
Computational Creativity Infrastructure for Online Software Composition:
A Conceptual Blending Use Case

Martin Žnidaršič1, Amı́lcar Cardoso2, Pablo Gervás4, Pedro Martins2,
Raquel Hervás4, Ana Oliveira Alves2, Hugo Gonçalo Oliveira2, Ping Xiao3,

Simo Linkola3, Hannu Toivonen3, Janez Kranjc1, Nada Lavrač1
1Jožef Stefan Institute, Ljubljana, Slovenia

2CISUC, DEI, University of Coimbra, Coimbra, Portugal
3Department of Computer Science and HIIT, University of Helsinki, Finland

4Universidad Complutense de Madrid, Spain
Abstract

Computational Creativity is a subfield of Artificial Intel-
ligence research, studying how to engineer software that
exhibits behaviors which would reasonably be deemed
creative. This paper shows how composition of soft-
ware solutions in this field can effectively be supported
through a Computational Creativity (CC) infrastructure
that supports user-friendly development of CC software
components and workflows, their sharing, execution
and reuse. The infrastructure allows CC researchers
to build workflows that can be executed online and be
reused by others with a single click on the workflow
web address. Moreover, it allows building of proce-
dures composed of software developed by different re-
searchers from different laboratories, leading to novel
ways of software composition for computational pur-
poses that were not expected in advance. This capabil-
ity is illustrated on a workflow that involves blending of
texts from different domains, blending of correspond-
ing images, poetry generation from texts as well as con-
struction of narratives. The paper concludes by present-
ing plans for future work.

Introduction
Computational creativity (CC) systems use as their basic
ingredients different types of resources, including musical,
pictorial and textual, to name a few. This paper focuses on
infrastructure support to CC systems that base their creativ-
ity on textual resources. Such CC systems include poetry
generation, metaphor creation, generation of narratives, cre-
ation of fictional ideas and conceptual blending, which all
represent CC tasks which request manipulation of text re-
sources that are provided as inputs.

Infrastructures supporting text-based creative systems are
scarce. Ideally, a text-based CC system would automatically
build creative artefacts from the given text resources, which
the end user would then inspect and potentially adapt to their
needs. An attempt in this direction is the FloWr system
for automated flowchart construction, optimisation and al-
teration (Charnley, Colton, and Llano 2014). While getting
software to write CC code directly is a long-term research
goal, that line of research is—with the exception of FloWr—
still in its infancy stage. A substantially more mature area
of research concerns the development of infrastructures sup-
porting modular development, sharing and execution of code

used in text mining tasks. Text mining has numerous open
source algorithms and natural language processing (NLP)
software libraries available (such as NLTK (Bird 2006) and
scikit-learn (Pedregosa et al. 2011)). However, even text
mining and NLP experiments are still difficult to reproduce,
including the difficulty of systematic comparison of algo-
rithms. To this end, a number of attempts have been made
to develop easy-to-use workflow management systems, al-
lowing users to compose complex processing pipelines in a
modular visual programming manner.

Related work As regards the work related to the platform
presented in this paper, we first mention myGrid1 which is
used primarily for bioinformatics research, having in mind
experiment replication. It is currently probably the most ad-
vanced workflow management system, although, due to its
complexity, not very easy to use. The most important part
of myGrid is Taverna, which is conceived as a suite of tools
used to design and execute scientific workflows. A multi-
lingual Internet service platform Language Grid2, which is
based on a service-oriented architecture and supports a web-
oriented version of the pipeline architecture typically em-
ployed by NLP tools, is open source, but it is quite complex
to install and use. The ARGO platform3 is a more recent
development, which enables workflows to have interactive
components, where the execution of the workflow pauses to
receive input from the user, but ARGO is not open source
and does not have sophisticated utilities for cataloguing the
available web services or workflows, nor a system of access
permissions.

Our recently developed platform ClowdFlows4 (Kranjc,
Podpečan, and Lavrač 2012) is web-based thus requiring
no local installation, is simple to use and install, and avail-
able as open source under the MIT Licence. While Clowd-
Flows is mainly devoted to data mining, its fork TextFlows5

is focused on text mining and NLP workflows. A fork
platform for facilitation and reuse of computational creativ-

1
http://www.mygrid.org.uk/

2
http://langrid.org/

3
http://argo.nactem.ac.uk/

4
http://clowdflows.org

5
http://textflows.org



ity software is called ConCreTeFlows6. It is an indepen-
dent platform with a specific backend that is being continu-
ously adapted to computational creativity tasks and tools. As
forks of ClowdFlows, TextFlows and ConCreTeFlows bene-
fit from its service-oriented architecture, which allows users
to utilize web-services as workflow components. The distin-
guishing feature of these platforms is the ease of sharing and
publicizing workflows, together with an ever growing roster
of reusable workflow components and entire workflows. As
completed workflows, data, and results can be made public
by the author, the platform can serve as an easy-to-access
integration platform for data mining, text mining or com-
putational creativity processes. Each public workflow is as-
signed a unique URL that can be accessed by anyone to ei-
ther replicate the experiment, or use the workflow as a tem-
plate to design new similar workflows.

Contributions In this paper we present ConCreTeFlows
and illustrate its use in a specific use case of conceptual
blending (introduction to blending theory is provided on
page 3). This example employs multiple software compo-
nents that are being developed by various members of the
computational creativity community. The presented com-
position of software aims to conduct conceptual blending
conceptually, textually and visually. Given two descriptions
of arbitrary concepts in natural language, the presented ap-
proach provides conceptual graph representations of both
concepts and their blend, a textual description of the blended
concept and even a set of possible visual blends.

The paper is structured as follows. The first section
presents ConCreTeFlows as a special purpose workflow
management platform aimed at supporting computational
creativity tasks. In the next section is the core of this pa-
per. It provides a description of the use case and the basics
of its theoretical foundations, followed by presentation of all
the important methods and software components that are ap-
plied for its purpose. Last part of this section is devoted to
critical discussion and ongoing work on the presented com-
ponents. The paper concludes with a brief summary and
plans for further work.

Software Infrastructure
This section briefly describes the main components of the
ConCreTeFlows. It is a special purpose workflow manage-
ment platform, aimed at supporting (primarily text-based)
computational creativity tasks.

Like ClowdFlows, ConCreTeFlows can also be used in
a browser, while the processing is performed in a cloud
of computing nodes. The backend of ConCreTeFlows
uses Django7, which is an open source web framework.
The graphical user interface is implemented in HTML and
JavaScript, using jQuery8 and jQuery-UI9 libraries. Con-
CreTeFlows is easily extensible by adding new packages

6
http://concreteflows.ijs.si

7
https://www.djangoproject.com

8
http://jquery.com

9
http://jqueryui.com

and workflow components. Workflow components of sev-
eral types allow graphical user interaction during run-time,
and visualization of results by implementing views in any
format that can be rendered in a web browser. Below we ex-
plain the concept of workflows in more detail and describe
the basic concepts of ConCreTeFlows.

The workflow model is the main component of the Con-
CreTeFlows platform and consists of an abstract represen-
tation of workflows and workflow components. The graph-
ical user interface for constructing workflows follows a vi-
sual programming paradigm which simplifies the represen-
tation of complex procedures into a spatial arrangement of
building blocks. The basic unit component in a ConCreTe-
Flows workflow is a processing component, which is graph-
ically represented as a widget. Considering its inputs and
parameters every such component performs a task and stores
the results on its outputs. Different processing components
are linked via connections through which data is transferred
from a widget’s output to another’s input. An alternative
widget input for a widget are parameters, which the user
enters into widget’s text fields. The graphical user inter-
face implements an easy-to-use way of arranging widgets
on a canvas to form a graphical representation of a complex
procedure. Construction of new workflows thus requires no
expertise, apart from knowing (usually from widget docu-
mentation) the inputs and outputs of the widgets to ensure
their compatibility. Incorporation of new software compo-
nents, on the other hand, requires basic programming skills
in Python or SOAP web-service development in any pro-
gramming language.

ConCreTeFlows implements its own workflow execution
engine. Currently there are no ways to reuse the workflows
using third party software. We plan to implement special
widgets that will define inputs and outputs for REST API
endpoints which will allow execution of workflows on vari-
able inputs by any third party software.

The ConCreTeFlows graphical user interface is shown in
Figure 1. On the top of the graphical user interface is a tool-
bar where workflows can be saved, deleted, and executed.
Underneath on the left is the widget repository, which is a
list of available widgets grouped by their functionality. Click
on a widget in the repository adds it to the workflow con-
struction canvas on the right. A console for displaying suc-
cess and error messages is located on the bottom.

Workflows in ConCreTeFlows are processed and stored
on remote servers from where they can be accessed from
anywhere, requiring only an internet connection. By default
each workflow can only be accessed by its author, although
one may also chose to make it publicly available. ConCreTe-
Flows generates a specific URL for each workflow that has
been saved as public. The users can then simply share their
workflows by publishing the URL. Whenever a public work-
flow is accessed by another user, a copy of the workflow is
created on the fly and added to his private workflow reposi-
tory. The workflow is copied together with widgets’ param-
eter settings, as well as all the data, in order to ensure the
experiments can be repeated. In this way the user is able
to tailor the workflow to his needs without modifying the
original workflow.



Figure 1: A screenshot of the ConCreTeFlows graphical user
interface opened in the Mozilla Firefox Web browser, pre-
senting a motivational CC use case.

Conceptual Blending Online
The elements of the conceptual blending (CB) theory (Fau-
connier and Turner 2002) are an inspiration to many algo-
rithms and methodologies in the field of computational cre-
ativity (Veale and O’Donoghue 2000; Pereira 2005; Thagard
and Stewart 2010; Schorlemmer et al. 2014). A key ele-
ment in the theory is the mental space, a partial and tem-
porary structure of knowledge built for the purpose of local
understanding and action (Fauconnier 1994). To describe
the CB process, the theory makes use of a network of four
mental spaces (Figure 2). Two of these correspond to the
input spaces, i.e., the content that will be blended. The pro-
cess starts by finding a partial mapping between elements of
these two spaces that are perceived as similar or analogous
in some respect. A third mental space, called generic, encap-
sulates the conceptual structure shared by the input spaces,
generalising and possibly enriching them. This space pro-
vides guidance to the next step of the process, where ele-
ments from each of the input spaces are selectively projected
into a new mental space, called the blend space. Further
stages of the process elaborate and complete the blend.

������
���	
�

��������	
��� ��������	
���

��������	
�

��������	
���	����

���
�
�

���
���

��

��
�����
���������
���

Figure 2: The original four-space conceptual blending net-
work (Fauconnier and Turner 2002).

In most computational approaches to CB, the input and
blended spaces are represented as computational versions of
Conceptual Maps (Novak 1998), i.e., graphs where nodes
are concepts and arcs are relations between them (see Fig-
ure 3).

pw
pw

pw

pw

purpose

ability

sound
qty

pw qtybird

wing

beak

chirp

2

run
fly

pet

bird

ppty
qty

purpose

ride

pw

pw

pw

purpose

ability

sound

qty

pw
qty

pw

horse

hoof

snout

neigh

mane

4

run
leg

cargo

eye

human

see

long

2
horse

Figure 3: Concept maps of horse and bird.

Graph representations of concept blends are useful for au-
tomated analysis and further processing, but are not very
suitable and appealing for human perception of the blended
spaces. To improve on this aspect of conceptual blending,
we have developed methodologies and algorithms for visual
blending and for textual representation of concept graphs.
Using these new techniques, we designed a CB process that
results in conceptual blends that are described in natural lan-
guage and enriched with visual representations. The process
is sketched in Figure 4, where the boxes represent the main
(software) components and the arrows indicate the flow of
data from inputs to outputs.

Each of the main process components (that is, each box
from the sketch in Figure 4) is implemented as an inde-
pendent software solution and represented as a widget or a
group of widgets in ConCreTeFlows.

In the following, we describe the process components and
their implementations in detail, with a presentation of the
whole workflow and some exemplary results at the end.

Construction of Conceptual Networks
The Concept Network Builder component from Figure 4 ac-
cepts a textual description of a concept in natural language
and on its basis produces a conceptual graph.The set of pos-
sible concepts and relations in the resulting graph is open
and not limited to a particular fixed set (such as relations
in ConceptNet10) or linguistic characteristic. We decided to
represent also relations as concepts, which allows treating a
particular entity as both a concept or relation, depending on
the context. For example, the concept of eating can be used
to relate the concepts of cows and grass, but it can also be a
concept related through is a with animal activity.

The software component that creates these conceptual
graphs from text is implemented in ConCreTeFlows as the
Text2Graph widget. This component first uses the Ollie
triplet extractor (Mausam et al. 2012) to extract the triplets
from the given text. The only text transformation before
triplet extraction is uncapitalization of sentences. The re-
sulting triplets are used to create a graph. In this process,
the entities in the triplets can be lemmatized (this choice is

10
http://conceptnet5.media.mit.edu/



Text Processor
Concept
Network
Builder

Concept
Network
Builder

Image 
Processor

Concept
Blender Text Renderer

Visual
Metaphor
Creator

Text Processor

Image 
Processor

Figure 4: Sketch of the workflow for conceptual blending with visual and textual representations of blends.

left to the user). If the Main size parameter of the resulting
graph is set, the graph is filtered to contain only a limited
neighborhood around the Main entity, that is, the node in
the graph that a user might be most interested in. The Main
entity can be set by the user, but if it is not, it is selected
automatically as the graph node with the highest out-degree.

Conceptual Blending
The Concept Blender component takes care of blending two
elements that are represented as graphs. In our design of the
process (Figure 4), the mapping between the elements from
the input spaces is to be done by a human as an initial step (to
select the two inputs to take part in blending) or to be done in
the Concept Blender on all possible pairs of elements from
the two input spaces. Following our representation, these
would be pairs of conceptual graphs.

In the current baseline implementation, the Concept
Blender expects only one pair of input elements, which it
fully blends (merges the two conceptual graphs) without any
influence of the Generic Space. An elaborate concept blend-
ing component, that is based on Divago framework, is in de-
velopment as described in subsection on further work.

Visual Blending
In order to generate visual blends, the visual module, con-
sisting of the Image Processor and the Visual Metaphor Cre-
ator in Figure 4, takes inputs from either the Concept Net-
work Builder or the Concept Blender. From the first, it can
take two concepts from two concept graphs (in this version,
their main entities) as inputs to be visually blended. The
resulting visual blend is not a representation of a blend cre-
ated by Concept Blender, but an independent visual blend of
the two concepts. For this purpose the visual module first
finds photos tagged with the two concepts in Flickr, respec-
tively. For ensuring the relevance and quality of the photos,
we use a set of image analysis methods bundled together in
QualiPy11. The image processor separates the subject and
the background of each photo, and inpaints the background

11
https://github.com/vismantic-ohtuprojekti/

qualipy

to hide any marks of the subject. The visual metaphor cre-
ator implements three visual operations: juxtaposition, re-
placement and fusion, as described by Xiao and Linkola
(2015). In effect, it puts one object in the context of an-
other, or gives an object the texture of another object (see
Figure 5 for an example).

The visual module can also take input from the concept
blender, which indicates a specific way of blending. Specif-
ically, the input may indicate a choice between the replace-
ment and fusion operations. For instance, a frequent concep-
tual blend is placing an object in an unusual environment,
which suggests that the replacement operator shall be used.

In ConCreTeFlows, such blending is available in two ver-
sions (generations) as Vismantic and Vismantic2 widgets.

Text Generation
In order to generate a textual description of the blends ob-
tained, a Text Renderer widget called Textifier has been
added to the workflow. Textifier is a natural language gen-
eration tool that transforms data represented in a graph into
a natural language text. It carries out stages of content de-
termination, document planning and surface realization (Re-
iter and Dale 2000) and then translates the result into plain
text. Content determination processes input to select and
adapt what might be rendered. The input graph must con-
tain pairs of source and target nodes with information, and
the system will create all possible paths and represent them
in a tree. Textifier first groups related information that refers
to the same concept by combining nodes that contain the
same subject and discarding duplicated nodes. Nodes that
represent information with granularity inappropriate for tex-
tual rendering – such as verb-preposition groups represented
as single strings – are rewritten to make all information ex-
plicit in the knowledge structure. Lastly, Textifier can prune
the tree if only branches of a certain length need to be con-
sidered. Currently we are working with branches that are
three nodes long, after detecting that they tend to contain
more promising information. Document planning is basic at
present but will play a larger role once the graphs of blends
are processed. The surface realization stage transforms the
tree into text. Figure 6 shows an example of Textifier in op-
eration over a graph constructed from a given input text.



(a) (b)

Figure 5: Two (out of four combinations of exchanging context and texture) outputs of the Vismantic2 widget for the example
of blending the concepts of hamster and zebra. Figure 5a shows result of exchanging texture: hamster with a zebra’s texture.
In Figure 5b is an example of exchanging context: zebra is put in the usual visual context of a hamster.

Figure 6: Example of Textifier working on input graph obtained from text.

Integration in a Workflow

The software components that implement the functionali-
ties sketched in Figure 4 were implemented and integrated
in ConCreTeFlows either as internal (Python) functions,
wrapped standalone programs or as Web services. In addi-
tion, we implemented some additional components that sup-
port the user interaction and data processing. These are: (I)
components for Web page content retrieval and filtering and
(II) components for graph reformatting and visualization.

By connecting these software components, we composed
a ConCreTeFlows workflow that conducts a basic concep-
tual, textual and visual concept blending. The workflow is
presented in Figure 7 and is publicly available from:
http://concreteflows.ijs.si/workflow/137/

where it can be executed, changed and appended with
additional functionality.

In this workflow, two textual inputs are transformed into
conceptual graphs by a series of the Download web page,
Boilerplate removal and Text2Graph widgets. The first one



Figure 7: Workflow implementation in ConCreTeFlows (available at: http://concreteflows.ijs.si/workflow/137/).

obtains the Web page source from a given URL. In the ex-
ample presented in this paper, these are the Wikipedia pages
for two animals: hamster and zebra. The second widget
removes the headers, menus, navigation and similar non-
relevant content from the source. Finally, Text2Graph trans-
forms the textual content into conceptual graphs (output g),
which are available to other widgets with separately pro-
vided main entity (output meo). In the workflow, one of
the graphs is reformatted and visualized with the graph vi-
sualization widget. All outputs of Text2Graph widgets en-
ter the Blender basic which blends the two graphs together
and outputs a combined blended graph (output bg). This
one gets served to the Textifier widget, which produces a
textual description of the blend. Its output is presented by
a standard Display String widget. The two main entities
from Text2Graph widgets enter also the Vismantic2, which
either changes the texture of one to the texture of the other
(see Fig. 5a), or puts one in the usual surroundings of the
other (Fig. 5b). This way it creates four candidates for vi-
sual blends. This widget takes somewhat longer to run, as it
is in fact a call to a computationally intensive Web service.
Upon completion, the outcome is shown in an output similar
to the ones shown in Figure 5.

Workflow dissemination, reuse and extension
Any ConCreTeFlows workflow can either remain private or
be made public for the purposes of dissemination and repro-
ducibility of work. The workflow from the previous subsec-
tion is available from a public URL. This means that anyone
can open it in ConcreTeFlows. Everytime this happens, a
dedicated copy of the original workflow is made for that par-
ticular user. This allows any user not only to run the work-
flow with its original data and parameters, but also to change
the inputs, parameters and redesign the structure of software
components without affecting the original workflow.

Changing and extending a workflow is easy, but it requires
some insight on the format of data that is exchanged among
the widgets. This is usually made available in widget docu-
mentation, but can also be seen by observing the raw results
of a widget (right-click and Results).

In the following we describe a simple exemplary exten-
sion of our workflow from Figure 7.

Exemplary addition: PoeTryMe widget The system
named PoeTryMe (Gonçalo Oliveira and Cardoso 2015) is a
poetry generation platform with a modular architecture that
may be used to produce poetry in a given form, based on
a set of seed words. Semantically-coherent lines are gen-
erated using the seeds or related words, and are produced
by exploiting the knowledge in a semantic network and a
grammar with textual renderings of the covered relations. A
generation strategy selects some of the produced lines and
organises them to suit the given form.

The PoeTryMe widget is limited to some of the features of
the full system. Nevertheless, it can produce poetry in three
languages (Portuguese, Spanish and English), given one of
the available target forms (block of four, sonnet, ...), an open
set of seeds, and a surprise factor, between 0 and 1, with
implications on the selection of more or less semantically-
distant words.

Figure 8: Addition of the PoeTryMe widget to the workflow.

In our workflow, the PoeTryMe widget can be appended
to the Textifier widget (as shown in Figure 8) in order to
get also a poem inspired by the resulting blend. Here is an
example of a poem from a blend of hamster and zebra:

when the coat paints the water white and black
stadiums here make song each stand has his
have not yet grown by the familiar crack
will mine and leave where the great love is



Discussion and Future Work on Components
In the following, we discuss some of the encountered is-
sues and shortcomings of the components and processes that
are presented in this paper, as well as present some ongoing
work on their improvements and additions.

Graph representations and formats The use of graphs
for representing knowledge presents advantages in as much
as it is a simple format with significant expressive power.
In this sense it acts as a useful communication format for
the various components in the flows envisaged. However,
it has certain disadvantages in the sense that the graphs as
considered at present do not have a unique semantic inter-
pretation. Some of the modules produce graphs where re-
lations are represented as edges between nodes representing
objects, and others rely on graphs that represent relations as
nodes occurring in the path of the graph between nodes rep-
resenting objects. Even when the same approach to knowl-
edge representation in a graph is used, problems may arise
depending on the type of string used to label the nodes. Ex-
amples of problematic cases are: inflected verb forms used
as well as verbs in infinitive, nouns used in singular and/or
plural form, complex actions of the form stay at home...
At present the content determination stage of the Textifier
module is carrying out complex transformations to handle
these various inputs in a uniform fashion when it comes to
the final rendering. This requires the development of differ-
ent version of the content determination stage for receiving
input from different modules. It would be beneficial to make
progress towards a unified approach to graph representation
to allow blending operations to be carried out fruitfully be-
tween outputs generated by different modules. However, a
certain flexibility is desirable in these content determination
modules, so that they can tolerate inputs not altogether con-
forming to expectations. This is largely due to the open na-
ture of the ConCreTeFlows platform, which may see the ad-
dition of new modules that do not conform to any standards
set on graph representation, but also because the results of
conceptual blending operations may not always produce out-
put conforming to standards, even when the inputs to the
conceptual blending process do conform.

TextStorm Conceptual Maps TextStorm (Oliveira,
Pereira, and Cardoso 2001) is an NLP tool based on a
Definite Clause Grammar (DCG) to extract binary pred-
icates12 from a text file using syntactic and discourse
knowledge, not needing any preview knowledge about the
discussed domain. The resulting set of predicates constitute
a Conceptual Map. This tool can be used as an alternative
to the Text2Graph.

TextStorm receives text as initial base of the open infor-
mation extraction. After applying Part-of-Speech tagging
and querying WordNet (Miller 1995), it builds predicates
that map relations between two concepts from parsing of
sentences. Its goal is to extract from utterances like Cows,

12These predicates have the common Prolog form: func-
tor(Argument 1, Argument 2).

Figure 9: Imported Textstorm SOAP Web service used in
ConCreTeFlows.

as well as rabbits, eat only vegetables, while humans eat also
meat, the predicates eat(cow, vegetables), eat(rabbit, vegeta-
bles), eat(human, vegetables), eat(human, meat) which will
form its concept map. Since concepts in text are not named
every time the same way, TextStorm uses WordNet’s syn-
onymy semantic relationship to identify the concepts that
were already referred before with a different name.

Textstorm operates as a standards compliant SOAP Web
service and as such can be imported on-the-fly to ConCreTe-
Flows (see Figure 9).

Divago concept blender The concept blending method
that is currently used in the workflow from Figure 7 is
very basic.We are currently working on the adaptation of
a more elaborated blender, the pre-existing Divago (Pereira
2005), to offer its main functionalities as webservices in
ConCreTeFlows. This blender adopts the same graph for-
mat as TextStorm, i.e., the Conceptual Map format, for the
input and blended mental spaces.

The new blender, the DivagoFlow, is itself a flowchart
composed of two modules, the Mapper and the Blend Fac-
tory The first is responsible for finding analogy mappings
between two Input Spaces using structural alignment. More
precisely, it computes the largest isomorphic pair of sub-
graphs contained in the Input Spaces. The output mapping
is, for each pair of sub-graphs, the list of crossover rela-
tions between nodes of each of the input spaces. The Blend
Factory takes these mappings as input, as well as the Input
Spaces and a Generic Space. For each mapping, it performs
a selective projection into the Blend Space, which leads to
the construction of a Blendoid, an intermediate graph that
subsumes the set of all possible blends. This Blendoid feeds
an evolutionary process that explores the space of all possi-
ble combinations of projections of the Input Spaces taking
into account the Generic Space. This module uses an im-
plementation of the CB theory optimality principles (a set
of principles that ensure a coherent and integrated blend) as
fitness measure. When an adequate solution is found or a
pre-defined number of iterations is attained, the Blend Fac-
tory stops the execution and returns the best Blend.



Conclusions
We have presented the ConCreTeFlows platform for online
composition of computational creativity solutions. It is en-
tirely Web based and does not require installation for its use.
New processes in the platform can be designed as workflows
of software components, which are either made available in
the platform or even imported on-the-fly in case of SOAP
Web services13. Workflows can be either private or shared,
which makes for an elegant solution to dissemination and
reuse of one’s work and repeatability of experiments.

The main focus of the paper is on a use case, which shows
how the platform can be used in practice and presents sev-
eral computational creativity software components that were
combined in a collaborative effort to implement an inter-
esting conceptual blending solution. Namely, the result-
ing blends are not only conceptual but also visual and tex-
tual. The benefits of a unifying workflow for blending are
twofold: a user can get blends of various kinds through the
same user-interface and the components can affect one an-
other to produce a more coherent and orchestrated set of
multimodal blending results. While some of the presented
components are currently being updated from implementing
basic to more elaborate methods, the presented prototype so-
lution is fully operational and serves as a proof of concept
that such an approach to multimodal conceptual blending is
possible. Potential for use of such an approach is for exam-
ple in creation of news stories. Such a tool could form an en-
tire automated article on a funny and humorous or a serious
and thought-provoking blend of topics. All the components
of an article are there: the text, the picture, as shown, one
could even add a poem. Other potential uses of the approach
could be in art, advertising and human creativity support.

To make these things possible, as described in section Fu-
ture Work on Components, our future work will include im-
provement of the components and the workflow presented in
this paper. We will also continue with development and im-
provement of the presented platform to make creation of this
and other computational creativity solutions further more ef-
ficient, collaborative and fun.

Acknowledgments
This research was partly funded by the Slovene Research
Agency and supported through EC funding for the project
ConCreTe (grant number 611733) that acknowledges the
financial support of the Future and Emerging Technolo-
gies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission.

References
Bird, S. 2006. NLTK: the natural language toolkit. In Pro-
ceedings of the COLING/ACL on Interactive presentation
sessions, 69–72. Association for Computational Linguistics.
Charnley, J.; Colton, S.; and Llano, M. T. 2014. The FloWr
Framework: Automated Flowchart Construction, Optimisa-
tion and Alteration for Creative Systems. In Fifth Inter-

13REST services can currently only be wrapped into native wid-
gets.

national Conference on Computational Creativity (ICCC-
2014), 315–323.
Fauconnier, G., and Turner, M. 2002. The way we think:
Conceptual blending and the mind’s hidden complexities.
Basic Books.
Fauconnier, G. 1994. Mental Spaces: Aspects of Meaning
Construction in Natural Language. New York: Cambridge
University Press.
Gonçalo Oliveira, H., and Cardoso, A. 2015. Poetry genera-
tion with PoeTryMe. In Besold, T. R.; Schorlemmer, M.;
and Smaill, A., eds., Computational Creativity Research:
Towards Creative Machines, Atlantis Thinking Machines.
Atlantis-Springer. chapter 12, 243–266.
Kranjc, J.; Podpečan, V.; and Lavrač, N. 2012. Clowdflows:
A cloud based scientific workflow platform. In Flach, P. A.;
Bie, T. D.; and Cristianini, N., eds., ECML/PKDD (2), vol-
ume 7524 of Lecture Notes in Computer Science, 816–819.
Springer.
Mausam; Schmitz, M.; Bart, R.; Soderland, S.; and Etzioni,
O. 2012. Open language learning for information extrac-
tion. In Proceedings of Conference on Empirical Methods
in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CONLL).
Miller, G. A. 1995. Wordnet: A lexical database for english.
Commun. ACM 38(11):39–41.
Novak, J. 1998. Learning, Creating, and Using Knowledge:
Concept Maps as Facilitative Tools in Schools and Corpo-
rations. Mahwah, NJ: Erlbaum.
Oliveira, A.; Pereira, F. C.; and Cardoso, A. 2001. Auto-
matic reading and learning from text. In Proceedings of the
International Symposium on Artificial Intelligence, 69–72.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learn-
ing in Python. The Journal of Machine Learning Research
12:2825–2830.
Pereira, F. C. 2005. Creativity and AI: A Conceptual Blend-
ing approach. Ph.D. Dissertation, Dept. Engenharia In-
formática da FCTUC, Universidade de Coimbra, Portugal.
Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Studies in Natural Language Process-
ing. Cambridge University Press.
Schorlemmer, M.; Smaill, A.; Kühnberger, K.-U.; Kutz,
O.; Colton, S.; Cambouropoulos, E.; and Pease, A. 2014.
COINVENT: Towards a computational concept invention
theory. In Proceedings of the 5th Int. Conference on Compu-
tational Creativity, ICCC-14, Ljubljana, Slovenia, 288–296.
Thagard, P., and Stewart, T. C. 2010. The AHA! expe-
rience: Creativity through emergent binding in neural net-
works. Cognitive Science 35(1):1–33.
Veale, T., and O’Donoghue, D. 2000. Computation and
blending. Cognitive Linguistics Special Issue on Conceptual
Blending:253–282.
Xiao, P., and Linkola, S. 2015. Vismantic: Meaning-making
with images. In Proceedings of the Sixth International Con-
ference on Computational Creativity, ICCC2015, 158–165.


