
Fast Discovery of Reliable Subnetworks

Petteri Hintsanen

Department of Computer Science

and HIIT

University of Helsinki

petteri.hintsanen@cs.helsinki.fi

Hannu Toivonen

Department of Computer Science

and HIIT

University of Helsinki

hannu.toivonen@cs.helsinki.fi

Petteri Sevon

Biocomputing Platforms Ltd.

petteri.sevon@bcplatforms.com

Abstract—We present a novel and efficient algo-
rithm, PATH COVERING, for solving the most reliable
subgraph problem. A reliable subgraph gives a con-
cise summary of the connectivity between two given
individuals in a social network. Formally, the given
network is seen as a Bernoulli random graph G, and
the objective is to find a subgraph H ⊂ G with
at most B edges such that the probability that a
path exists in H between the given two individuals

is maximized. The algorithm is based on an efficient
stochastic search of candidate paths, and the use of
Monte-Carlo simulation to cast the problem as a
set cover problem. Experimental evaluation on real
graphs derived from DBLP bibliography database
indicates superior performance of the proposed al-
gorithm.

I. INTRODUCTION

Link discovery in social networks is a research

area with numerous applications. We address the

problem of identifying a subnetwork (or commu-

nity) that connects two given persons of a large

network. This task can also be seen as information

retrieval: given two individuals, return other persons

and relations that are maximally relevant to con-

necting the given pair of individuals. Fig. 1 gives

an example of a collaboration subnetwork between

two researchers, extracted from DBLP computer

science authorship network. Applications of subnet-

works include analysis and description of potential

collaborations, discovery of hidden relationships for

instance in criminology, and description of possible

viral effects between given individuals.

We propose a novel application of Bernoulli ran-

dom graphs to the subnetwork extraction problem

on social networks. Our main contribution is a new,

Fig. 1. An excerpt from a reliable connection subgraph between
Rakesh Agrawal and Jiawei Han.

effective and efficient method for the problem. We

illustrate and experimentally evaluate the proposed

method on the DBLP network. The results indicate

superior performance over previous methods on the

same task.

Specifically, we consider the most reliable sub-

graph problem [1]. Let G be a weighted random

graph where edges have mutually independent prob-

abilities of being true. Given two nodes of G and

a budget B, the task is to extract a subgraph in

which the probability of the specified nodes being

connected is maximized, subject to the number of

edges being limited to B.

Obviously the problem is domain independent.

Other application areas with large, graph-structured

data collections include communication networks,

the web, and biological networks such as protein

interaction graphs. Search and retrieval of relevant

information from such graphs has been researched a

lot, but the majority of work has been on identifying

important nodes (such as web search results) rather

than relevant subgraphs. We will briefly review

related work in the next section.

II. PROBLEM DEFINITION AND RELATED WORK

We view a given weighted social network as

a Bernoulli random graph. In other words, we

assume a network of individuals and their relations

are given, and that relations have weights between

0 and 1. In typical applications, the weights reflect

the strength of a friendship, the relative frequency of

interaction, or the probability of influence between

individuals. The subgraph extraction task only looks

at the structure of the network, including the edge

weights, and ignores any other attributes of the

individuals or the relations.

Formally, we define the problem of finding

the most reliable subgraph following conventions

and notations from previous work [2]. Let G =
(V, E) be a graph where V is the set of nodes (e.g.

persons) and E the set of edges (relations between

persons). Further, each edge e ∈ E has an associ-

ated probability p(e): we say that relation e exists

(or is true or successful) with probability p(e), and

conversely e does not exist (or is not true or fails)

with probability 1 − p(e). Edge states are assumed

to be mutually independent, and nodes are static.

Consequently, the probability of a path P being

true is Pr(P) =
∏

e∈P p(e), that is, the probability

that all of its edges are true. Finally, given two

terminal nodes s, t ∈ V , the two-terminal network

reliability R(G) of G is defined as the probability

that s and t are connected by a path in G after all

edges in E have been randomly decided according

to their probabilities [3].

Our focus in this paper is on the most reliable

subgraph problem. In this problem we are given,

in addition to G and the terminal nodes, a positive

integer B. The task is to find a subgraph H ⊂ G
such that H has at most B edges and a maximal

reliability with respect to the terminals [1]. In other

words, we are looking for

H = arg max
H′⊂G,||H′||≤B

R(H′),

where ||H′|| denotes the number of edges in H′.

This problem, like reliability problems in gen-

eral [4], is inherently difficult. Efficient solutions are

available for restricted classes of graphs, but cases

on general graphs are most likely intractable [1].

The simple Bernoulli random graph model is a

strong tool for subgraph extraction. First, it allows

a relatively simple but elegant definition of the

strength of the overall connection (“reliability”)

between two given nodes. Second, the subgraph

extraction task then has a natural objective: choose

the subgraph so that the overall connection in

the subgraph is maximized. This guarantees that

the resulting subgraph is maximally relevant as a

whole. In other words, the best subgraph is not the

collection of best paths, much less a collection of

best bridging individuals.

Network reliability has first been applied on com-

munication networks. There, links between devices

may fail, and a network optimization task is to find a

network structure that provides maximal reliability

between given devices. Hence the name maximal

reliability [3], [5]–[8].

Extraction of subgraphs connecting user-given

query nodes has recently gained some research

interest in data mining and in various application

fields [1], [2], [9]–[14]. Some of these methods

address the most reliable subgraph problem. Kroese

et al. proposed a solution based on the cross-

entropy method [8]. It has guarantees of optimality

and a more general model with individual edge

costs. De Raedt et al. give another solution in

the setting of theory compression for ProbLog, a

probabilistic Prolog [13]. Unfortunately, both meth-

ods are computationally demanding. According to

the original publications, the running time of the

cross-entropy method on a graph with 51 links

ranged from 299 seconds to 361 minutes, depend-

ing on the exact method and its parameters [8].

ProbLog theory compression took 3–40 minutes on

graphs with 200–1,400 edges, depending on the

tolerance allowed in reliability estimates [13]. With

the method proposed in this paper, we can extract

a reliable subgraph from a graph of 10,000 nodes

and 23,000 edges in a matter of seconds.

We have previously proposed two practical algo-

rithms, BPI and SPA, for the most reliable subgraph

extraction problem [2]. BPI is based on the use

of best paths as building blocks, and SPA works

on the restricted class of series-parallel graphs.

Other closely related work includes connection

subgraphs [9], center-piece subgraphs [11], and

proximity graphs [12]. Their general motivations

and goals are similar to ours, but the underlying

models and optimization problems are different.

For connection subgraphs, the subgraph model is

taken from conductance in electric circuits, and for

center-piece and proximity subgraphs it is based

on random walks. We feel that the maximization

of the reliability is an elegant and well justified

optimization criterion for the chosen random graph

model.

Monte-Carlo sampling is an efficient approxi-

mation method for many computationally complex

problems [15], including network reliability [16].

Since we use Monte-Carlo sampling extensively,

we briefly review its basic principle here. In the

crude Monte-Carlo method for estimating network

reliability between terminals s and t, one draws N
independent samples, or realizations Gi, 1 ≤ i ≤
N , from the random graph G. Each realization

is generated by simulating the existence of each

edge of G randomly and independently. To estimate

reliability R = R(G), one counts the number K
of those realizations Gi which contain at least one

s–t-path. Then R̃ = K/N is an unbiased estimator

for R with variance R(1 − R)/N .

III. THE PATH COVERING ALGORITHM

We now propose a novel algorithm for solving

the most reliable subgraph problem. The algorithm,

called PATH COVERING (PC), builds the result

subgraph H by incrementally adding s–t-paths one

by one to an initially empty subgraph. In this

respect, the approach is similar to some previous

proposals [2], [9], [12].

This incremental approach has two fundamental

sub-problems. First, the number of possible s–t-
paths is exponential in the number of edges. Second,

evaluating the reliability of even a single subgraph

instance H could take an exponential time. The

proposed method negotiates these obstacles in two

phases, a path sampling phase and a subgraph

construction phase.

In the path sampling phase, PC gathers a rel-

atively small set C of candidate paths from the

set of all s–t-paths in G. Then, in the subgraph

construction phase, PC aims to choose an optimal

subset P of the candidate paths in C, according to

the edge budget B, and returns the subgraph G(P)
induced by P . (We say that a set of paths P induces

a graph G(P) = (V, E), where V = {u : {u, v} ∈
P, P ∈ P} and E = {e ∈ P : P ∈ P}.)

Both phases address the same general problem:

choose a subset P of available s–t-paths to induce

a reliable subgraph. Furthermore, both phases use

a similar strategy to achieve this goal by iteratively

and greedily maximizing Pr(P) = Pr(
∨

P∈P P),
that is, the probability that at least one of the paths

in P is true. The main difference is that the path

sampling phase scales to large inputs with exponen-

tially many paths, while the subgraph construction

phase produces a better optimized subgraph G(P)
with a larger computational cost per path. We give

detailed descriptions of the two phases below.

A. Phase 1: Path sampling

In the first phase of PATH COVERING, we use an

iterative strategy to construct the set C of candidate

paths efficiently. The most probable, or best, s–t-
path is used as the initial candidate path. Then we

augment C in each iteration with a path P such

that Pr(C ∨ P) is approximately maximized. Let

C denote an event where none of the paths in C
exists. Since

Pr(C∨P) = Pr(C∨(C∧P)) = Pr(C)+Pr(C∧P),

we are looking for the most probable s–t-path P
under the condition that all current paths in C
fail. We implement this idea with Monte-Carlo

simulation by randomly realizing edges in each

iteration according to their probabilities: an edge e
is decided to exist with probability p(e) and to not

exist otherwise. A cut C is found if every candidate

path has at least one edge that does not exist. Then

we can add a new s–t-path to C, if one exists.

The algorithm in Fig. 2 implements the path sam-

pling phase. It is mostly looking for a cut event C
in each of its iterations (lines 3–15). It realizes

edges during the process only when needed, and

Fig. 2. Path sampling algorithm
Input: Random graph G = (V, E), terminal nodes s and t,

number of candidate paths N
Output: Set C of s–t-paths
1: C ← the best s–t-path from G
2: Set w(e) = − log(p(e)) for all e ∈ E
3: repeat

4: Reset all e ∈ E as undecided
5: for all P ∈ C do

6: for all e ∈ P do
7: if e has not been decided then

8: Decide e as successful with probability p(e),
failed otherwise

9: if e has failed then

10: continue from line 5 with next P

11: go to 4 {P exists}
12: Find the best s–t-path P from G using edge weights w,

deciding edges as necessary
13: if P 6= ∅ then

14: C ← C ∪ P

15: until |C| = N
16: return C

applies the following two rules to avoid unnecessary

work. (1) When checking if a path exists, the rest

of the path can be ignored as soon as a failed

edge is encountered (line 10). (2) When an existing

path has been found, the remaining paths can be

ignored (line 11). When a cut C does take place,

we find a new candidate path among the non-failed

edges (line 12). Any shortest path algorithm can

be applied with edge weights w(e) = − log(p(e)).
Namely, let P be the shortest path found. Then

w(P) =
∑

e∈P

− log(p(e)) = − log(
∏

e∈P

p(e))

= − log(Pr(P)),

and since the logarithm function is strictly increas-

ing and w(P) is minimized, Pr(P) is maximized.

Edge decisions can be integrated into best path

search, too, and carried out whenever an undecided

edge is encountered. The choice of the number of

sampled candidate paths N is nontrivial. We will

return to the issue in Section IV.

A possible problem in the path sampling algo-

rithm is that cut events C are rarely found when

Pr(C) is high. In such cases the algorithm could

require unacceptably many iterations before stop-

ping. A more effective approach would be to draw

random realizations of G directly under the condi-

tion that no path in C is true. Unfortunately, given

Fig. 3. Cut sampler
1: F ← {P ∈ C : P is true}
2: while F 6= ∅ do
3: Let E(F) = {e ∈ P : P ∈ F}
4: Let e∗ = arg maxe∈E(F) |{P ∈ F : e ∈ P}|
5: Re-decide e∗ as failed
6: F ← {P ∈ F : e∗ 6∈ P}

the potential dependencies between paths in C, it is

difficult to do this exactly.

As an alternative algorithmic variant, we propose

the following approximation where we deliberately

“fail” edges of candidate paths until all candidate

paths have been broken. First, edges are realized

until all paths in C have been decided—even if some

paths are found to exist. Then, if some paths exist,

we iteratively and greedily fail the edge e which

intersects the largest number of true paths in C until

no true paths remain in C. If there are more than

one such edge, we choose the one with the smallest

probability p(e). This modification is implemented

by removing line 11 of the path sampling algorithm

(Fig. 2) and adding the cut sampler (Fig. 3) just

before line 12.

B. Phase 2: Subgraph construction

In the second phase of PATH COVERING, we

take the set C of candidate paths generated in

the first phase, choose a subset P ⊂ C having

at most B unique edges in total, and return the

subgraph G(P) ⊂ G induced by them. The objec-

tive is to choose the set P of paths such that the

reliability R(G(P)) is maximized.

Exhaustive search and evaluation of all feasible

subsets is intractable, even though the number of

candidate paths C is assumed to be relatively small.

We relax the problem by maximizing the probabil-

ity Pr(P) = Pr(
∨

P∈P P) instead. It is a lower

bound of R(G(P)) and is easier to evaluate—but

still requires exponential time in the worst case.

Therefore we resort to Monte-Carlo approximation

of probabilities. This choice also allows us to cast

the path selection task as a set cover problem.

In the path selection algorithm (Fig. 4), we

first draw N random realizations Gi of the whole

graph G(C) (line 3). Let C(P) = {i : P ∈ Gi}
be the cover set of each path P ∈ C, that is, the

Fig. 4. Path selection algorithm
Input: Set C of s–t-paths, integer B

Output: A reliable subgraph H ⊂ G(C) with at most B edges
1: P ← ∅
2: Remove all paths with more than B edges from C
3: Generate N realizations Gi of G(C)
4: For each P ∈ C, let C(P) = {i : P ∈ Gi}
5: while B > 0 ∧ C 6= ∅ do

6: Choose P ∗ = arg maxP∈C s̃(P) using (3)
7: if s̃(P ∗) = 0 then
8: go to 4
9: B ← B −w(P ∗)

10: Add P ∗ to P and remove it from C
11: Remove all paths P from C s.t. w(P) > B

12: Remove all paths Q from C s.t. P ∗ ≻ Q

13: return H = G(P)

indexes of those Monte-Carlo realizations where

P did exist (line 4). Given P = {P1, . . . , Pk},

the cover sets can be used to estimate Pr(P) ≈
|C(P1)∪· · ·∪C(Pk)|/N in O(kN) time. This is a

substantial improvement over Θ(2k) time required

for exact computation.

With cover sets, the path selection problem re-

duces to an instance of a specialized SET COVER

problem (hence the name PATH COVERING), where

the goal is to choose a set of paths P such

that |
⋃

P∈P C(P)| is maximized and ||G(P)|| ≤
B, where ||G(P)|| denotes the number of edges

in G(P). This problem differs from the ordinary

SET COVER in three ways: it does not require the

entire universe (the set of all positive realizations)

to be covered, it is weighted (via budget B), and

the weights are dynamic (different choices of paths

affect the cost of individual paths).

To solve the path selection problem, we use a

greedy approach where we add one path at a time to

an initially empty P (lines 5–12). We always choose

the best possible addition from C, until the budget B
has been exhausted. Here, “best possible” means

the one adding most Monte-Carlo realizations to the

cover per edge added to P . Formally, the cost w(P)
of a path P is the number of new edges added to

the solution subgraph G(P): w(P) = ||P \G(P)||.
The score s(P) of a path is defined as the ratio of

the improvement in probability over its cost:

s(P) =
Pr(P ∪ P) − Pr(P)

w(P)
. (1)

Note that both s and w vary in each iteration. With

cover sets, score function (1) has an estimate

s̃(P) =
|C(P) \ C(P)|

w(P)
(2)

where C(P) = |
⋃

P∈P C(P)|.
In an extreme case, the cost of a path becomes

zero if all of its edges have already been included in

the solution. As an additional optimization, we im-

plement a look-ahead to take advantage of such situ-

ations: if the addition of path P would make another

path Q ∈ C completely included in G(P), then the

cover set C(P) is extended with the cover set C(Q).
More formally, we say that P dominates Q if an

inclusion of P into P implies Q ∈ G(P), and

denote this relation by P ≻ Q. Clearly, relation ≻ is

reflexive and transitive. An improved estimate of (2)

with dominating paths is thus

s̃(P) =
|
⋃

Q∈C:P≻Q C(Q) \ C(P)|

w(P)
. (3)

At each iteration, we choose the path P with the

maximum s̃(P) of (3), and add P into P (line 6).

In (3), we assume that after adding a path P to

P , all paths dominated by P are removed from C
(line 12). During successive iterations, the enumer-

ator in (3) approaches zero as the proportion of

realizations covered by paths in P increases.

Eventually all realizations may become covered

so that s̃(P) = 0, and the choice of the remaining

paths becomes somewhat arbitrary. In these (rare)

situations our implementation “restarts” by consid-

ering all realizations uncovered (line 8) and tries to

recover them with additional paths from C as before.

In every iteration, we also remove paths that are too

expensive to be added to P (line 11).

IV. EVALUATION

In this section, we experimentally evaluate the

proposed algorithm. We study the reliability of the

extracted subgraphs and the running times, we test

different algorithmic variants and alternatives, and

we compare PATH COVERING against it closest

competitors, BPI and SPA [2].

Our data source is DBLP (http://www.informatik.

uni-trier.de/∼ley/db/), a computer science bibliogra-

phy. We converted DBLP to a bipartite graph with

2,076,911 author and publication nodes, linked by

3,293,211 edges. Edge weights were assigned as

in previous work [10] with parameters rq = 0.8
and α = 0.05. This assignment gives larger weights

to low-degree nodes. In other words, an article

with few authors indicates a stronger relationship

between its authors that a paper with many authors.

In a similar way, an author with few publications

indicates stronger similarity for the publications.

We evaluate PATH COVERING on three different

cases from DBLP, each one consisting of a pair of

well known scholars. Rakesh Agrawal (177 links

to publications in our graph) and Jiawei Han (388

links) work on similar sub-fields of computer sci-

ence. Heikki Mannila (171 links) and Mark de Berg

(157 links) in turn work on different sub-fields.

Finally, Donald E. Knuth (99 links) and Edsger

W. Dijkstra (67 links) are prominent yet unrelated

authors.

The test problems were characterized by the

test case, the source graph size and the extracted

subgraph size. The source graphs were subsets of

DBLP, ranging from 500 to 10,000 nodes, and

they were obtained specifically for each of the

test cases. Unless otherwise mentioned, the results

below are for the graphs of 1,000 nodes and roughly

2,000 edges. The extracted subgraph sizes ranged

from B = 20 to 250 edges (default value is 80).

In the experiments, PATH COVERING was run

with the following parameters. In the first phase,

we produced 2 · B candidate paths. In the sec-

ond phase, 10,000 iterations were done. The cut

sampling algorithm (Fig. 3) turned out to work

well (see below) and was used in all tests. To

control random variation, we report averages over

50 independent test runs. All reported reliability

values are estimates calculated with crude Monte-

Carlo method using 1,000,000 iterations. We report

reliabilities and running times for all three cases;

for brevity, other results we show are representative

samples.

A. Subgraph reliability

From Fig. 5 (a) we can see that a subgraph

with 100 edges almost surely connects Han and

Agrawal. Interestingly, there are only 12 author

nodes between them in the extracted subgraphs

on average, and a total of 47 distinct in-between

authors over all 50 independent runs. Fig. 1 is a

simplified excerpt of one such subgraph with 15

author nodes, where nodes are connected if the

corresponding authors have coauthored at least one

article. On the contrary, Mannila and de Berg, and

especially Knuth and Dijkstra, are less strongly

connected (Fig. 5 (d) and (g)).

Fig. 5 (a), (d), and (g) show that PC fares consis-

tently better than the previous algorithms BPI and

SPA, while being on par in efficiency (Fig. 5 (b),

(e), and (h)).

B. Scalability to large input graphs

PC scales well to large source graphs and is as

efficient as the fastest existing methods (Fig. 5 (c)).

Scalability is close to linear, which is expected:

the running time of the algorithm is dominated by

Monte-Carlo simulation, whose complexity grows

linearly with respect to the input graph size and

the number of iterations. We emphasize that the

reported running times are, for the sake of com-

parability, from unoptimized implementations. With

our optimized implementation, input graphs up to

10,000 nodes can be handled in less than 10 seconds

(results not shown).

On very large graphs, however, it is likely that the

shortest path algorithm used in the path sampling

algorithm (Fig. 2) becomes the dominating factor.

Setting a minimum acceptable probability or a

maximum path length for the shortest path might

be useful in such cases.

C. Algorithmic variants and other alternatives

The cut sampling algorithm (Fig. 3) approximates

the basic Monte-Carlo method (Fig. 2). It is efficient

under various conditions (results not shown) and

the approximation does not have a significant ad-

verse effect on the reliability of the result subgraph

(Fig. 5 (i)).

Both phases of PC try to choose an optimal set of

paths, but the first phase is constrained by the very

large number of possible paths. The additional ben-

efit of using a second phase to fine tune the result

is consistent but not huge (Fig. 5 (d)), with a clear

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200 250

R
e

lia
b

ili
ty

Subgraph size

PC
BPI

SPA

(a) Agrawal–Han

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

p
s
e

d
 t
im

e
 (

s
)

Subgraph size

PC
BPI

SPA

(b) Agrawal–Han

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

E
la

p
s
e

d
 t
im

e
 (

s
)

Input graph size (nodes)

PC
BPI

SPA

(c) Agrawal–Han

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

R
e

lia
b

ili
ty

Subgraph size

PC
BPI

SPA
Phase 1 only

(d) Mannila–de Berg

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

p
s
e

d
 t
im

e
 (

s
)

Subgraph size

PC
BPI

SPA
Phase 1 only

(e) Mannila–de Berg

 0.98

 0.985

 0.99

 0.995

 1

 0 10000

 20000

 30000

 40000

 50000

R
e

lia
b

ili
ty

Number of iterations

PC, 1000 paths
95% confidence interval

(f) Agrawal–Han

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

R
e

lia
b

ili
ty

Subgraph size

PC
BPI

SPA
PC with best paths

PC with 1000 paths

(g) Knuth–Dijkstra

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

E
la

p
s
e

d
 t

im
e

 (
s
)

Subgraph size

PC
BPI

SPA
PC with best paths

PC with 1000 paths

(h) Knuth–Dijkstra

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0 500
 1000

 1500

 2000

 2500

R
e

lia
b

ili
ty

Number of candidate paths

Cut sampler
Monte-Carlo

Best paths

(i) Knuth–Dijkstra

Fig. 5. Representative results from the experiments. Corresponding source graphs are given in the figure labels.

additional cost in computation time (Fig. 5 (e)).

Apparently, the first phase can be used alone as an

approximate but extremely efficient algorithm.

An alternative to the first phase would be to find

the k best s–t-paths instead of k sampled paths.

Indeed, in some cases using k best paths works

equally well (results not shown), but often is inferior

(see Fig. 5 (g) and (h) for examples). Additionally,

finding a large number of best paths can become

intractable, as was the case in Fig. 5 (i), where

our implementation ran out of memory after 1,000

paths.

D. Number of candidate paths in phase 1

Both phases of PC have a parameter with which

to tune the reliability/time trade-off: for the first

phase, the number of paths produced; for the second

phase, the number of Monte-Carlo realizations pro-

duced. According to our results (Fig. 5 (g) and (h)),

producing 2 · B paths seems a reasonable compro-

mise between efficiency and quality. Using 1,000

paths instead of the 40–500 paths for subgraphs

of 20–250 edges produces only marginally better

subgraphs (Fig. 5 (g)) with a significant increase

in running time (Fig. 5 (h)). As a function of the

number of paths, the reliability levels off quite soon

but does not completely stop growing (Fig. 5 (g)).

For the second phase of PC, in our experiments

the default number of iterations (10,000) seems to

be large enough to produce accurate estimates for

path score calculations (Fig. 5 (f)). Smaller numbers

of iterations have both smaller reliabilities and

larger variances. For larger numbers of iterations,

the differences are small.

V. CONCLUSIONS

Discovery of indirect links between individuals

is a central task in social network analysis. We ad-

dressed the problem of extracting a small subgraph

that connects two given individuals as strongly as

possible. By viewing a social network as a Bernoulli

random graph, the problem can be formulated as

the most reliable subgraph extraction problem. We

proposed a novel method, PATH COVERING (PC)

for solving this problem.

Experiments with bibliography data indicate that

PC improves over state of the art in the quality of

the results while being on par in scalability to large

graphs. For extreme efficiency, the first phase of

PC can be used alone to obtain good results very

fast. Future experiments include systematic tests to

find out robust parameters that perform reliably over

wide range of input graphs and query nodes, and

extensive comparisons with related algorithms.

There are many possible variants of the ap-

proaches described in this paper that could be

explored to find better solutions. For instance, the

greedy algorithm in the second phase could be

replaced with a more elaborate algorithm, such as

the branch-and-bound approach used by Koren et

al [12]. We have extended the Monte-Carlo frame-

work proposed here to handle multiple query nodes,

and the necessary modifications have been sketched

by Kasari et al [14].

ACKNOWLEDGMENTS

We thank the Biomine team for providing the

DBLP data set and associated tools. This work has

been supported by the Algorithmic Data Analysis

(Algodan) Centre of Excellence of the Academy

of Finland (Grant 118653). We also thank the

European Commission under the 7th Framework

Programme FP7-ICT-2007-C FET-Open, contract

BISON-211898.

REFERENCES

[1] P. Hintsanen, “The most reliable subgraph problem,” in
Proceedings of the 11th European Conference on Princi-

ples and Practice of Knowledge Discovery in Databases,
2007, pp. 471–478.

[2] P. Hintsanen and H. Toivonen, “Finding reliable subgraphs
from large probabilistic graphs,” Data Mining and Knowl-

edge Discovery, vol. 17, pp. 3–23, 2008.
[3] C. J. Colbourn, The Combinatorics of Network Reliability.

Oxford University Press, 1987.
[4] L. G. Valiant, “The complexity of enumeration and relia-

bility problems,” SIAM Journal on Computing, vol. 8, pp.
410–421, 1979.

[5] F. T. Boesch, A. Satyanarayana, and C. L. Suffel, “A survey
of some network reliability analysis and synthesis results,”
Networks, vol. 54, pp. 99–107, 2009.

[6] S. Kiu and D. F. McAllister, “Reliability optimization of
computer-communication networks,” IEEE Transactions on

Reliability, vol. 37, pp. 475–483, 1988.
[7] R. Jan, “Design on reliable networks,” Computers & Op-

erations Research, vol. 20, pp. 25–34, 1993.
[8] D. P. Kroese, K.-P. Hui, and S. Nariai, “Network reliability

optimization via the cross-entropy method,” IEEE Trans-

actions on Reliability, vol. 56, pp. 275–287, 2007.
[9] C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast

discovery of connection subgraphs,” in Proceedings of the

10th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, 2004, pp. 118–127.
[10] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and

H. Toivonen, “Link discovery in graphs derived from
biological databases,” in Proceedings of Data Integration

in the Life Sciences, Third International Workshop, 2006,
pp. 35–49.

[11] H. Tong and C. Faloutsos, “Center-piece subgraphs: prob-
lem definition and fast solutions,” in Proceedings of

the Twelfth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2006, pp. 404–
413.

[12] Y. Koren, S. C. North, and C. Volinsky, “Measuring and
extracting proximity graphs in networks,” in Proceedings

of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2006, pp. 245–
255.

[13] L. D. Raedt, K. Kersting, A. Kimmig, K. Revoredo,
and H. Toivonen, “Compressing probabilistic Prolog pro-
grams,” Machine Learning, vol. 70, pp. 151–168, 2008.

[14] M. Kasari, H. Toivonen, and P. Hintsanen, “Fast discovery
of reliable k-terminal subgraphs,” in Proceedings of the

14th Pacific-Asia conference on knowledge discovery and

data mining, 2010, pp. 168–177.
[15] R. M. Karp, M. Luby, and N. Madras, “Monte-Carlo ap-

proximation algorithms for enumeration problems,” Jour-

nal of Algorithms, vol. 10, pp. 429–449, 1989.
[16] G. S. Fishman, “A comparison of four Monte Carlo meth-

ods for estimating the probability of s-t connectedness,”
IEEE Transactions on Reliability, vol. R-35, pp. 145–155,
1986.

