. Proceedings of
KDD ’03 , Washington, D.C., USA, 24–27 August, pp.
256–265, ACM Press, New York City, NY, USA.

[26] Hilderman, R. and Peckham, T. (2007) Statistical
methodologies for mining potentially interesting con-
trast sets. In Guillet, F. and Hamilton, H. (eds.),
Quality Measures in Data Mining , Springer-Verlag,
Berlin/Heidelberg, Germany.

[27] Azevedo, P. (2010) Rules for contrast sets. Intelligent
Data Analysis, 14, 623–640.

[28] Kralj Novak, P., Lavrač, N., and Webb, G. (2009)
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APPENDIX A. PERMUTATION TEST

Subgroup discovery methods typically evaluate a large
number of potentially interesting subgroups. It is
possible that some of them are apparently statistically
significant just by chance. To address the multiple
testing problem, that is, to control the type I error (false
positive) rates, we perform a permutation test to obtain
adjusted p-values (see, e.g., [10, 11, 12]). We randomly
permute the classes (class attribute values) and
calculate the p-value for each subgroup. We repeat this
first step for 10, 000 permutations, create a histogram
by the p-values of each permutation’s best subgroup,
and estimate the (corrected) p-value of the original
subgroups using the histogram: The corrected p-value
is the relative number of permutations, including the
original one, in which the best p-value is smaller or equal
to the original p-value. This approach returns only an
approximation of the exact p-values, which is sufficient
enough for our application, where we primarily use the
resulting corrected p-values to rank the subgroups. For
stronger statistical tests one can use a method such
as Holm’s simple sequentially rejective multiple test
procedure [13] or the FDR (false discovery rate) [14]
instead.
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