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Abstract. One of the basic problems in knowledge discovery in databases (KDD) is the following: given a data
setr, a classC of sentences for defining subgroups pand a selection predicate, find all sentences déemed
interesting by the selection predicate. We analyze the simple levelwise algorithm for finding all such descriptions
We give bounds for the number of database accesses that the algorithm makes. For this, we introduce the conc
of the border of a theory, a notion that turns out to be surprisingly powerful in analyzing the algorithm. We also
consider the verification problem of a KDD process: giveand a set of sentencé&sC L, determine whethe$

is exactly the set of interesting statements alolWe show strong connections between the verification problem
and the hypergraph transversal problem. The verification problem arises in a natural way when using sampling
speed up the pattern discovery step in KDD.

Keywords: theory of knowledge discovery, association rules, episodes, integrity constraints, hypergraph
transversals

1. Introduction

Knowledge discovery in databases (KDD), also called data mining, has recently receive
wide attention from practitioners and researchers. There are several attractive applicatic
areas for KDD, and it seems that techniques from machine learning, statistics, and databas
can be profitably combined to obtain useful methods and systems for KDD. See, e.g., Fayye
etal. (1996), and Piatetsky-Shapiro and Frawley (1991) for general descriptions of the are

The KDD area is and should be largely guided by (successful) applications. Still, the-
oretical work in the area is needed. In this paper we take some steps towards theoretic
KDD. We consider a KDD process in which the analyzer first produces lots of potentially
interesting rules, subgroup descriptions, patterns, etc., and then interactively selects tt
truly interesting ones from these. In this paper we analyze the first stage of this proces:
how to find all the potentially interesting rules in the database.

The intuitive idea behind this work is as follows. A lot of work in data mining can be
formulated in terms of finding all rules of the form

if ¢ thend,
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wherep andd are possibly quite complex conditions from a predefined and potentially large
set of pattern£. The interpretation of such a rule is that in most cases wpeygplies to
the data, alsé applies. Examples of cases where this formulation applies are the discovery
of association rules, episode rules, and integrity constraints in relational databases.

The crucial observation is that typically in these data mining tasks the rule can only be
interesting if there are sufficiently many occasions in which the rule applies: we are no
interested in rules that talk about only a few cases. Then the task of finding all rules of the
above form can be solved by locating all conditions from the cfagsat apply frequently
enough; we call such conditiofiequent Once frequent conditions are known, computing
the confidences of the rules is simple.

How can we, then, find all frequent conditions? Suppose that the conditions in the
class. are built from some primitive conditions using conjunction. Then the frequency of
occurrence is non-increasing with the number of conjuncts. We can therefore first searc
for frequent conditions with one conjunct, then build two-conjunct conditions from these,
etc.; that is, we can proceed in the partial order of the conditions in a levelwise manner.

This argumentation can be generalized as follows. We want to find all rules of the form
“if ¢ thend”, whereg andé are from£L. Additionally, we require that the conditignmust
define an interesting subgroup of the data or otherwise be relevant. We assume there is
way of determining whethey satisfies this demand, which might depend on the frequency
of the condition, as above, or on some additional factors. Assume additionally that ther
is a partial orderx between conditions such thatdf< ¢ and the conditiorp defines an
interesting subgroup, thehalso defines an interesting subgroup. If such a partial order
exists, then we can simply start from the minimal elements of this order. If any conditions
are frequent, then the minimal ones must be. We can then work our way up levelwise in th
partial ordering relation, evaluating the frequency of a condition only if all elements below
it are indeed frequent.

This simple breadth-first or levelwise algorithm has actually been studied in various forms
in machine learning literature. From a machine learning viewpoint, the algorithm might be
called trivial. Our emphasis is, however, on investigating the problem of finding all rules,
not just a single rule with high predictive power. The algorithm can be shown to be optimal
in this respect under some conditions, and it performs quite well in practice.

In this paper we give a framework for the discovery of all patterns from a given class of
conditions. We demonstrate how instantiations of the levelwise algorithm have been an
can be used in several KDD applications. We also analyze the computational complexit
of this algorithm. Given a collectio§ of frequent conditions, the border &fis the set of
all conditions that are “just offS or “justin” S, i.e., conditions such that all the conditions
preceding them in the partial order are indeed frequent, and such that those succeeding the
are not. The concept of border turns out to be useful in analyzing the levelwise algorithm
and it also has some nice connections to hypergraph transversals. We also discuss a gen:
algorithm for the use of sampling in locating all frequent rules. Our results are nottechnically
difficult, but they show some interesting connections between KDD algorithms for various
tasks.

The rest of this paper is organized as follows. The levelwise algorithm is presented ir
Section 2. Section 3 gives examples of the applicability of the algorithm in various KDD
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tasks: association rules, episode rules, and integrity constraints in relational databases. T
computational complexity of the algorithm is studied in Section 4, where we also introduce
the concept of border.

In Section 5 we consider using an initial guess for the collection of interesting sentences
e.g., from a sample, to speed up the discovery. This leads to the verification problem ac
dressed in Section 6: given a data collection and & s#tsentences, determine whetkfer
is exactly the set of interesting sentences. We show strong connections between the veri
cation problem and the hypergraph transversal problem. Section 7 is a short conclusion.

2. The levelwise algorithm for finding all potentially interesting sentences

Formally, the task of finding all potentially interesting sentences can be described as follows
Assume a databasea languageC for expressing properties or defining subgroups of the
data, and aelection predicate gre given. The predicatgis used for evaluating whether a
sentence € L defines a potentially interesting subclass .of he task is to find the theory

of r with respect tof andq, i.e., the seTh(L,r,q) = {¢ € L | q(r, ¢) is trug.

Example Given a relatiorr with n rows over binary-valued attributd® anassociation
rule (Agrawal et al., 1993) is an expression of the fokm= A, whereX € RandA € R.
The interpretation of the rule is that those rows ithat have value 1 for the attributes
in X, also tend to have value 1 for the attribude Formally, denoting (X) =1 if and
only if row t er has a 1 in each columA € X, we define thdrequency f(X) of X to be
{t e r | t(X) = 1}|/n. The frequency of the rul¥ = Aisfr(XU{A}), and the confidence
of the rule isfr(X U {A}) /fr (X).

All rules with frequency higher than a given threshold can be found effectively by using a
simple algorithm for finding all frequent sets. A s€tC Ris frequent if fr(X) exceeds the
given threshold. Several algorithms for finding frequent sets have been presented (Agraw
etal., 1993, 1996; Fukuda et al., 1996; Han and Fu, 1995; Holsheimer et al., 1995; Houtsmm
and Swami, 1993; Park et al., 1995; Savasere et al., 1995; Srikant and Agrawal, 1995, 199
Toivonen, 1996).

The problem of finding all frequent sets can be described in our framework as follows.
The description languagé consists of all subsetX of elements ofR. The selection
predicateq(r, X) is true if and only iffr(X) > min_fr, wheremin_fr is the frequency
threshold given by the user.

In the above example the languagés a very limited slice of all potential descriptions
of subsets of the original data set: we can only define subsets on the basis of positiv
information.

In our general framework we are not specifying any satisfaction relation for the sentence
of L inr: this task is taken care of by the selection predicatd-or some applications,
q(r, ¢) could mean thap is true or almost true im, or thaty defines (in some way) an
interesting subgroup of The roots of this approach are in the usdiaframsof models in
model theory (see, e.g., Chang and Keisler, 1973). The approach has been used in varic
forms, for example in (Agrawal et al., 1996; De Raedt and Bruynooghe, 1993; De Raed
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and [Zeroski, 1994; Kietz and Wrobel, 1992; Kloesgen, 1995; Mannila aataR1986).
One should note that in contrast with, e.g., De Raedt and Bruynooghe (1993), our emphas
is on very simple representation languages.

Obviously, if £ is infinite andq(r, ¢) is satisfied for infinitely many sentences, (an
explicit representation offh(Z, r, g) cannot be computed. For the above formulation to
make sense, the languagéhas to be defined carefully.

In this paper we analyze a simple levelwise algorithm for computing the collection
Th(L,r,q). As already done by Mitchell (1982), we use a specialization/generalization
relation between sentences. (See, e.g., Langley (1996) for an overview of approaches
related problems.) Apecialization relatioris a partial order on the sentences ifi. We
say thatp is more generathané, if ¢ < 0; we also say that is more specifithang. The
relation=< is amonotone specialization relatiomith respect tay if the selection predicate
g is monotone with respect tg, i.e., for allr and¢ we have the following: ifj(r, ¢) and
y < ¢, thenq(r, y). In other words, if a sentengesatisfiesy, then also all less special
(i.e., more general) sentencegssatisfyq. In the sequel we assume thatis a monotone
specialization relation. We writg < 0 for ¢ < 6 and notd < ¢. We assume that the
minimal elements ofl under=< can be located efficiently.

Example Continuing the previous example, consider two descripioasdd of frequent
sets, wher@ = X andd = Y, andX,Y C R. Thenwe have < # ifand only if X C .

Typically, the relationx is (a restriction of ) the semantic implication relationipif< 9,
then® = ¢, i.e., for all databases if r = 0, thenr = ¢. If the selection predicate
g is defined in terms of statistical significance or something similar, then the semantic
implication relation is possibly not a monotone specialization relation with respgctao
more specific statement can satigfyeven when a general statement does not. (It has been
pointed out (Brin et al., 1997) that the? test statistic is monotone on binomial data.)

Consider a sef of sentences and a selection prediagtior which there is a monotone
specialization relation<. Sinceq is monotone with respect tg, we know that if any
sentences more general thap is not interesting, thep cannot be interesting. One can
base a simple but powerful generate-and-test algorithm on this idea. The central idea is:
start from the most general sentences, and then to generate and evaluate more and m
special sentences, bhuttto evaluate those sentences that cannot be interesting given all the
information obtained in earlier iterations (Agrawal et al., 1996); see also Langley (1996),
and Mitchell (1982). The method is given as Algorithm 1.

Algorithm 1. Thelevelwise algorithnior finding all potentially interesting sentences.
Input: A database, alanguag& with specialization relatior, and a selection predicage
Output: The setZh(Z, r, q).

Method:

1. Ci1:={p € L |thereisnogy in £ suchthat < ¢};

2. i:=1

3. whileC # @ do

4. // evaluation: find which sentences@fsatisfyq:
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5 Fi={pellar, o}

6. // generation: computé 1 C L usinglJ;; Fj:

7. Ciii={peL|foraly <¢wehavey € ;. Fi}\ U, Cj;
8 i=i+1

9. od

10. outputJ;_; Fj;

The algorithm works iteratively, alternating betwexamdidate generatioandevaluation
phases. First, in the generation phase of an iterati@ncollectionC; of new candidate
sentences is generated, using the information available from more general sentences. Tt
the selection predicate is evaluated on these candidate sentences. The caheutithn
consist of those sentencegirthat satisfyg. Inthe nextiteratiom+ 1, candidate sentences
in Ci 1 are generated using the information about the senten¢gsin;. The algorithm
starts by constructing; to contain all the most general sentences, i.e., the sentences
such that there is no sentengavith y < ¢. The iteration stops when no more potentially
interesting sentences can be found. In the end the potentially interesting sentences &
output.

The algorithm aims at minimizing the amount of database processing, i.e., the number c
evaluations of] (Step 5). Note that the computation to determine the candidate collection
(Step 7) does not involve the database. For example, in computations of frequent sets f
association rules Step 7 uses only a negligible amount of time (Agrawal et al., 1996).

The following lemma is immediate.

Lemma l. Assumel is alanguager is a databasgq is a selection predicat@and < is
a specialization relation. Then Algorithincomputesh(Z, r, q) correctly.

For Algorithm 1 to be applicable, several conditions have to be fulfilled. The langliage
and the selection predicate have to be such that the sid(df, r, q) is not too big. Recall
that all sentences iih(L, r, ) are probably not interesting to the usé@h(L, r, ) will
be pruned further using, e.g., statistical significance or other criteria (Klemettinen et al.
1994). But7h(L, r, ) should not contain hundreds of thousands of useless sentences.

3. Examples

Next we look at the applicability of the algorithm by considering some examples of KDD
problems.

Example For association rules, the specialization relation was already given above. The
algorithm performs at mo&t+ 1 iterations of the loop, i.e., it reads the datablasel times,
wherek is the size of the largest subsetsuch thafr (X) exceeds the given threshold. See
Agrawal et al. (1996), Han and Fu (1995), Holsheimer et al. (1995), Park et al. (1995),
Savasere etal. (1995), and Srikantand Agrawal (1995) for various implementation method:
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Example Strong rules(Piatetsky-Shapiro, 1991) are database rules of the fidtrrax-
pressionthen expressionwhere the expressions are simple conditions on attribute values.
For instance, the rule

if A<40thenB=1

holds in arelatiom, if on every rowt € r the value of attribut® is 1 whenever the value of
attribute A ont is less than 40. Such rules can be found using the above algorithm. Severs
choices of the specialization relation are possible, and the number of iterations depends «
that choice.

Example Consider the discovery of all inclusion dependencies that hold in a given
database instance (Kantola et al., 1992; Knobbe and Adriaans, 1996; Mannilaihéd R”
1992a). Given a database scheRyaan inclusion dependencgver R is an expression
R[X] € §Y], whereR and S are relation schemas &, and X andY are equal-length
sequences of attributes Bfand S, respectively, that do not contain duplicates.

Suppose is a database ov&, and letr ands be the relations correspondingands,
respectively. Consider the inclusion dependeREX] C §Y], whereX = (A4, ..., An)
andY = (By, ..., By). The inclusion dependendyoldsin r if for every tuplet € r there
exists a tupleg’ € s such thatt[A;] = t'[B;j] for 1 < i < n. An inclusion dependency
R[X] € JY]is trivial, if R= SandX =Y.

The problem of finding inclusion dependencies is the following. Given a database schem
R and a databaseoverR, find all nontrivial inclusion dependencies that hold inThus,
the languagé consists of all nontrivial inclusion dependencies, and the selection predicate
g is simply the satisfaction predicate. We could also allow for small inconsistencies in the
database by defining(r, R[X] € §Y]) to be true if and only if for at least a fraction of
of the rows ofr there exists a row of with the desired properties.

This KDD task can be solved by using the levelwise algorithm. As the specialization
relation we use the following: fop = R[X] € §Y]andd = R[X'] € S[Y’], we have
p <6onlyif R=R,S= S, and furthermoreX’ = (Ag, ..., A),Y = (By, ..., By,
and for some disjoint, ..., inh € {1, ..., Kk} withh < kwe haveX = (A;,,..., A,),Y =
(Bi,, ..., Bi,).

The number of iterations will then be at most one plus the number of attributes in the
attribute list of the longest nontrivial inclusion dependency that holds in the database.

Example Consider the problem of discovering frequent episodes in sequences of event
(Mannila et al., 1995, 1997). Aepisodds a collection of events that occur within a time
interval of a given size in a given partial order. Once such episodes are known, one can als
produce rules for describing or predicting the behavior of the sequence.

Formally, an episode = (V, <, g) is a set of node¥, a partial ordex< onV, and a
mappingg:V — E associating each node with an event typ&inThe interpretation of
an episode is that the eventgj(V ) have to occur in the order describedy Figure 1(a)
depicts a sequence of events and figure 1(b) two episodes that occur several times in t
sequence. Episode contains two eventsA and B, but does not specify any order for
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Figure 1L (a) An event sequence; (b) two episodes.

them. Episod® contains additionally an evefit, and states thal must occur after both
AandB.

The task is to discover all episodes whose frequency exceeds a given thneshdid
Given a window widttwin, the frequency op in a given event sequen&s defined as the
fraction of windows of lengthvin on Sthat contain an instance ¢f

The discovery of all frequent episodes can be solved with the levelwise algorithm. For the
specialization relatior we can use the following: fop = (V, <, g) andd = (V’, <, d)
we havep < 0, ifand only if (1)V <€ V/, (2) for allv € V, g(v) = d'(v), and (3) for all
v, w € V with v < w alsov <’ w. The relationp < 6 holds, for instance, for the episodes
in figure 1(b).

The next example shows a case in which the levelwise algorithm does not work very well

Example Given a relatiorr over attributesR, afunctional dependendg an expression
X — B, whereX € RandB € R. Such a dependency is true in the relatioif for all
pairs of rowst, u € r we have: ift andu have the same value for all attributesXn then
they have the same value fBr For various algorithms for finding such dependencies, see
Bell (1995), Mannila and Rihd (1992a, 1992b, 1994), and Pfahringer and Kramer (1995).

Functional dependencies with a fixed right-hand €d=n be found using the levelwise
algorithm by considering the set of sentenf¥g X C R} and a selection predicadesuch
thatq(r, X) is true if and only ifX — B holds inr. The specialization relation is then the
reverse of set inclusion: fok andY we haveX < Y ifand only if Y € X. The selection
predicate is monotone with respectto

In applying the levelwise algorithm we now start with the sentences with no generaliza-
tions, i.e., from the sentend® and the number of iterations is at most1R \ X|, where
X is the smallest set such thdt— B holds inr. In this case for a larg® there will be
many iterations, even though the answer might be representable succinctly.

One can avoid this problem by shifting the focus from the (minimal) left-hand sides of true
functional dependencies to the (maximal) left-hand siddalséfunctional dependencies,
and by searching for all of those, starting from the empty set. However, even in this case
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can happen that many iterations are necessary, as there can be a large set of attributes
does not derive the given target attribute.

4. Complexity of finding all sentences satisfied by

Our basic task is to find the s&h(LZ, r, q) of all sentences froni that satisfy the selection
predicateg. We want to analyze the complexity of this task, concentrating especially on
the number of evaluations gf The size offh(L, r, q) is one indicator of the complexity
of the task: one could assume that a bigAetLZ, r, q) would be more difficult to locate
than a smaller one. To certain extent this is true, but it turns out that the sixg 6fr, q)
is not the only influential factor. Also, the number of elements in the bordéh¢f, r, q)
has an influence on the running time of the levelwise algorithm and also on the inheren
complexity of the task.

Consider a sef of sentences from such thatS is closed downwards under the relation
<,l.e. ifp € Sandy < ¢,theny € S. TheborderBd(S) of S consists of those sentences
¢ such that all generalizations gfare inS and none of the specializations pfis in S.
Those sentencesin Bd(S) that are inS are called thgositive bordei3d* (S), and those
sentences in Bd(S) that are not inS are thenegative borde3d~(S). In other words,
the positive border consists of the most specific sentencg¢denoted by “S” in Mitchell,
1982), and the negative border consists of the most general sentences that ar§:not in
Bd(S) = Bd™(S) U Bd=(S), where

BdT(S) = {p € S| forall§ e L with ¢ <6, we haved & S}
and
Bd™(S)={pe L\S|forall y € Lwithy < ¢, we havey € S}.

A setS C Lthatis closed downwards can be described by giving just the positive or the
negative border. Consider, e.g., the negative border: no patsroh thaty < 6 for some
¢ in the negative border is ifi, while all other patterns are ifl.

Atheory7h(L, r, q) is always closed downwards with respect to a specialization relation,
and the concept of border can be applied on the set of all patterns that gatisfy

Example Considerthe discovery of frequent sets with attribiRes {A, ..., F}. Assume
the collection7h of frequent sets is

Th = {{A}, {B}, {C}, {F}, {A, B}, {A,C}L {A, F}, {C, F}. {A,C, F}}.
The positive border of this collection contains the maximal frequent sets, i.e.,

Bd*(7h) = {{A, B}, {A,C, F}}.
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The negative border, in turn, contains sets that are not frequent, but whose all subsets &
frequent, i.e., minimal non-frequent sets. The negative border is thus

Bd~(7Th) = {{D}, {E}. {B, C}. {B, F}}.

Example Consider the class of totally ordered episodes, and denote an epgisede
(V, <, 9) by the corresponding sequengh, ..., Ay,) of events, i.e., for alk in V we
haveg(xj) = A and foralli, 1 <i < |V|we havex; < Xj1.

Assume that the 28 episodes that are subsequences of episodes

{(C,F, A), (F, A,D), (A, D,B,C), (D, B,C, F)}

are frequent. In other words, the given episodes are the maximal frequent ones, and co
stitute the positive border of the collection of all frequent episodes. In the negative borde
we have the minimal non-frequent episodes:

{(E), (A, F), (B, A), (B, D), (C, B), (C, D), (D, A), (F, B), (F, C)}.

Using the notion of negative border, step 7 of Algorithm 1 can be written as

Ciy1 = Bd~ (Uf,») e

j<i j<i

In other words, the candidate collection is the negative border of the interesting sentence
found so far. However, those sentences of the negative border that have already be
evaluated, i.e., the previous candidates, are excluded.

Example Consider the discovery of frequent sets in a random relation over 20 attributes
where the probability that a cell has value Dis= 0.2 for all cells. In such relations the size

of the border seems to be roughly 2 to 4 times the number of frequent sets. Table 1 preser
the sizes of the theory and its positive and negative borders in experiments with two randor
relations, withp = 0.2 andp = 0.5, and with 1000 rows. Note that the sizes of the theory
and its border are determined by the nature of the data rather than by the number of row:

The collection3d(7h) can be small for a large theofh. An experiment with frequent

sets in areal database gave the following results. We discovered all frequent sets in a cour

Table 1 Experimental results with random data sets.

p min_ fr |Th| |BdT (7Th)| |Bd~ (7h)|
0.2 0.01 469 273 938
0.2 0.005 1291 834 3027
0.5 01 1335 1125 4627

0.5 0.05 5782 4432 11531
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Table 2 Experimental results with a real data set.

min_ fr |7h| |Bd*(7h)| |Bd~ (Th)|
0.08 96 35 201
0.06 270 61 271
0.04 1028 154 426
0.02 6875 328 759

enrollment database where there is a row per student, a column per each course offere
and a row has value 1 in a column if the corresponding student took the correspondin
course. There are 127 courses, and a student has taken 4.3 courses on average; the nur
of students is 4734. Table 2 shows that the size of the border behaves nicely with respe
to the size of the theory.

The concept of negative border is useful in analyzing the levelwise algorithm.

Theorem 1. Algorithmluseg7h(Z,r,q)UBd—(7h(L, r, q))| evaluations of the selec-
tion predicate q.

The proof is again immediate. Next we consider the problem of lower bounds for the
computation offh(Z, r, q). Some straightforward lower bounds for the problem of finding
all frequent sets are given in Agrawal et al. (1996).

The main effortin finding the theofh(L, r, q) is in the evaluation of predicatgagainst
the database. Thus we consider the following model of computation. Assume the only wa:
of getting information from the database is by asking questions of the form

Is-interesting Is the sentence potentially interesting, i.e., doegr, ¢) hold?
Note that Algorithm 1 falls within this model of computation.

Theorem 2. Any algorithm that computesh(L, r, q) and accesses the data using only
Is-interesting queries must use at lefg8t(7h(L, r, q))| queries.

We omit the proof, since in Theorem 4 we show thdt(7h(L, r, q))| queries are
necessary already for the verification of the result.

This result gives as a corollary a result about finding functional dependencies that ir
the more specific setting was not easy to find (Mannila aathd&®"1992a, 1992b). For
simplicity, we present the result here for the case of finding keys of a relation. Given a
relationr over schema, akeyof r is a subseX of R such that no two rows agree ¢t
Note that a superset of a key is always a key, andXhatY if and onlyY C X.

Corollary 1 (Mannila and Raiha, 1992b). Given a relation r over schema, Rnding
the minimal keys that hold in r requires at ledstAX (r)| evaluations of the predicatds
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X a key, whereMAX (r) is the set of all maximal subseis.r.t. set inclusiomof R that do
not contain a key.

The drawback of Theorem 2 is that the size of the border of a theory is not easy tc
determine. We return to this issue in Section 6, and show some connections between th
problem and the hypergraph transversal problem.

Next we make some remarks about the complexity of evaluation of the selection predicat
g. Forfindingwhetheraset C Risfrequent, alinear pass through the database is sufficient.
To verify whether an inclusion dependenRfX] € Y] holds, one in general has to sort
the relations corresponding to schenkand S; thus the complexity is in the worst case
of the orderO(nlogn) for relations of sizen. Sorting of the relatiom is also required for
verifying whether a functional dependeny— B holds inr.

The real difference between finding association rules and finding integrity constraints is
however, not the difference between linear @¢hlogn) time complexities. In finding
association rules one can in one pass through the database evaluate the selection predi
simultaneously on several sets, whereas to evaluate the truth of a set of integrity constrair
requires in general as many passes through the database as there are constraints.

5. The guess-and-correct algorithm

Algorithm 1 starts by evaluating the selection predicpba the most general sentences, and
moves gradually to more specific sentences. As the specialization relation is assumed to |
monotone with respect g, this approach is safe in the sense that no statement satisfying
g will be overlooked. However, the approach can be quite slow, if there are interesting
statements that are far from the bottom of the specialization hierarchy, i.e., if there ar
statements that turn out to be interesting, but which appear in the candidat® saty for
alarge . As every iteration of the outermost loop requires an investigation of the database
this means that such sentences will be discovered slowly.

An alternative is to start the process of findilg(Z, r, q) from an initial guesss C L,
and then correcting the guess by looking at the database. The guess can be obtained, e
from computing the sefh(L, s, q), wheres C r is a sample of. Algorithm 2 is the
guess-and-correct algorithfior computingZh(Z, r, q).

Algorithm 2. Theguess-and-correct algorithfor finding all potentially interesting sen-
tences with an initial guess.

Input: A database, a language® with specialization relatiorx, a selection predicaig,
and an initial guess C £ for 7h(L, r, ). We assumé is closed under generalizations.
Output: The set7h(L, r, ).

Method:

1. &=0

2. // correctS downward:
3. C:=Bd"(S);

4. whileC # ¢ do

5. E:=EUC;
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6. S =8\{peC|q(,q)isfalsg;

7. C = Bd+(S)\&;

8. od

9. //nowS C 7h(L,r, g); expandS upwards:
10. C:=Bd(S)\¢;

11. whileC # ¥ do

12. E:=EUC;

13. S =8SU{peC|q(r,e)istrug;
14, C:=Bd (S\E;

15. od;

16. outputs;

The algorithm first evaluates the sentences in the positive b@die¢S) and removes

from S those that are not interesting. These evaluation and removal steps are repeated ur
the positive border only contains sentences satisfyjraind thus we hav&€ < 7h(Z, r, q).
The variable€ is used to avoid evaluating sentences twice. Then the algorithm expands
S upwards, as in the original algorithm: it evaluates such sentences in the negative bordk
Bd~(S) that have not been evaluated yet, and adds those that gatisfg. Again, the
algorithm repeats the evaluation and addition steps until there are no sentences to evalua
Finally, the output isS = 7h(L, r, Q).

The following results are again straightforward, and the hence the proofs are omitted.

Lemma 2. Algorithm2 works correctly.

Theorem 3. Algorithm?2 uses at most
|(SATh) U Bd(7h) U Bd* (S N Th)|

evaluations of gwhere7h = 7h(L, r, Q).

How to obtain good original guess&&® One fairly widely applicable method is sam-
pling. Take a small samplefrom r, computeZh(L, s, q) and use it asS. For finding
frequent sets one can show that sampling produces very good approximations (Toivone
1996). In Toivonen (1996) sampling is applied in finding an upper approximatioh
Th(L,r,q), i.e., a collectionS such that7h(L,r,q) C S and such tha§ is not unnec-
essarily large. Given sucH, evaluating only the first half of Algorithm 2 suffices, and
that can be implemented with a single pass over the database. There is, however, a sm
probability that the sample is skewed a®iés not a superset &h(L, r, q); then the second
half of Algorithm 2 is executed in another database pass.

Another method for computing an initial approximation can be derived from the algorithm
of Savasere et al. (1995). The idea is to dividieto small datasets which can be handled
in main memory, and to compu& = 7h(L, ri, g). In the case of frequent sets, use as the
guessS the union_J; Si; in the case of functional dependencies, usé @ise intersection
()i Si- In both cases, the guess is a supersétgf_, ri, q), and executing the first half of
the guess-and-correct algorithm suffices.
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6. The verification problem

Consider the following idealized statement about the guess-and-correct method. Assun
somebody gives us, r, g, and a sef§ C £, and claims thaf = 7h(Z, r, g). How many
evaluations of] do we have to do to check this claim? The following result shows that the
border concept is crucial also here.

Theorem 4. Given/Z, r, q, and a setS C £, determining whethe§ = 7h(L,r, Q)
(1) requires in the worst case at leg#ld(S)| evaluations of gand(2) can be done using
exactly this number of evaluations of q.

Proof: We show that it is sufficient and in the worst case necessary to evaluate the bor
derBd(S). The claims follow then from this.

First assume that the sentences in the border are evaluated. If and only if every senten
in Bd*(S) and no sentence i8d~(S) is satisfied byg, thenS = 7h(Z,r, q), by the
definition of the border. IfS and7h(L, r, g) do not agree on the border, then clearly
S #7Th(L,r,Qq).

Now assume that less th&id(S)| evaluations have been made; then there is a sentence
¢ in the border3d(S) for which g has not been evaluated. If all evaluations have been
consistent with the clainé = 7h(L,r, q), there is no way of knowing whether is in
Th(L, r, q) or not. The satisfaction of other sentences gives no information gbaimce
they were consistentwith = 7h(£, r, q) andy is in the border, all more general sentences
satisfyq by the definition of border, none of the more special sentences does, and the re:
are irrelevant with respect . In other words, any sentence in the negative border can
be swapped to the positive border, and vice versa, without changing the tmifloiofny
other set. O

The same argumentation can be used to prove Theorem 2.

Example Given a relatiom over{A, B, C, D}, assume th&tA, B} and{A, C} and their
supersets are the only keysrofTo verify this we check the séd(S) for

S={X<C{A B,C,D}|{A B} < Xor{A, C} C X}.

(Recall that for this cas® < Y if and only if Y € X.) The positive border consists of the
given minimal keys, i.e.,

Bd*(S) = {{A, B}, {A, C}},
and in the negative border we have sets such that all their proper supersets are keys, i.e.
Bd™(S) = {{A, D}, {B, C, D}}.

We thus have to check whether the spts B}, {A, C}, {A, D}, and{B, C, D} are keys
ofr.
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We next relate the verification problem to hypergraph transversals. For this, we nee
some definitions.

Let £ be the languagex a specialization relation, an& a set; denote by (R) the
powerset ofR. A function f : £ — P(R) is arepresentation of. (and <) as setsif f is
one-to-one and surjective, and its inverse are computable, and for@thnd6 we have
¢ < 0ifandonlyif f(p) C f(09). Frequent sets, functional dependencies with fixed right-
hand sides, and inclusion dependencies are easily representable as sets; the same hold:
(monotone) DNF or CNF formulae.

A collection’H of subsets oR is a implg hypergraph(Berge, 1973), if no element of
Hisempty and ifX, Y € HandX € Y imply X =Y. The elements df are called the
edgeof the hypergraph, and the elementdbdire theverticesof the hypergraph. Given a
simple hypergrapit on R, atransversal Tof H is a subset oR intersecting all the edges
of H, thatis, T N E # @ forall E € H. Transversals are also calleitting sets A minimal
transversalbf H is a transversal such that ndl'’ c T is a transversal. The collection of
minimal transversals df{ is denoted b&r (H). It is a hypergraph ofR.

Now we return to the verification problem. Givénc L, we have to determine whether
S = 7h(L,r, q) holds using as few evaluations of the predicgi@s possible. Givers,
we can comput#d™(S) without looking at the data at all: simply find the most special
sentences is. The negative borddsd~(S) is also determined b, but finding the most
general sentences ih\ S can be difficult. We now show how minimal transversals can be
used in the task.

Consider first the special case of frequent sets. Let the attribufeb@the vertices and
thecomplementsf the sets in the positive border be the edges of a simple hypergtaph
So, for each seX in the positive border we have the $et, X as an edge ift{. Consider
now a sety C R. If there is an edg® \ X such thaty N (R\ X) = ¢, thenY C X, and
Y is frequent. On the other hand, if there is no such edge that the intersection is empt
thenY cannot be frequent. That i¥,is not frequent if and only i¥ is a transversal of{.
Minimal transversals are now the minimal non-frequent sets, i.e., the negative border.

Generalizing, assume th@t, R) representg as sets, and consider the hypergrafits)
on R containing as edges the complements of ddig) for ¢ € Bd™(S): H(S)={R\
f(p) | ¢ € Bd*(S)}. ThenTr (H(S)) is a hypergraph o, and hence we can apply?*
toit: f~1(7r (H(S)))={f1(H)|H e Tr (H(S))}. We have the following result.

Theorem 5. f~1(7r (H(S))) = Bd—(S).

Proof: We prove the claim in two steps. First we show that aXé&t R is a transversal
of H(S) if and only if f~3(X) ¢ S:

X is a transversal of{(S)
< XNY £@forallY € H(S)
& XN (R\ f(p) # @ forall g € Bdt(S)
& X & f(p)forall g € BdT(S)
& F7YX) £ pforall g € BAT(S)
< F71(X) ¢ 8.
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Next we show thaft (H(S)) = f(Bd~(S)); the theorem then immediately follows.

Tr (H(S))
= {X | X'is a minimal transversal df(S)}
= {X | X is a minimal set such that™(X) ¢ S}
={X| fYX)¢gSandfL(Y)eSforallY c X}
={f(p) |p €Sandy € Sforall y < ¢}
= f(Bd™(S)). O

Thus for languages representable as sets, the notions of negative border and the minin
transversals coincide.

Example Recall the previous example, the problem of finding the minimal keys of a
relation. We now compute the 98t~ (S) using the hypergraph formulation. We represent
keys as their complements$:(X) = R\ X. Hence

H(S) = {R\ f(X) | X € Bd"(S)} = Bd™(S) = {{A, B}, {A, C}}.
Thus

Tr (H(S) = {{A}. {B,C}},
and

f =171 (H(S))) = {{B, C, D}, {A, D}} = Bd~(S).

The advantage of Theorem 5 is that there is a wealth of material known about transversa
of hypergraphs (see, e.g., Berge, 1973). The relevance of transversals to computing tl
theory of a model has long been known in the context of finding functional dependencie:
(Mannila and Rih&, 1994); see Eiter and Gottlob (1995) for a variety of other problems
where this concept turns up. The complexity of computing the transversal of a hypergrapl
has long been open: see Fredman and Khachiyan (1996), Gurvich and Khachiyan (199¢
and Mishra and Pitt (1995) for recent breakthroughs.

7. Concluding remarks

We studied a simple levelwise algorithm for the rule discovery stage in KDD. We showed
that this basically trivial algorithm can be applied in various domains, including association
rules, frequent episodes in sequences, and integrity constraints in relational databases.
defined the notion of the border of a set of sentences, and demonstrated how the size
the border is an important factor in the complexity of the levelwise algorithm. We also
studied lower bounds for the pattern discovery task, and showed that the concept of bord
applies also there. We investigated the problem of computing the border, and showed that
is tightly connected to the well-known problem of computing transversals of hypergraphs
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This connection has recently been strengthened in Gunopulos et al. (1997), where son
analogous concepts from the domain of PAC learning are also studied.

The framework and algorithm we have given are quite general. Their applicability is
restricted chiefly by the requirement of a monotone specialization relation: such a relatior
does not necessarily exist if the criteria for interestingness or relevance are dependent
statistical significance or similar factors. Even in these cases the framework can possibl
be used: the selection predicatés defined in terms of, e.g., frequency of occurrence, and
the statistically significant sentences are then selectedTitoid, r, q) by using a separate
pruning step. Obviously, the problem here is that the siz&8hgf, r, ) might be much
larger than the number of actually interesting sentences. Further experimentation is need
to study this issue.

Our framework is mainly conceptual: we have shown that existing algorithms can be
viewed as instances of the framework. We have not evaluated the abstract algorithm empi
ically on new description languagé#s This is an important topic for further study.

We would like to point out especially the following possibly widely applicable approach.
Consider a clasp of primitive patterns, and build the description langudd®y forming all
conjunctions of patterns frof. Define the selection predicajen the basis of occurrence
frequency; then a monotone specialization relation exists automatically. It seems that thi
method might give quite good results; combining it with the use of sampling for the guess-
and-correct methods is also worth studying. The method might give an approach to the KDL
query compilation problem (Imielinski and Mannila, 1996): how to compile a specification
of a KDD task to an efficient program for it.

Several open problems remain also in the technical side. An interesting question wouls
be to study the complexity of computiffin(L, r, q) as a function of the logical complexity
of L. Perhaps the most interesting question is investigating the theoretical and practic:
efficiency of the guess-and-correct algorithm for various applications: the results with
association rules indicate that this method can be very efficient.
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