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Abstract. One of the basic problems in knowledge discovery in databases (KDD) is the following: given a data
setr , a classL of sentences for defining subgroups ofr , and a selection predicate, find all sentences ofL deemed
interesting by the selection predicate. We analyze the simple levelwise algorithm for finding all such descriptions.
We give bounds for the number of database accesses that the algorithm makes. For this, we introduce the concept
of the border of a theory, a notion that turns out to be surprisingly powerful in analyzing the algorithm. We also
consider the verification problem of a KDD process: givenr and a set of sentencesS ⊆ L, determine whetherS
is exactly the set of interesting statements aboutr . We show strong connections between the verification problem
and the hypergraph transversal problem. The verification problem arises in a natural way when using sampling to
speed up the pattern discovery step in KDD.
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1. Introduction

Knowledge discovery in databases (KDD), also called data mining, has recently received
wide attention from practitioners and researchers. There are several attractive application
areas for KDD, and it seems that techniques from machine learning, statistics, and databases
can be profitably combined to obtain useful methods and systems for KDD. See, e.g., Fayyad
et al. (1996), and Piatetsky-Shapiro and Frawley (1991) for general descriptions of the area.

The KDD area is and should be largely guided by (successful) applications. Still, the-
oretical work in the area is needed. In this paper we take some steps towards theoretical
KDD. We consider a KDD process in which the analyzer first produces lots of potentially
interesting rules, subgroup descriptions, patterns, etc., and then interactively selects the
truly interesting ones from these. In this paper we analyze the first stage of this process:
how to find all the potentially interesting rules in the database.

The intuitive idea behind this work is as follows. A lot of work in data mining can be
formulated in terms of finding all rules of the form

if ϕ thenθ,
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whereϕ andθ are possibly quite complex conditions from a predefined and potentially large
set of patternsL. The interpretation of such a rule is that in most cases whereϕ applies to
the data, alsoθ applies. Examples of cases where this formulation applies are the discovery
of association rules, episode rules, and integrity constraints in relational databases.

The crucial observation is that typically in these data mining tasks the rule can only be
interesting if there are sufficiently many occasions in which the rule applies: we are not
interested in rules that talk about only a few cases. Then the task of finding all rules of the
above form can be solved by locating all conditions from the classL that apply frequently
enough; we call such conditionsfrequent. Once frequent conditions are known, computing
the confidences of the rules is simple.

How can we, then, find all frequent conditions? Suppose that the conditions in the
classL are built from some primitive conditions using conjunction. Then the frequency of
occurrence is non-increasing with the number of conjuncts. We can therefore first search
for frequent conditions with one conjunct, then build two-conjunct conditions from these,
etc.; that is, we can proceed in the partial order of the conditions in a levelwise manner.

This argumentation can be generalized as follows. We want to find all rules of the form
“if ϕ thenθ ”, whereϕ andθ are fromL. Additionally, we require that the conditionϕ must
define an interesting subgroup of the data or otherwise be relevant. We assume there is a
way of determining whetherϕ satisfies this demand, which might depend on the frequency
of the condition, as above, or on some additional factors. Assume additionally that there
is a partial order¹ between conditions such that ifθ ¹ ϕ and the conditionϕ defines an
interesting subgroup, thenθ also defines an interesting subgroup. If such a partial order
exists, then we can simply start from the minimal elements of this order. If any conditions
are frequent, then the minimal ones must be. We can then work our way up levelwise in the
partial ordering relation, evaluating the frequency of a condition only if all elements below
it are indeed frequent.

This simple breadth-first or levelwise algorithm has actually been studied in various forms
in machine learning literature. From a machine learning viewpoint, the algorithm might be
called trivial. Our emphasis is, however, on investigating the problem of finding all rules,
not just a single rule with high predictive power. The algorithm can be shown to be optimal
in this respect under some conditions, and it performs quite well in practice.

In this paper we give a framework for the discovery of all patterns from a given class of
conditions. We demonstrate how instantiations of the levelwise algorithm have been and
can be used in several KDD applications. We also analyze the computational complexity
of this algorithm. Given a collectionS of frequent conditions, the border ofS is the set of
all conditions that are “just off”S or “just in” S, i.e., conditions such that all the conditions
preceding them in the partial order are indeed frequent, and such that those succeeding them
are not. The concept of border turns out to be useful in analyzing the levelwise algorithm,
and it also has some nice connections to hypergraph transversals. We also discuss a general
algorithm for the use of sampling in locating all frequent rules. Our results are not technically
difficult, but they show some interesting connections between KDD algorithms for various
tasks.

The rest of this paper is organized as follows. The levelwise algorithm is presented in
Section 2. Section 3 gives examples of the applicability of the algorithm in various KDD
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tasks: association rules, episode rules, and integrity constraints in relational databases. The
computational complexity of the algorithm is studied in Section 4, where we also introduce
the concept of border.

In Section 5 we consider using an initial guess for the collection of interesting sentences,
e.g., from a sample, to speed up the discovery. This leads to the verification problem ad-
dressed in Section 6: given a data collection and a setS of sentences, determine whetherS
is exactly the set of interesting sentences. We show strong connections between the verifi-
cation problem and the hypergraph transversal problem. Section 7 is a short conclusion.

2. The levelwise algorithm for finding all potentially interesting sentences

Formally, the task of finding all potentially interesting sentences can be described as follows.
Assume a databaser , a languageL for expressing properties or defining subgroups of the
data, and aselection predicate qare given. The predicateq is used for evaluating whether a
sentenceϕ ∈ L defines a potentially interesting subclass ofr . The task is to find the theory
of r with respect toL andq, i.e., the setTh(L, r ,q) = {ϕ ∈ L | q(r , ϕ) is true}.

Example. Given a relationr with n rows over binary-valued attributesR, anassociation
rule (Agrawal et al., 1993) is an expression of the formX ⇒ A, whereX ⊆ R andA ∈ R.
The interpretation of the rule is that those rows inr that have value 1 for the attributes
in X, also tend to have value 1 for the attributeA. Formally, denotingt (X)= 1 if and
only if row t ∈ r has a 1 in each columnA∈ X, we define thefrequency fr(X) of X to be
|{t ∈ r | t (X) = 1}|/n. The frequency of the ruleX ⇒ A is fr(X∪{A}), and the confidence
of the rule isfr(X ∪ {A})/fr(X).

All rules with frequency higher than a given threshold can be found effectively by using a
simple algorithm for finding all frequent sets. A setX ⊆ R is frequent, if fr(X) exceeds the
given threshold. Several algorithms for finding frequent sets have been presented (Agrawal
et al., 1993, 1996; Fukuda et al., 1996; Han and Fu, 1995; Holsheimer et al., 1995; Houtsma
and Swami, 1993; Park et al., 1995; Savasere et al., 1995; Srikant and Agrawal, 1995, 1996;
Toivonen, 1996).

The problem of finding all frequent sets can be described in our framework as follows.
The description languageL consists of all subsetsX of elements ofR. The selection
predicateq(r , X) is true if and only iffr(X) ≥ min fr, wheremin fr is the frequency
threshold given by the user.

In the above example the languageL is a very limited slice of all potential descriptions
of subsets of the original data set: we can only define subsets on the basis of positive
information.

In our general framework we are not specifying any satisfaction relation for the sentences
of L in r : this task is taken care of by the selection predicateq. For some applications,
q(r , ϕ) could mean thatϕ is true or almost true inr , or thatϕ defines (in some way) an
interesting subgroup ofr . The roots of this approach are in the use ofdiagramsof models in
model theory (see, e.g., Chang and Keisler, 1973). The approach has been used in various
forms, for example in (Agrawal et al., 1996; De Raedt and Bruynooghe, 1993; De Raedt
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and Džeroski, 1994; Kietz and Wrobel, 1992; Kloesgen, 1995; Mannila and R¨aihä, 1986).
One should note that in contrast with, e.g., De Raedt and Bruynooghe (1993), our emphasis
is on very simple representation languages.

Obviously, if L is infinite andq(r , ϕ) is satisfied for infinitely many sentences, (an
explicit representation of)Th(L, r ,q) cannot be computed. For the above formulation to
make sense, the languageL has to be defined carefully.

In this paper we analyze a simple levelwise algorithm for computing the collection
Th(L, r ,q). As already done by Mitchell (1982), we use a specialization/generalization
relation between sentences. (See, e.g., Langley (1996) for an overview of approaches to
related problems.) Aspecialization relationis a partial order¹ on the sentences inL. We
say thatϕ is more generalthanθ , if ϕ ¹ θ ; we also say thatθ is more specificthanϕ. The
relation¹ is amonotone specialization relationwith respect toq if the selection predicate
q is monotone with respect to¹, i.e., for allr andϕ we have the following: ifq(r , ϕ) and
γ ¹ ϕ, thenq(r , γ ). In other words, if a sentenceϕ satisfiesq, then also all less special
(i.e., more general) sentencesγ satisfyq. In the sequel we assume that¹ is a monotone
specialization relation. We writeϕ ≺ θ for ϕ ¹ θ and notθ ¹ ϕ. We assume that the
minimal elements ofL under¹ can be located efficiently.

Example. Continuing the previous example, consider two descriptionsϕ andθ of frequent
sets, whereϕ = X andθ = Y, andX,Y ⊆ R. Then we haveϕ ¹ θ if and only if X ⊆ Y.

Typically, the relation¹ is (a restriction of ) the semantic implication relation: ifϕ ¹ θ ,
thenθ |= ϕ, i.e., for all databasesr , if r |= θ , then r |= ϕ. If the selection predicate
q is defined in terms of statistical significance or something similar, then the semantic
implication relation is possibly not a monotone specialization relation with respect toq: a
more specific statement can satisfyq, even when a general statement does not. (It has been
pointed out (Brin et al., 1997) that theχ2 test statistic is monotone on binomial data.)

Consider a setL of sentences and a selection predicateq, for which there is a monotone
specialization relation¹. Sinceq is monotone with respect to¹, we know that if any
sentenceγ more general thanϕ is not interesting, thenϕ cannot be interesting. One can
base a simple but powerful generate-and-test algorithm on this idea. The central idea is to
start from the most general sentences, and then to generate and evaluate more and more
special sentences, butnot to evaluate those sentences that cannot be interesting given all the
information obtained in earlier iterations (Agrawal et al., 1996); see also Langley (1996),
and Mitchell (1982). The method is given as Algorithm 1.

Algorithm 1. The levelwise algorithmfor finding all potentially interesting sentences.
Input: A databaser , a languageLwith specialization relation¹, and a selection predicateq.
Output: The setTh(L, r ,q).
Method:

1. C1 := {ϕ ∈ L | there is noγ in L such thatγ ≺ ϕ};
2. i := 1;
3. whileCi 6= ∅ do
4. // evaluation: find which sentences ofCi satisfyq:
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5. Fi := {ϕ ∈ Ci | q(r , ϕ)};
6. // generation: computeCi+1 ⊂ L using

⋃
j≤i F j :

7. Ci+1 := {ϕ ∈ L | for all γ ≺ ϕ we haveγ ∈⋃ j≤i F j
}∖⋃

j≤i C j ;
8. i := i + 1;
9. od;
10. output

⋃
j<i F j ;

The algorithm works iteratively, alternating betweencandidate generationandevaluation
phases. First, in the generation phase of an iterationi , a collectionCi of new candidate
sentences is generated, using the information available from more general sentences. Then
the selection predicate is evaluated on these candidate sentences. The collectionFi will
consist of those sentences inCi that satisfyq. In the next iterationi +1, candidate sentences
in Ci+1 are generated using the information about the sentences in

⋃
j≤i F j . The algorithm

starts by constructingC1 to contain all the most general sentences, i.e., the sentencesϕ

such that there is no sentenceγ with γ ≺ ϕ. The iteration stops when no more potentially
interesting sentences can be found. In the end the potentially interesting sentences are
output.

The algorithm aims at minimizing the amount of database processing, i.e., the number of
evaluations ofq (Step 5). Note that the computation to determine the candidate collection
(Step 7) does not involve the database. For example, in computations of frequent sets for
association rules Step 7 uses only a negligible amount of time (Agrawal et al., 1996).

The following lemma is immediate.

Lemma 1. AssumeL is a language, r is a database, q is a selection predicate, and¹ is
a specialization relation. Then Algorithm1 computesTh(L, r ,q) correctly.

For Algorithm 1 to be applicable, several conditions have to be fulfilled. The languageL
and the selection predicate have to be such that the size ofTh(L, r ,q) is not too big. Recall
that all sentences inTh(L, r ,q) are probably not interesting to the user:Th(L, r ,q) will
be pruned further using, e.g., statistical significance or other criteria (Klemettinen et al.,
1994). ButTh(L, r ,q) should not contain hundreds of thousands of useless sentences.

3. Examples

Next we look at the applicability of the algorithm by considering some examples of KDD
problems.

Example. For association rules, the specialization relation was already given above. The
algorithm performs at mostk+ 1 iterations of the loop, i.e., it reads the databasek+ 1 times,
wherek is the size of the largest subsetX such thatfr(X) exceeds the given threshold. See
Agrawal et al. (1996), Han and Fu (1995), Holsheimer et al. (1995), Park et al. (1995),
Savasere et al. (1995), and Srikant and Agrawal (1995) for various implementation methods.
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Example. Strong rules(Piatetsky-Shapiro, 1991) are database rules of the formif ex-
pressionthen expression, where the expressions are simple conditions on attribute values.
For instance, the rule

if A < 40then B = 1

holds in a relationr , if on every rowt ∈ r the value of attributeB is 1 whenever the value of
attributeA on t is less than 40. Such rules can be found using the above algorithm. Several
choices of the specialization relation are possible, and the number of iterations depends on
that choice.

Example. Consider the discovery of all inclusion dependencies that hold in a given
database instance (Kantola et al., 1992; Knobbe and Adriaans, 1996; Mannila and R¨aihä,
1992a). Given a database schemaR, an inclusion dependencyover R is an expression
R[X] ⊆ S[Y], where R and S are relation schemas ofR, and X andY are equal-length
sequences of attributes ofR andS, respectively, that do not contain duplicates.

Supposer is a database overR, and letr ands be the relations corresponding toR andS,
respectively. Consider the inclusion dependencyR[X] ⊆ S[Y], whereX = 〈A1, . . . , An〉
andY = 〈B1, . . . , Bn〉. The inclusion dependencyholdsin r if for every tuplet ∈ r there
exists a tuplet ′ ∈ s such thatt [ Ai ] = t ′[Bi ] for 1 ≤ i ≤ n. An inclusion dependency
R[X] ⊆ S[Y] is trivial , if R= SandX = Y.

The problem of finding inclusion dependencies is the following. Given a database schema
R and a databaser overR, find all nontrivial inclusion dependencies that hold inr . Thus,
the languageL consists of all nontrivial inclusion dependencies, and the selection predicate
q is simply the satisfaction predicate. We could also allow for small inconsistencies in the
database by definingq(r , R[X] ⊆ S[Y]) to be true if and only if for at least a fraction ofc
of the rows ofr there exists a row ofs with the desired properties.

This KDD task can be solved by using the levelwise algorithm. As the specialization
relation we use the following: forϕ = R[X] ⊆ S[Y] andθ = R′[X′] ⊆ S′[Y′], we have
ϕ ¹ θ only if R = R′, S= S′, and furthermoreX′ = (A1, . . . , Ak),Y′ = (B1, . . . , Bk),

and for some disjointi1, . . . , i h ∈ {1, . . . , k} with h < k we haveX = (Ai1, . . . , Aih),Y =
(Bi1, . . . , Bih).

The number of iterations will then be at most one plus the number of attributes in the
attribute list of the longest nontrivial inclusion dependency that holds in the database.

Example. Consider the problem of discovering frequent episodes in sequences of events
(Mannila et al., 1995, 1997). Anepisodeis a collection of events that occur within a time
interval of a given size in a given partial order. Once such episodes are known, one can also
produce rules for describing or predicting the behavior of the sequence.

Formally, an episodeϕ = (V,≤, g) is a set of nodesV , a partial order≤ on V , and a
mappingg : V → E associating each node with an event type inE. The interpretation of
an episode is that the events ing(V) have to occur in the order described by≤. Figure 1(a)
depicts a sequence of events and figure 1(b) two episodes that occur several times in the
sequence. Episodeϕ contains two events,A and B, but does not specify any order for
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(a)

(b)

Figure 1. (a) An event sequence; (b) two episodes.

them. Episodeθ contains additionally an eventC, and states thatC must occur after both
A andB.

The task is to discover all episodes whose frequency exceeds a given thresholdmin fr.
Given a window widthwin, the frequency ofϕ in a given event sequenceS is defined as the
fraction of windows of lengthwin on S that contain an instance ofϕ.

The discovery of all frequent episodes can be solved with the levelwise algorithm. For the
specialization relation¹ we can use the following: forϕ = (V,≤, g) andθ = (V ′,≤′, g′)
we haveϕ ¹ θ , if and only if (1) V ⊆ V ′, (2) for all v ∈ V , g(v) = g′(v), and (3) for all
v,w ∈ V with v ≤ w alsov ≤′ w. The relationϕ ¹ θ holds, for instance, for the episodes
in figure 1(b).

The next example shows a case in which the levelwise algorithm does not work very well.

Example. Given a relationr over attributesR, a functional dependencyis an expression
X → B, whereX ⊆ R andB ∈ R. Such a dependency is true in the relationr , if for all
pairs of rowst, u ∈ r we have: ift andu have the same value for all attributes inX, then
they have the same value forB. For various algorithms for finding such dependencies, see
Bell (1995), Mannila and R¨aihä (1992a, 1992b, 1994), and Pfahringer and Kramer (1995).

Functional dependencies with a fixed right-hand sideB can be found using the levelwise
algorithm by considering the set of sentences{X | X ⊆ R} and a selection predicateq such
thatq(r, X) is true if and only ifX→ B holds inr . The specialization relation is then the
reverse of set inclusion: forX andY we haveX ¹ Y if and only if Y ⊆ X. The selection
predicate is monotone with respect to¹.

In applying the levelwise algorithm we now start with the sentences with no generaliza-
tions, i.e., from the sentenceR, and the number of iterations is at most 1+ |R \ X|, where
X is the smallest set such thatX → B holds inr . In this case for a largeR there will be
many iterations, even though the answer might be representable succinctly.

One can avoid this problem by shifting the focus from the (minimal) left-hand sides of true
functional dependencies to the (maximal) left-hand sides offalsefunctional dependencies,
and by searching for all of those, starting from the empty set. However, even in this case it
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can happen that many iterations are necessary, as there can be a large set of attributes that
does not derive the given target attribute.

4. Complexity of finding all sentences satisfied byq

Our basic task is to find the setTh(L, r ,q) of all sentences fromL that satisfy the selection
predicateq. We want to analyze the complexity of this task, concentrating especially on
the number of evaluations ofq. The size ofTh(L, r ,q) is one indicator of the complexity
of the task: one could assume that a big setTh(L, r ,q) would be more difficult to locate
than a smaller one. To certain extent this is true, but it turns out that the size ofTh(L, r ,q)
is not the only influential factor. Also, the number of elements in the border ofTh(L, r ,q)
has an influence on the running time of the levelwise algorithm and also on the inherent
complexity of the task.

Consider a setS of sentences fromL such thatS is closed downwards under the relation
¹, i.e., ifϕ ∈ S andγ ¹ ϕ, thenγ ∈ S. TheborderBd(S) of S consists of those sentences
ϕ such that all generalizations ofϕ are inS and none of the specializations ofϕ is in S.
Those sentencesϕ in Bd(S) that are inS are called thepositive borderBd+(S), and those
sentencesϕ in Bd(S) that are not inS are thenegative borderBd−(S). In other words,
the positive border consists of the most specific sentences inS (denoted by “S” in Mitchell,
1982), and the negative border consists of the most general sentences that are not inS:
Bd(S) = Bd+(S) ∪ Bd−(S), where

Bd+(S) = {ϕ ∈ S | for all θ ∈ L with ϕ ≺ θ, we haveθ 6∈ S}

and

Bd−(S) = {ϕ ∈ L \ S | for all γ ∈ L with γ ≺ ϕ, we haveγ ∈ S}.

A setS ⊆ L that is closed downwards can be described by giving just the positive or the
negative border. Consider, e.g., the negative border: no patternθ such thatϕ ¹ θ for some
ϕ in the negative border is inS, while all other patterns are inS.

A theoryTh(L, r ,q) is always closed downwards with respect to a specialization relation,
and the concept of border can be applied on the set of all patterns that satisfyq.

Example. Consider the discovery of frequent sets with attributesR= {A, . . . , F}. Assume
the collectionTh of frequent sets is

Th = {{A}, {B}, {C}, {F}, {A, B}, {A,C}, {A, F}, {C, F}, {A,C, F}}.

The positive border of this collection contains the maximal frequent sets, i.e.,

Bd+(Th) = {{A, B}, {A,C, F}}.
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The negative border, in turn, contains sets that are not frequent, but whose all subsets are
frequent, i.e., minimal non-frequent sets. The negative border is thus

Bd−(Th) = {{D}, {E}, {B,C}, {B, F}}.

Example. Consider the class of totally ordered episodes, and denote an episodeϕ =
(V, <, g) by the corresponding sequence〈A1, . . . , A|V |〉 of events, i.e., for allxi in V we
haveg(xi ) = Ai and for alli, 1≤ i < |V | we havexi < xi+1.

Assume that the 28 episodes that are subsequences of episodes

{〈C, F, A〉, 〈F, A, D〉, 〈A, D, B,C〉, 〈D, B,C, F〉}

are frequent. In other words, the given episodes are the maximal frequent ones, and con-
stitute the positive border of the collection of all frequent episodes. In the negative border
we have the minimal non-frequent episodes:

{〈E〉, 〈A, F〉, 〈B, A〉, 〈B, D〉, 〈C, B〉, 〈C, D〉, 〈D, A〉, 〈F, B〉, 〈F,C〉}.

Using the notion of negative border, step 7 of Algorithm 1 can be written as

Ci+1 := Bd−
(⋃

j≤i

F j

)∖⋃
j≤i

C j .

In other words, the candidate collection is the negative border of the interesting sentences
found so far. However, those sentences of the negative border that have already been
evaluated, i.e., the previous candidates, are excluded.

Example. Consider the discovery of frequent sets in a random relation over 20 attributes,
where the probability that a cell has value 1 isp = 0.2 for all cells. In such relations the size
of the border seems to be roughly 2 to 4 times the number of frequent sets. Table 1 presents
the sizes of the theory and its positive and negative borders in experiments with two random
relations, withp = 0.2 andp = 0.5, and with 1000 rows. Note that the sizes of the theory
and its border are determined by the nature of the data rather than by the number of rows.

The collectionBd(Th) can be small for a large theoryTh. An experiment with frequent
sets in a real database gave the following results. We discovered all frequent sets in a course

Table 1. Experimental results with random data sets.

p min fr |Th| |Bd+(Th)| |Bd−(Th)|

0.2 0.01 469 273 938
0.2 0.005 1291 834 3027
0.5 0.1 1335 1125 4627
0.5 0.05 5782 4432 11531
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Table 2. Experimental results with a real data set.

min fr |Th| |Bd+(Th)| |Bd−(Th)|

0.08 96 35 201
0.06 270 61 271
0.04 1028 154 426
0.02 6875 328 759

enrollment database where there is a row per student, a column per each course offered,
and a row has value 1 in a column if the corresponding student took the corresponding
course. There are 127 courses, and a student has taken 4.3 courses on average; the number
of students is 4734. Table 2 shows that the size of the border behaves nicely with respect
to the size of the theory.

The concept of negative border is useful in analyzing the levelwise algorithm.

Theorem 1. Algorithm1 uses|Th(L, r ,q)∪Bd−(Th(L, r ,q))| evaluations of the selec-
tion predicate q.

The proof is again immediate. Next we consider the problem of lower bounds for the
computation ofTh(L, r ,q). Some straightforward lower bounds for the problem of finding
all frequent sets are given in Agrawal et al. (1996).

The main effort in finding the theoryTh(L, r ,q) is in the evaluation of predicateq against
the database. Thus we consider the following model of computation. Assume the only way
of getting information from the database is by asking questions of the form

Is-interesting Is the sentenceϕ potentially interesting, i.e., doesq(r , ϕ) hold?

Note that Algorithm 1 falls within this model of computation.

Theorem 2. Any algorithm that computesTh(L, r ,q) and accesses the data using only
Is-interesting queries must use at least|Bd(Th(L, r ,q))| queries.

We omit the proof, since in Theorem 4 we show that|Bd(Th(L, r ,q))| queries are
necessary already for the verification of the result.

This result gives as a corollary a result about finding functional dependencies that in
the more specific setting was not easy to find (Mannila and R¨aihä, 1992a, 1992b). For
simplicity, we present the result here for the case of finding keys of a relation. Given a
relationr over schemaR, akeyof r is a subsetX of R such that no two rows agree onX.
Note that a superset of a key is always a key, and thatX ¹ Y if and onlyY ⊆ X.

Corollary 1 (Mannila and R äihä, 1992b). Given a relation r over schema R, finding
the minimal keys that hold in r requires at least|MAX (r )| evaluations of the predicate“ Is
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X a key”, whereMAX (r ) is the set of all maximal subsets(w.r.t. set inclusion) of R that do
not contain a key.

The drawback of Theorem 2 is that the size of the border of a theory is not easy to
determine. We return to this issue in Section 6, and show some connections between this
problem and the hypergraph transversal problem.

Next we make some remarks about the complexity of evaluation of the selection predicate
q. For finding whether a setX⊆ R is frequent, a linear pass through the database is sufficient.
To verify whether an inclusion dependencyR[X] ⊆ S[Y] holds, one in general has to sort
the relations corresponding to schemasR andS; thus the complexity is in the worst case
of the orderO(n logn) for relations of sizen. Sorting of the relationr is also required for
verifying whether a functional dependencyX→ B holds inr .

The real difference between finding association rules and finding integrity constraints is,
however, not the difference between linear andO(n logn) time complexities. In finding
association rules one can in one pass through the database evaluate the selection predicate
simultaneously on several sets, whereas to evaluate the truth of a set of integrity constraints
requires in general as many passes through the database as there are constraints.

5. The guess-and-correct algorithm

Algorithm 1 starts by evaluating the selection predicateq on the most general sentences, and
moves gradually to more specific sentences. As the specialization relation is assumed to be
monotone with respect toq, this approach is safe in the sense that no statement satisfying
q will be overlooked. However, the approach can be quite slow, if there are interesting
statements that are far from the bottom of the specialization hierarchy, i.e., if there are
statementsϕ that turn out to be interesting, but which appear in the candidate setCi only for
a largei . As every iteration of the outermost loop requires an investigation of the database,
this means that such sentences will be discovered slowly.

An alternative is to start the process of findingTh(L, r ,q) from an initial guessS ⊆ L,
and then correcting the guess by looking at the database. The guess can be obtained, e.g.,
from computing the setTh(L, s,q), wheres ⊆ r is a sample ofr . Algorithm 2 is the
guess-and-correct algorithmfor computingTh(L, r ,q).

Algorithm 2. Theguess-and-correct algorithmfor finding all potentially interesting sen-
tences with an initial guessS.
Input: A databaser , a languageL with specialization relation¹, a selection predicateq,
and an initial guessS ⊆ L for Th(L, r ,q). We assumeS is closed under generalizations.
Output: The setTh(L, r ,q).
Method:

1. E := ∅;
2. // correctS downward:
3. C := Bd+(S);
4. whileC 6= ∅ do
5. E := E ∪ C;
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6. S := S \ {ϕ ∈ C | q(r , ϕ) is false};
7. C := Bd+(S) \ E;
8. od;
9. // nowS ⊆ Th(L, r ,q); expandS upwards:
10. C := Bd−(S) \ E ;
11. whileC 6= ∅ do
12. E := E ∪ C;
13. S := S ∪ {ϕ ∈ C | q(r , ϕ) is true};
14. C := Bd−(S) \ E;
15. od;
16. outputS;

The algorithm first evaluates the sentences in the positive borderBd+(S) and removes
fromS those that are not interesting. These evaluation and removal steps are repeated until
the positive border only contains sentences satisfyingq, and thus we haveS ⊆ Th(L, r ,q).
The variableE is used to avoid evaluating sentences twice. Then the algorithm expands
S upwards, as in the original algorithm: it evaluates such sentences in the negative border
Bd−(S) that have not been evaluated yet, and adds those that satisfyq to S. Again, the
algorithm repeats the evaluation and addition steps until there are no sentences to evaluate.
Finally, the output isS = Th(L, r ,q).

The following results are again straightforward, and the hence the proofs are omitted.

Lemma 2. Algorithm2 works correctly.

Theorem 3. Algorithm2 uses at most

|(S4Th) ∪ Bd(Th) ∪ Bd+(S ∩ Th)|

evaluations of q, whereTh = Th(L, r ,q).

How to obtain good original guessesS? One fairly widely applicable method is sam-
pling. Take a small samples from r , computeTh(L, s,q) and use it asS. For finding
frequent sets one can show that sampling produces very good approximations (Toivonen,
1996). In Toivonen (1996) sampling is applied in finding an upper approximationS of
Th(L, r ,q), i.e., a collectionS such thatTh(L, r ,q) ⊂ S and such thatS is not unnec-
essarily large. Given suchS, evaluating only the first half of Algorithm 2 suffices, and
that can be implemented with a single pass over the database. There is, however, a small
probability that the sample is skewed andS is not a superset ofTh(L, r ,q); then the second
half of Algorithm 2 is executed in another database pass.

Another method for computing an initial approximation can be derived from the algorithm
of Savasere et al. (1995). The idea is to divider into small datasetsr i which can be handled
in main memory, and to computeSi = Th(L, r i ,q). In the case of frequent sets, use as the
guessS the union

⋃
i Si ; in the case of functional dependencies, use asS the intersection⋂

i Si . In both cases, the guess is a superset ofTh(L, r i ,q), and executing the first half of
the guess-and-correct algorithm suffices.
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6. The verification problem

Consider the following idealized statement about the guess-and-correct method. Assume
somebody gives usL, r , q, and a setS ⊆ L, and claims thatS = Th(L, r ,q). How many
evaluations ofq do we have to do to check this claim? The following result shows that the
border concept is crucial also here.

Theorem 4. GivenL, r , q, and a setS ⊆ L, determining whetherS = Th(L, r ,q)
(1) requires in the worst case at least|Bd(S)| evaluations of q, and(2) can be done using
exactly this number of evaluations of q.

Proof: We show that it is sufficient and in the worst case necessary to evaluate the bor-
derBd(S). The claims follow then from this.

First assume that the sentences in the border are evaluated. If and only if every sentence
in Bd+(S) and no sentence inBd−(S) is satisfied byq, thenS = Th(L, r ,q), by the
definition of the border. IfS andTh(L, r ,q) do not agree on the border, then clearly
S 6= Th(L, r ,q).

Now assume that less than|Bd(S)| evaluations have been made; then there is a sentence
ϕ in the borderBd(S) for which q has not been evaluated. If all evaluations have been
consistent with the claimS = Th(L, r ,q), there is no way of knowing whetherϕ is in
Th(L, r ,q) or not. The satisfaction of other sentences gives no information aboutϕ: since
they were consistent withS = Th(L, r ,q) andϕ is in the border, all more general sentences
satisfyq by the definition of border, none of the more special sentences does, and the rest
are irrelevant with respect toϕ. In other words, any sentence in the negative border can
be swapped to the positive border, and vice versa, without changing the truth ofq for any
other set. 2

The same argumentation can be used to prove Theorem 2.

Example. Given a relationr over{A, B,C, D}, assume that{A, B} and{A,C} and their
supersets are the only keys ofr . To verify this we check the setBd(S) for

S = {X ⊆ {A, B,C, D} | {A, B} ⊆ X or {A,C} ⊆ X}.

(Recall that for this caseX ¹ Y if and only if Y ⊆ X.) The positive border consists of the
given minimal keys, i.e.,

Bd+(S) = {{A, B}, {A,C}},

and in the negative border we have sets such that all their proper supersets are keys, i.e.,

Bd−(S) = {{A, D}, {B,C, D}}.

We thus have to check whether the sets{A, B}, {A,C}, {A, D}, and{B,C, D} are keys
of r .
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We next relate the verification problem to hypergraph transversals. For this, we need
some definitions.

Let L be the language,¹ a specialization relation, andR a set; denote byP(R) the
powerset ofR. A function f :L→ P(R) is arepresentation ofL (and¹) as sets, if f is
one-to-one and surjective,f and its inverse are computable, and for allϕ andθ we have
ϕ ¹ θ if and only if f (ϕ) ⊆ f (θ). Frequent sets, functional dependencies with fixed right-
hand sides, and inclusion dependencies are easily representable as sets; the same holds for
(monotone) DNF or CNF formulae.

A collectionH of subsets ofR is a (simple) hypergraph(Berge, 1973), if no element of
H is empty and ifX,Y ∈ H andX ⊆ Y imply X = Y. The elements ofH are called the
edgesof the hypergraph, and the elements ofR are theverticesof the hypergraph. Given a
simple hypergraphH on R, a transversal TofH is a subset ofR intersecting all the edges
ofH, that is,T ∩ E 6= ∅ for all E ∈ H. Transversals are also calledhitting sets. A minimal
transversalof H is a transversalT such that noT ′ ⊂ T is a transversal. The collection of
minimal transversals ofH is denoted beTr (H). It is a hypergraph onR.

Now we return to the verification problem. GivenS ⊆ L, we have to determine whether
S = Th(L, r ,q) holds using as few evaluations of the predicateq as possible. GivenS,
we can computeBd+(S) without looking at the datar at all: simply find the most special
sentences inS. The negative borderBd−(S) is also determined byS, but finding the most
general sentences inL \ S can be difficult. We now show how minimal transversals can be
used in the task.

Consider first the special case of frequent sets. Let the attributes inR be the vertices and
thecomplementsof the sets in the positive border be the edges of a simple hypergraphH.
So, for each setX in the positive border we have the setR \ X as an edge inH. Consider
now a setY ⊆ R. If there is an edgeR \ X such thatY ∩ (R \ X) = ∅, thenY ⊆ X, and
Y is frequent. On the other hand, if there is no such edge that the intersection is empty,
thenY cannot be frequent. That is,Y is not frequent if and only ifY is a transversal ofH.
Minimal transversals are now the minimal non-frequent sets, i.e., the negative border.

Generalizing, assume that( f, R) representsL as sets, and consider the hypergraphH(S)
on R containing as edges the complements of setsf (ϕ) for ϕ ∈ Bd+(S): H(S)={R \
f (ϕ) |ϕ ∈ Bd+(S)}. ThenTr (H(S)) is a hypergraph onR, and hence we can applyf −1

to it: f −1(Tr (H(S)))={ f −1(H) | H ∈ Tr (H(S))}. We have the following result.

Theorem 5. f −1(Tr (H(S))) = Bd−(S).

Proof: We prove the claim in two steps. First we show that a setX ⊆ R is a transversal
ofH(S) if and only if f −1(X) 6∈ S:

X is a transversal ofH(S)
⇔ X ∩ Y 6= ∅ for all Y ∈ H(S)
⇔ X ∩ (R \ f (ϕ)) 6= ∅ for all ϕ ∈ Bd+(S)
⇔ X 6⊆ f (ϕ) for all ϕ ∈ Bd+(S)
⇔ f −1(X) 6¹ ϕ for all ϕ ∈ Bd+(S)
⇔ f −1(X) 6∈ S.
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Next we show thatTr (H(S)) = f (Bd−(S)); the theorem then immediately follows.

Tr (H(S))
= {X | X is a minimal transversal ofH(S)}
= {X | X is a minimal set such thatf −1(X) 6∈ S}
= {X | f −1(X) 6∈ S and f −1(Y) ∈ S for all Y ⊂ X}
= { f (ϕ) | ϕ 6∈ S andγ ∈ S for all γ ≺ ϕ}
= f (Bd−(S)). 2

Thus for languages representable as sets, the notions of negative border and the minimal
transversals coincide.

Example. Recall the previous example, the problem of finding the minimal keys of a
relation. We now compute the setBd−(S) using the hypergraph formulation. We represent
keys as their complements:f (X) = R \ X. Hence

H(S) = {R \ f (X) | X ∈ Bd+(S)} = Bd+(S) = {{A, B}, {A,C}}.
Thus

Tr (H(S)) = {{A}, {B,C}},
and

f −1(Tr (H(S))) = {{B,C, D}, {A, D}} = Bd−(S).

The advantage of Theorem 5 is that there is a wealth of material known about transversals
of hypergraphs (see, e.g., Berge, 1973). The relevance of transversals to computing the
theory of a model has long been known in the context of finding functional dependencies
(Mannila and R¨aihä, 1994); see Eiter and Gottlob (1995) for a variety of other problems
where this concept turns up. The complexity of computing the transversal of a hypergraph
has long been open: see Fredman and Khachiyan (1996), Gurvich and Khachiyan (1995),
and Mishra and Pitt (1995) for recent breakthroughs.

7. Concluding remarks

We studied a simple levelwise algorithm for the rule discovery stage in KDD. We showed
that this basically trivial algorithm can be applied in various domains, including association
rules, frequent episodes in sequences, and integrity constraints in relational databases. We
defined the notion of the border of a set of sentences, and demonstrated how the size of
the border is an important factor in the complexity of the levelwise algorithm. We also
studied lower bounds for the pattern discovery task, and showed that the concept of border
applies also there. We investigated the problem of computing the border, and showed that it
is tightly connected to the well-known problem of computing transversals of hypergraphs.
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This connection has recently been strengthened in Gunopulos et al. (1997), where some
analogous concepts from the domain of PAC learning are also studied.

The framework and algorithm we have given are quite general. Their applicability is
restricted chiefly by the requirement of a monotone specialization relation: such a relation
does not necessarily exist if the criteria for interestingness or relevance are dependent on
statistical significance or similar factors. Even in these cases the framework can possibly
be used: the selection predicateq is defined in terms of, e.g., frequency of occurrence, and
the statistically significant sentences are then selected fromTh(L, r ,q) by using a separate
pruning step. Obviously, the problem here is that the size ofTh(L, r ,q) might be much
larger than the number of actually interesting sentences. Further experimentation is needed
to study this issue.

Our framework is mainly conceptual: we have shown that existing algorithms can be
viewed as instances of the framework. We have not evaluated the abstract algorithm empir-
ically on new description languagesL. This is an important topic for further study.

We would like to point out especially the following possibly widely applicable approach.
Consider a classP of primitive patterns, and build the description languageL by forming all
conjunctions of patterns fromP. Define the selection predicateq on the basis of occurrence
frequency; then a monotone specialization relation exists automatically. It seems that this
method might give quite good results; combining it with the use of sampling for the guess-
and-correct methods is also worth studying. The method might give an approach to the KDD
query compilation problem (Imielinski and Mannila, 1996): how to compile a specification
of a KDD task to an efficient program for it.

Several open problems remain also in the technical side. An interesting question would
be to study the complexity of computingTh(L, r ,q) as a function of the logical complexity
of L. Perhaps the most interesting question is investigating the theoretical and practical
efficiency of the guess-and-correct algorithm for various applications: the results with
association rules indicate that this method can be very efficient.
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Montréal, Canada, pp. 150–155.

Houtsma, M. and Swami, A. 1993. Set-oriented mining of association rules. Research Report RJ 9567, IBM
Almaden Research Center, San Jose, CA.

Imielinski, T. and Mannila, H. 1996. A database perspective on knowledge discovery. Communications of the
ACM, 39(11):58–64.
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