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Rule Discovery in Telecommunication Alarm Data

Mika Klemettinen,1 Heikki Mannila,1,2 and Hannu Toivonen1,3,4

Fault management is an important but dif® cult area of telecommunicatio n network

management: networks produce large amounts of alarm information which must be

analyzed and interpreted before faults can be located. So called alarm correlation is a

central technique in fault identi® cation. While the use of alarm correlation systems is

quite popular and methods for expressing the correlations are maturing, acquiring all

the knowledge necessary for constructing an alarm correlation system for a network

and its elements is dif ® cult. We describe a novel partial solution to the task of

knowledge acquisition for correlation systems. We present a method and a tool for the

discovery of recurrent patterns of alarms in databases; these patterns, episode rules,

can be used in the construction of real-time alarm correlation systems. We also present

tools with which network management experts can browse the large amounts of rules

produced.

The construction of correlation systems becomes easier with these tools, as the

episode rules provide a wealth of statistical information about recurrent phenomena in

the alarm stream. This methodology has been implemented in a research system called

TASA, which is used by several telecommunicatio n operators. We brie¯ y discuss

experiences in the use of TASA.

KEY WORDS: Alarm correlation; fault identi® cation; rule discovery; data mining;

episodes.

1. INTRODUCTION

Telecommunication networks are growing fast in size and complexity, and at the

same time their management is becoming more dif® cult. The task of identifying

and correcting faults in telecommunication networks is a critical task of network

management: faults that interfere with the services offered by the network are
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costly for the operator. The quality of services plays also an important role in

the growing competition between operators.

Network elements produce large amounts of alarms about the faults in a

network. Fully employing this valuable data in network management is dif ® -

cult, however, due to the high volume and the fragmented nature of the infor-

mation. Moreover, changes in equipment, software, and network load mean that

the characteristics of the alarm data change.

Our approach to the task of processing alarms is supplementary to alarm

correlation, a central technique in fault identi® cation [1±8]. In alarm correlation,

a management center automatically analyzes the stream of alarms, noti® cations,

and clear messages it receives from a telecommunication network. Alarm cor-

relation is typically based on looking at the active alarms within a time win-

dow, and interpreting them as a group. This interpretation can result in ® ltering

of redundant alarms, identi® cation of faults, and in suggestions for corrective

actions. The goal of alarm correlation systems is to reduce the workload of net-

work managers by processing the large alarm data set into a smaller but more

useful set of reports.

While the use of alarm correlation techniques is popular and methods for

expressing the correlations are maturing, acquiring all the knowledge necessary

for constructing an alarm correlation system for a network and its elements is

dif® cult. The complexity and diversity of network elements and the large vari-

ation in the patterns of alarm occurrences pose serious problems for network

management experts building a correlation model.

In this paper, we present methods for semi-automatic discovery of patterns

in alarm databases; these methods help in the construction of alarm correlation

systems. We use novel algorithms to discover recurrent patterns in large alarm

databases. We then apply iterative information retrieval methods to give ¯ exible

views to the discovered patterns. The process we propose for building alarm

correlation systems contains the following three steps:

1. Semi-automatic discovery of alarm patterns (off-line).

2. Construction or modi® cation of an alarm correlation system. The expert

knowledge has a key role here, and the purpose of the discovered pat-

terns is only to aid the experts in recalling and formulating correlation

patterns.

3. Application of the correlation system in real-time alarm management.

We contribute to the ® rst step of the process, the semi-automatic discovery

of recurrent patterns of alarms. Steps 2 and 3 have been discussed elsewhere

[1±8].

The ideas expressed in this article have been implemented in a system

called TASA, for Telecommunication Alarm Sequence Analyzer. The TASA

system has been developed in co-operation with four telecommunication compa-
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nies. These companies have been using a prototype version of TASA with good

results.

The rest of this article is organized as follows. In Section 2 we brie¯ y review

network surveillance and alarm correlation, and describe our scenario for build-

ing alarm correlation systems with the help of TASA. Our contribution starts

from Section 3 where we present our rule formalisms and outline the algorithm.

We then describe in Section 4 the whole pattern discovery process using the

TASA system. Experiences in using the methods and performance results are

discussed in Section 5. Section 6 is a short conclusion.

1.1. Related Work

For related work in the area of alarm correlation see [1±8]. Similar

approaches have been used successfully also in process control tasks [9]. For

a recent survey about fault management in communication networks, see [10].

Our approach and methods draw from the ® eld of Knowledge Discovery and

Data Mining (KDD); for overviews, see [11, 12]. KDD can be loosely de® ned

as the task of obtaining useful and interesting knowledge from large collections

of data. It combines methods and tools from machine learning, statistics, and

databases. A related approach for the automatic acquisition of network manage-

ment knowledge from the existing data has been considered before in [13].

Our approach of discovering all frequent patterns can be contrasted with

numerous methods, e.g., in machine learning, which are more focused and pro-

duce one or at most a few patterns that match the given problem speci® cation.

These methods usually require one target concept, e.g., one particular fault, and

they ® nd regularities related to this concept but leave any other potentially inter-

esting phenomena unfound. The advantage of those systems is that the patterns

they ® nd are more expressive than the relatively simple rules that we use.

Something can also be said of various KDD systems. Explora [14, 15] ® nds

interesting instances of statistical patterns. The patterns discovered by 49er [16]

are contingency tables, equations, and logical equivalences. The Key Finding

Reporter (Ke® r) [17, 18] tailored with a lot of domain knowledge, discovers

and explains deviations, and gives recommendations for corrective actions. To

the best of our knowledge, none of these systems is directly applicable to discov-

ery in temporal sequences of events such as alarms. These systems also differ

substantially from the methodology we propose. Until recently, most knowledge

discovery methods were designed for the analysis of unordered collections of

data. The interest in sequential data has now increased: see e.g., [19±26].

Our algorithm for the discovery of frequent episodes works in a generate-

and-test manner. The testing phase is similar to matching correlation rules to the

stream of incoming alarms (see e.g., the Rete algorithm [27] used by a number

of expert systems). There are similarities also to string matching (e.g., [28]).
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Matching episodes to a sequence can be seen as locating all occurrences of sub-

sequences, or matches of patterns with variable length ª don’ t careº  symbols,

where the length of the occurrences is limited by the window width. Recent

results on the pattern matching aspects have been reported by Das et al. [29].

2. ALARM CORRELATION

Alarm correlation is a central technique for processing the ¯ ow of alarms

arriving in a management center into a smaller but more useful set of reports.

In this section we give a brief overview of the task of correlating alarms.

2.1. Alarms

Faults in a telecommunication network are reported to management centers

in the form of alarms. An alarm is a message emitted by a network element,

typically when a problem is encountered. Unfortunately, a network element has

a very narrow view to the network, and can therefore only report the symptoms

of the fault from its limited viewpoint. On the other hand, one fault can result

in a number of different alarms from several network elements.

We view an occurrence a of an alarm as a triple a = (t, s, m), where t is the

time of the alarm a, s is the sender of the alarm, and m is the alarm message.

The time is recorded by the sender, typically at a granularity of one second. The

sender of the alarm can be identi® ed at the level of, e.g., a network element or a

managed object. The alarm message describes the problem with the information

that is available to the sender.

In addition to alarms, different noti® cations and clear messages are emit-

ted by network elements. There are also events originating from the network

management personnel, such as acknowledgments of alarms. All these different

types of messages should be handled in alarm correlation systems. Although we

for simplicity only talk about alarms in the rest of this article, the methods and

ideas should be understood to cover any types of events and messages available.

The information contents of alarm messages vary a lot. Some alarms con-

cern problems in logical concepts, such as virtual paths, some concern physical

devices, such as power supplies. Some alarms report a distinct failure, e.g., that

the incoming signal is missing, whereas some only report a high error rate with-

out any hint for the cause.

Example 1. An example of the format of an actual alarm is given in Fig.

1. Here, the date and time ® elds make up the alarm time t and the alarming

element ® eld is the sender s. The alarm message m is then considered to contain

the information of the rest of the ® elds. Actually, the alarm type often determines

uniquely the other information of m, and in such cases it is possible to consider

the alarm type alone as the alarm message m.
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Fig. 1. An example of the format of an actual alarm.

2.2. Correlation

The task of a management center is to correlate the alarms as they are

received from the network (Fig. 2). Correlating alarms means combining the

fragmented information they contain and interpreting the ¯ ow of alarms as a

whole. Alarm correlation systems typically are expert systems performing oper-

ations such as (i) removing alarms carrying redundant information, (ii) ® ltering

out low-priority alarms when higher-priority alarms are present, or (iii) substi-

tuting a set of alarms by some new information [4]. The goal of alarm corre-

lation is to reduce the amount of information shown to the network managers,

improve the usefulness of the information, and ultimately to identify the most

probable faults that caused the alarms and to possibly even propose corrective ac-

tions.

In addition to the alarms received from a network, several sources of back-

ground information are essential in alarm correlation. Knowledge about the topo-

logical relationships of senders of alarms is crucial. This contains at least infor-

mation about the topology of network elements and the managed object contain-

ment hierarchy. Information about alarms, e.g., a hierarchy of alarm types, is also

useful. A lot of other sources are useful for interpreting alarms. For instance,

knowledge about recent problems in the network may help to explain certain

alarms.

Fig. 2. The ¯ ow of alarms from a telecommunicatio n network in an alarm correlation system.



Klemettinen, Mannila, and Toivonen400

Fig. 3. Example of a correlation action.

We adopt the following formal view to alarm correlation, similar to the

one taken by Jakobson and Weissman [3]. Abstractly, the input to a correlation

system is an ordered alarm sequence (t1 , s1 , m1), (t2 , s2 , m2), . . . of alarm occur-

rences, where ti £ ti + 1. A correlation pattern describes a situation that can be

recognized in an alarm sequence within a time window of a given length. Typi-

cally, a correlation pattern is an expression on the set of active alarms of, e.g.,

the last ® ve minutes. If in a given window there is a set of alarms that matches

the correlation pattern, then the set is said to be an occurrence of the pattern.

Associated with each correlation pattern is a correlation action, which is to be

executed when there is an occurrence of the corresponding pattern in a window.

The correlation action takes care of, e.g., ® ltering of alarms.

Example 2. Consider a correlation pattern containing two alarms, ª link

alarm from X with severity 1º  (alarm type A) and ª high fault rate in X º  (alarm

type B), where the variable X may be replaced by the same sender in both alarms.

Assume that when alarms of types A and B co-occur, they are known to be fol-

lowed by fatal problems in their sender X . The correlation action could combine

the information in the alarms to a high priority warning message ª X will probably

collapse within an hour º  (message type C ), present it to the network manager,

and ® lter out the original alarms (see illustration in Fig. 3).

Given correlation patterns and actions, and a sequence S of alarms, an alarm

correlation process continuously observes the incoming alarm sequence S, con-

siders the last time window on S, and executes the actions associated with the

patterns that match the window.

Correlation systems need to be prepared to deal with problems caused by

delayed alarms, wrong and missing time stamps, and even missing alarms. Small

delays are typically no problem, since the alarms can be considered in the order

of their time stamps rather than the order of arrival. The correlation system must,

then, be capable of backtracking its actions if delayed alarms provide novel infor-

mation. Unfortunately, there often are inaccuracies in the clocks of network ele-

ments and the order of alarms cannot be reliably inferred from the time stamps.

Then the correlation system cannot rely on the exact order of the alarms, but,

e.g., on the temporal proximity of the alarms. How to handle missing time stamps

and missing alarms is very much case dependent. Statistical information about

alarms and their occurrences can be useful when deciding how to prepare for

missing alarms.
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Fig. 4. Use of rules discovered in an alarm database in the construction of alarm correlation systems.

2.3. Building an Alarm Correlation Model

Building a model for alarm correlation is a dif® cult task. Networks are large

and network elements are complex. The number of correlation patterns can be

very large, and acquiring them from technical experts is a tedious task.

Correlations may pass unnoticed by the experts, for different reasons. It can

be that an expert knows a correlation but did not come to think about it, or a

correlation can be such that the expert did not even know there was a connection

between certain alarms. Both networks and network elements evolve quickly

over time, so a correlation system is never complete. It also takes time for the

experts to learn new correlations and to modify existing ones.

We propose semi-automatic methods for the analysis of alarms, to aid in

the knowledge acquisition phase, and to give new views to the alarms (Fig. 4).

The central idea is to discover recurrent patterns of alarms. Such a pattern can

be, for instance, a set of alarms that occurs frequently, or a pattern can state that

a certain alarm tends to be followed by another alarm from the same sender.

Brie¯ y, our scenario for building alarm correlation systems is the following.

· First, a large database of alarms is analyzed off-line, and temporal con-

nections between different types of alarms are discovered automatically.

· Then, in the construction of an alarm correlation system, the network

management specialists have access to a large collection of alarm pat-

terns and their statistical properties in the analyzed data.

· In the ® nal step, the correlation rules are applied in real-time fault iden-

ti® cation.

The construction of alarm correlation systems can hardly be automated:

automatically discovered episodes only present statistical properties of recurrent

combinations of alarms. Expert knowledge is essential in evaluating the patterns

and in assigning proper correlation patterns and actions, not to mention the vast

amount of knowledge that cannot be found or expressed using episodes. The pur-

pose of the methods presented in the following section is to help building alarm

correlation systems rather than replace them or network management experts.
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3. DISCOVERING PATTERNS IN ALARMS

3.1. Overview

TASA discovers two kinds of recurrent patterns, episode rules [24] and

association rules [30]. Episode rules describe temporal proximity and temporal

ordering of recurrent combinations of alarms in a given alarm database, and they

can be used as the basis for correlation patterns. Association rules describe, in

turn, the properties of individual alarms without taking the temporal relationships

of the alarms into account.

The general form of episode rules is the following:

If a certain combination of alarms occurs within a time period, then another

combination of alarms will occur within a time period with a certain prob-

ability.

The rule format is fairly simple, but powerful enough to capture various

phenomena in alarm sequences. Episode rules are easy to understand, and they

closely correspond to the patterns used by many alarm correlation systems.

Example 3. An example of an episode rule is:

ª If alarms of types link alarm and link failure occur within 5 seconds, then

an alarm of type high fault rate occurs within 60 seconds with probability

0.7.º

Association rules are of the following form:

If an alarm has certain properties, then it has other given properties, with

some con® dence.

Most of the useful rules that can be discovered are not 100% certain. TASA

discovers rules with arbitrary strengths: it outputs all rules from a class speci-

® ed by the user, and gives with each rule a con® dence factor which tells exactly

how strong the rule is in the analyzed alarm database. If there are errors in the

analyzed alarms, such as missing alarms, or wrong or missing time stamps, two

policies can be adopted. If the errors are known, they can be ® xed before epi-

sodes are searched for. Alternatively, episodes can be discovered in the original

data, in which case the picture given by the discovered episodes can be more

realistic. For instance, a con® dence close to 100% can suggest that there is an

actual causal relation between alarms, but in some cases alarms were missing.

In the rest of this section we describe the rule types in more detail and

outline the algorithm that discovers all such rules satisfying certain user-given

conditions.
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3.2. Episode Rules

The properties of alarms that we consider in the rules are formalized as

alarm predicates. An alarm predicate u is an expression that can be evaluated

from a single occurrence a = (t, s, m) of an alarm. Alarm predicates typically

express properties such as ª alarm type is link failureº , ª alarm occurred during

of® ce hoursº , or ª alarm type is link failure or link alarm , and alarm severity class

is 3º . In episode rules, alarm predicates typically only concern alarm types. With

association rules, however, also other types of alarm predicates are useful.

We consider two subtypes of episodes. A serial episode imposes an order

on the alarms, whereas an unordered episode ignorant to the order of alarms.

Both types of episodes require temporal proximity of the alarms.

A serial episode is a sequence á A1 , . . . , Ak ñ of alarm predicates. Infor-

mally, the episode corresponds to k alarms that satisfy the predicates Ai . For-

mally, given a sequence S = á a1 , . . . , an ñ of alarms, a serial episode a = á A1 ,

. . . , Ak ñ occurs in S if there is an injective mapping f :{1, . . . , k} ± ± > {1, . . . ,

n} such that for all i, 1 £ i £ k, predicate Ai is satis® ed by alarm af (i) , and

for all i, 1 £ i £ k ± 1 we have f (i) < f (i + 1). We say that an episode b = á B1 ,

. . . , Bl ñ is a subepisode of a if there is an injective mapping h :{1, . . . , l} ± ± > {1,

. . . , k} such that for all i, 1 £ i £ l we have Ah(i) = Bi and for all i, 1 £ i £ l ± 1

we have h(i) < h(i + 1).

Unordered episodes are similar to serial episodes except that the order of the

alarms is ignored. An unordered episode is a multiset a = {A1, . . . , Ak} of alarm

predicates, and a occurs in given sequence S = á a1 , . . . , an ñ if there is an injective

mapping g :{1, . . ., k} ± ± > {1, . . . , n} such that for all i, 1 £ i £ k, predicate Ai

is satis® ed by alarm ag(i) . Another unordered episode b is a subepisode of a if

and only if b Í a .

Example 4. Consider the sequence of alarm types in Fig. 5. The serial

episode consisting of alarm types E and F in that order occurs several times in

the sequence. Alarms E and F may be causally related and perhaps a correlation

pattern that predicts F when E has just occurred could be usefulÐ the network

management expert should verify this. An unordered episode consisting of alarm

types A and B, i.e., A and B in either order, occurs also several times.

Often the events that cause alarms have a certain causal order and, corre-

spondingly, alarms are also emitted in a certain sequence. While serial episodes

take the order of alarms into account, unordered episodes are in some cases

Fig. 5. Example sequence of event types.
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more useful in practice: they are more robust with respect to delayed alarms and

slightly inaccurate time stamps. Unordered episodes are also more general in the

sense that if a serial episode occurs frequently, then the corresponding unordered

episode does, too.

The occurrence of both serial and unordered episodes is insensitive to unre-

lated alarms in the sequence. The alarms of an episode need not be consecutive

in the alarm sequence, it is suf® cient that correct alarms occur within the time

bounds speci® ed. This is obviously useful: it is typical that alarms caused by

unrelated problems are merged in the incoming sequence. For the discovery of

frequent episodes such unrelated alarms are usually not problematic. If two prob-

lems co-occur only by chance, then combinations of alarms from both problems

tend to have low frequencies, and episode rules cross-predicting alarms tend to

have low con® dences.

For an exact formulation of episode rules we consider the concept of a

minimal occurrence of an episode. We identify minimal occurrences with the

time intervals in which they occur in the following way. Given an episode a and

an event sequence S, we say that the interval [ts , te] is a minimal occurrence of

a in S, (1) if a occurs in the subsequence of S starting at time t s and ending

at time te , and (2) if a does not occur in any proper subinterval. The set of

minimal occurrences of an episode a in a given event sequence is denoted by

mo( a ): mo( a ) = {[ts , te] | [ts , te] is a minimal occurrence of a }.

An episode rule gives the conditional probability that a certain combina-

tion of alarms occurs within some time bound, given that another combination

of alarms has occurred within a time bound. Formally, an episode rule is an

expression b [win1] ± ± > a [win2], where b and a are episodes such that b is a

subepisode of a , and win1 and win2 are integers. The interpretation of the rule

is that if episode b has a minimal occurrence at [t s , te] with te ± ts £ win1 ,

then the whole superepisode a occurs at interval [t s , t ¢e] for some t ¢e such that

t ¢e ± t s £ win2 .

Each episode rule is characterized by two values. The con® dence of the

rule b [win1] ± ± > a [win2] is the conditional probability (in the analyzed alarm

sequence) that a occurs, given that b occurs, under the time constraints speci-

® ed by the rule. We omit the straightforward but notationally cumbersome exact

de® nition. The frequency of an episode rule is the absolute number of times that

the whole rule, i.e., a , occurs in the database. Both con® dence and frequency

are useful measures for the utility of a rule, e.g., in a prediction task: a high con-

® dence means that the rule gives reliable predictions, whereas a high frequency

means that the rule can be applied often.

Example 5. An example of episode rule types discovered in the TASA

system are:

If an alarm of type link alarm is followed by an alarm of type link failure
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within 5 seconds, then an alarm of type high fault rate will follow within

60 seconds with probability 0.7:

link alarm(a) < link fai lure(b) [5] Þ < high faul t rate(c) [60] (0.7)

We use the ª less thanº  operator ª < º  to denote the order of alarms in serial

episodes and episode rules. The corresponding unordered episode rule

link alarm(a), link fai lure(b) [5] Þ high fault rate(c) [60] (0.7)

would say that if link alarm and link failure occur in any order within

5 seconds, then high fault rate occurs within 60 seconds, but possibly

already between the ® rst two alarms.

These types of rules suggest groups of alarms that are potentially causally

related, and also indicate their temporal relation. Given such rules holding in an

alarm database, a fault management expert is able to verify whether the rules are

useful or not. Some of the rules may re¯ ect known causal connections, some may

be irrelevantÐ and some rules give new insight to the behavior of the network

elements.

3.3. Association Rules

Formally, an association rule is an expression X Þ Y , where X and Y

are sets of predicates. Given a set of alarms, the con® dence of such a rule is

the conditional probability with which all the predicates in Y are satis® ed by an

alarm in the database given that all the predicates in X are satis® ed by the alarm.

In other words, association rules describe which properties tend to co-occur, and

with which probability. The frequency of an association rule is the fraction of

alarms that satisfy the rule.

Example 6. Examples of association rule types found by TASA are:

· If an alarm a is of type link alarm , then it was sent by the network element

EL1 with probability 0.5.

link alarm(a) Þ EL1(a) (0.5)

· If an alarm a is sent during of® ce hours by an element of type base station,

then the alarm has severity level 1 with probability 0.9.

of f ice hours(a), base station(a) Þ severity 1(a) (0.9)

Such rules give an overview of what the alarms in the database are like. A
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comparison with association rules from last week, last month, etc. can point out

trends and changes. Unusually high con® dences may point to potential anomalies

in the network.

3.4. The Basic Algorithm for Finding Rules

The episode rule discovery task in the TASA system can be formalized as

follows. Given a sequence S of alarms, a set E of alarm predicates, a frequency

threshold c, and a set W of integers, ® nd the con® dences of all episode rules of

the form b [win1] Þ a [win2], where b and a are episodes built from alarm pred-

icates in E , b is a subepisode of a , and win1 , win2 Î W , and whose frequency

is at least c. With different speci® cations of these parameters, of E in particular,

the user can have different views to the analyzed data. We return to the issue of

specifying the parameters in Section 4.1.

For association rule discovery, an alarm database S, a set E of alarm pred-

icates, and a frequency threshold c are given, and the task is to ® nd the con® -

dences of all rules X Þ Y , where X , Y Í E , whose frequency is at least c.

The main algorithms for the two tasks are based on the same basic idea.

Our focus will be on the more complex task of discovering episode rules. We

® rst discuss how the frequently occurring episodes (or predicate sets for associ-

ation rules) are computed. We then show how rules can be obtained from this

information.

3.4.1. Computing Frequent Episodes or Predicate Sets

The problem we consider is the following. Given S, E , c, and W as before,

® nd all episodes that have at least c minimal occurrences of length at most win*,

where win* = max{w Î W }. The following algorithm outputs all such episodes.

1. C1 := {{e} | e Î E };

2. i := 1;

3. while C i ? Æ do

4. recognition : read the sequence S, and let F i be the collection of

episodes of C i that occur at least c times;

5. building: compute C i + 1 to contain those episodes that have i + 1

alarm predicates and whose all subepisodes occur at least c times;

6. i := i + 1;

7. od;

8. for all i, output F i;

The algorithm starts with simple episodes and proceeds to larger episodes.

It works iteratively: ® rst a candidate collection C i is generated, candidates are

counted in the alarm sequence, those occurring often enough are saved in the

collection Fi , and ® nally new candidates are generated again.

Essential for the ef® ciency of the algorithm is the following observation.
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If an episode does not occur often enough, then its superepisodesÐ which are

more speci® cÐ cannot occur often enough. Therefore, the candidate collection

C i of episodes is built (Step 5) to contain only episodes whose all subepisodes

occur often enough. More details can be found in [24].

To ® nd frequent predicate sets, essentially the same algorithm and the same

observation hold. Candidates are now sets of predicates, and the input S is seen

as an unordered collection of alarms. In Step 4, ª recognitionº , for each candidate

set the number of satisfying alarms is computed and compared to the frequency

threshold. In Step 5, ª buildingº , new candidate sets are constructed such that

every subset of a candidate set is frequent [31].

This basic algorithm can be modi® ed to take into account, e.g., the net-

work topology, the types of network elements, or an alarm type hierarchy. For

instance, episodes can be required to consist of alarms from network elements

whose distance is small in the network topology. A simple way to implement

such a restriction is to modify Step 4, the recognition of episodes: only accept

occurrences such that the alarms ful® ll the desired restriction. The properties of

different types of networks and network elements can be used to design more

specialized knowledge discovery methods. For reasons of brevity, we restrict

ourselves to this earlier algorithm without such modi® cations.

3.4.2. Rule Generation

We now show how the con® dences of rules can be computed, once the

frequent episodes or predicate sets are known.

Recall that we de® ned an episode rule as an expression b [win1] Þ a [win2],

where b and a are episodes such that b is a subepisode of a , and win1 and

win2 are integers. To ® nd such rules, ® rst note that for the rule to be frequent,

the episode a has to be frequent. So rules of this form can be enumerated by

looking at all frequent episodes a , and then looking at all subepisodes b of a .

The evaluation of the con® dence of the rule b [win1] Þ a [win2] can be done

in one pass through the minimal occurrences of b and a , as follows. For each

minimal occurrence [ts , te] of b with te ± ts £ win1 , locate the ® rst minimal

occurrence [us , ue ] of a such that ts £ us . Then check whether ue ± t s £ win2 .

For association rules the rule generation is even simpler. Given a frequent

predicate set X , for all its subsets Y Ì X we have that the con® dence of the

rule (X / Y ) Þ Y is the frequency of X divided by the frequency of X /Y . Since

the frequencies of all frequent sets have already been computed in Step 4, the

database is not needed for the rule generation at all.

4. RULE DISCOVERY PROCESS WITH TASA

Our discovery methods ® nd all rules that hold in the given alarm database

with respect to user-given speci® cations. The idea is that a large collection of
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valid patterns is discovered at once, and different views to the data are then sup-

ported effectively by different views to the collection of patterns. The discovery

step is fully automatic, given the parameters of the algorithm. The second part,

viewing the episodes, contains a minimal amount of computation and is based

on user interaction only.

In this section we review two important aspects of this approach: speci® ca-

tion of the criteria according to which all rules are automatically discovered, and

the user interface methodology for browsing large collections of rules. These two

steps are where the network management expertise is brought into the process

of discovering patterns.

4.1. Rule Discovery

The user speci® es the following parameters for the discovery of rules

(Fig. 6).

4.1.1. Alarm Predicates

Alarm predicates are the expressions used to refer to the (properties of)

alarms, and they are given by the user. For episode rules, the type of the alarm

and the sender of the alarm are the most typical predicates.

In the most simple case only the alarm type is considered. Then episodes

reveal connections between types of alarms without respect to the network ele-

ments that sent the alarms. Alternatively, e.g., predicates specifying (sender,

Fig. 6. The environment of the TASA system.
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alarm type) pairs can be considered, making it explicit that the input is merged

from alarms from several senders in the network. An episode rule found with

predicates like this shows connections between different types of alarms from

particular network elements. Predicates consisting of the (sender type, alarm

type) pair have actually proved to be one of the most useful forms: episode

rules between types of alarms in different types of devices seem to describe the

network behavior in a reasonable level of abstraction.

For association rules we consider also predicates such as the priority of the

alarm, the day of the week, whether the alarm occurred during of® ce hours or

not, etc.

4.1.2. Set of Time Bounds

For episode rules, the user also supplies a set W of time bounds with which the

rules are constructed. Two aspects guide the setting of W . (1) The maximum time

bound in W should be larger than the maximal temporal duration of the phenomena

that are searched for. (2) The number of time bounds in W directly affects the tem-

poral granularity at which episode rules are found. Our fault management experts

have typically preferred time bounds ranging from 5 seconds to 10 minutes, e.g.,

with roughly logarithmically growing time bounds 5 s, 10 s, 30 s, 1 min, 2 min, 5

min, 10 min. The higher the number of time bounds is, the higher the number of

rules is, too. The effect on the running time is not strong.

4.1.3. Frequency Threshold

For both episode and association rules, a frequency threshold is given by

the user. The method outputs all episode and association rules speci® ed by the

earlier parameters, whose frequency is at least the user-speci® ed threshold.

Recall that the method is aimed at discovering statistical rules, not spotting

interesting individual cases. With the frequency threshold the user is able to

® lter out rules that are too rare to be trustworthy. For instance, with a frequency

threshold of 20 an episode is output only if it appears at least 20 times in the

analyzed database. The algorithm is complete in this respect: it is guaranteed to

output all episodes that have at least 20 occurrences.

The frequency threshold is crucial for the running time of the algorithm. If

the threshold is low, also rules that occur rarely are included in the output, and

the discovery time is longer. Suitable values depend heavily on the nature and

amount of data. For a database with 100 000 alarms, thresholds in the range of

50 to 500 may be reasonable.

4.1.4. Con® dence Threshold

For both episode and association rules, the user also speci® es a con® dence

threshold d. The algorithm then outputs all episode and association rules whose

con® dence is at least d.

The con® dence threshold allows the user to ® lter out rules that are too weak
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to be useful. For instance, a con® dence threshold of 80% limits the output to rules

that hold with at least 80% certainty. The con® dence threshold has no particular

effect on the running time, so it is useful to specify a low threshold in the rule

discovery phase and to prune weak rules later interactively with the user interface

tools.

The discovery method outputs each episode rule and association rule sat-

isfying the above conditions. The conditions should typically be quite loose, so

large amounts of rules are discovered. For each rule, TASA outputs the con® -

dence and the frequency, and an estimate of the statistical signi® cance of the

rule.

4.2. User Interface to Discovered Rules

Our motivation for discovering a lot of rules at once is that network manage-

ment expert’ s requests for different viewpoints to the data can then be responded

very quickly: a new pattern discovery phase is not necessary, but simply a new

view to the already discovered patterns.

TASA offers a variety of focusing and ordering criteria for rules and sup-

ports iterative retrieval from the discovered knowledge. Network management

experts can manipulate the rule set using selection and sorting operations, as well

as more complex operations for including or excluding certain classes of rules.

The following types of operations are supported for creating and manipulating

views to the collection of discovered rules.

1. Focusing: presentation only of a subset of rules, after explicit removals

of uninteresting rules and selections of (potentially) interesting ones.

2. Sorting of rules according to various criteria.

3. Clustering: grouping of rules into classes of related rules.

While creating a focus, simple threshold-like restrictions, such as rule fre-

quency and con® dence may satisfy a large number of rules. In our approach,

this problem can be alleviated by selecting rules to or removing rules from the

view by templates [32]. Hoschka and Kl Èosgen [14] have also used templates

for de® ning interesting knowledge, and their ideas have strongly in¯ uenced our

work. Their approach is based on few ® xed statement types and partial ordering

of attributes, whereas our approach is closer to regular expressions.

We de® ne templates as simple regular expressions that describe, in terms

of alarm predicates, the form of rules that are to be shown or not shown. More

formally, a template is an expression

A1 , . . . , Ak Þ Ak + 1 , . . . , Al ,
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where each Ai is either an alarm predicate, the name of an alarm predicate col-

lection, or an expression C+ or C *, where C is a collection name.5 Here C+ and

C * correspond to one or more and zero or more instances of the collection C ,

respectively. A rule

B1, . . . , Bm Þ Bm + 1 , . . . , Bn

matches a template if the rule can be considered to be an instance of the pattern.

This simple technique, sketched in Example 7, is surprisingly powerful.

Example 7. Focus can be set to, e.g., day-time alarms by selecting only

association rules that contain the predicate ª of® ce hours = yesº . Or, episode rules

containing alarms from separate subnetworks can be obtained by using templates

that reject all rules where the senders are in the same subnetwork.

The template concept can be combined with thresholds for rule frequency,

con® dence, and signi® cance. The user may state restrictions such as ª rule fre-

quency must be between 5% and 30%º , ª rule con® dence must be at least 80%º ,

and ª rule signi® cance must be over 0.95º . In this case the user ® lters out very

rare and reasonably frequent rules, and further on selects only those that are both

strong and statistically signi® cant.

Several selecting and removing templates can be used simultaneously to

achieve the desired viewpoint. To be shown, a rule must match all positive tem-

plates and none of the negative ones.

An essential feature of TASA is the support for iterative browsing of rules:

templates can be added and edited easily, so it is convenient to try out different

focuses to the data. This is very useful for exploratory analysis of the alarm data.

Typically the most useful ® ndings are unexpected, and templates allow ¯ exible

navigation in the data when tracing hints for interesting rules.

Sorting of the rule set can be based on the alarm predicates in the rules,

e.g., types or severities of the alarms, the sender, etc., or on the numerical values

of the con® dence, frequency, or statistical signi® cance of the rules. For instance,

in Example 7 the resulting rule set could be arranged so that the rules are listed

in descending order by their signi® cance and con® dence, or in ascending alpha-

betical order. Although sorting can be considered as rather trivial operation, it

is often enough to ful® ll basic clustering needs.

Clustering of rules aims at giving a larger picture of the behavior of the

alarm sequence. In the data there are often various explanations for the occur-

rence of a particular alarm type, say path unavailable . Clustering methods can

be used to assign rules to groups so that two rules with the right-hand side

path unavailable belong to the same cluster if they often explain or predict path

5A i can also be a regular expression.
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Fig. 7. Distance histogram for the left-hand and right-hand sides of a rule 1234 Þ 5678. The x-axis

represents time in seconds, the y-axis the number of occurrences when alarm 1234 is followed by

5678 after x seconds.

unavailable in similar situations [33]. This can be useful in pointing out poten-

tially related rules. By extending the clustering to a Scatter/Gather like method

[34], clustering results could be utilized interactively in browsing the rule set.

For visualization the TASA system offers some simple facilities. For exam-

ple, an interesting picture of the interaction between the left and right-hand sides

of an episode rule can be obtained by drawing a histogram showing the distance

from each occurrence of the left-hand side to the nearest occurrence of the right-

hand side. Such histograms are valuable guides for locating possible periodic

relationships between the left and right-hand sides, as is demonstrated by Fig.

7. Note that the episode rule formalism does not fully capture the details of such

relationships.

The original user interface of TASA was based on HTML language to be

used with standard WWW browsers for HTML documents. The current version

of TASA, JTASA, is written in Java language and it is a client/ server system.

The main component of the system is the JTASA server, which takes care of

the management of original data as well as the generation and management of

the results produced according to the users’  requests. Thus, JTASA clients only

initiate actions at the server side and then show the results.

Brie¯ y, the structure of the system is as follows. At client side, there is a ® le

manager window from which the user can both select data sets for association
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Fig. 8. Example window of the new TASA system (rule viewing).

and episode rule creation and view generated rule sets. In the rule creation part,

the user can give detailed instructions for rule generation as described in Section

4.1. The rule viewing window (Fig. 8) is based on the use of templates with some

additional features for de® ning the number of items in IF and THEN parts of

the rule, and for sorting the rules. Other functionalities include statistics about

the data set, alarms of the data set, and predicates used.

5. EXPERIENCES IN USING TASA

Different versions of TASA have been in prototype use in four telecom-

munication companies since the beginning of 1995, and experiences are encour-

aging. In Section 5.1 we discuss hands-on experience in using TASA and give

examples of the use of discovered rules. We report on performance evaluations

in Section 5.2.
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5.1. TASA in Practice

The fault management experts in the telecommunication companies have

found TASA useful in

· ® nding long-term, rather frequently occurring dependencies,

· creating an overview of a short-term alarm sequence, and

· evaluating the alarm data base consistency and correctness.

Unexpected dependencies have been found, e.g., between network elements

which are not closely connected in the network topology. An example of such a

dependency is that when a remote device sends alarms, the fault is re¯ ected to

another corner of the network through several devices, and not always necessar-

ily via the same routes and devices. So, just analyzing the neighboring devices

might not reveal any strong relationships. However, when a larger region is ana-

lyzed, such a relationship can be detected. Beginning from the ® rst tests, dis-

covered rules have been integrated into alarm correlation systems.

On the other hand, many of the rules discovered by TASA are deemed trivial

by the network managers. Some of the rules correspond to the knowledge that the

network managers have about the behavior of the network, and some other rules

re¯ ect the assumed functioning  of network devices. An example of the former is,

for instance, that it is known that if an alarm of type A occurs, it is always followed

by an alarm of type B within 20 seconds; so, a found rule like this gives no new

information. Luckily, much of the trivial knowledge can be expressed and removed

with templates. Templates are also useful since the knowledge trivial to one expert

may not be trivial to another, and with templates each expert may ® lter the rule

collection based on his / her personal background knowledge.

The experiences have indicated that the algorithms are not well suited for

analyzing event sequences that contain long bursty periods. It is sometimes more

useful to cut off and analyze such periods separately.

The usability of discovery tools has an essential, often perhaps under-esti-

mated role. The usability of an early version of TASA was tested in the usability

laboratory of the Helsinki University of Technology. The tests contained, e.g.,

user tests taken by four fault management experts from telecommunication com-

panies. In the tests, TASA was acknowledged both visually and environmentally

appealing. On the other hand, ® rst-time users were unfamiliar with many con-

cepts from the knowledge discovery ® eld. Despite these problems with the ter-

minology, the system as a whole got encouraging comments.

Overall, TASA has been considered useful. Episode rules are being used

as ® rst drafts of correlation rules, whereas association rules are more typically

used for creating short-term overviews in off-line network surveillance. Telecom-

munication operators are integrating these methods to their alarm analysis and

surveillance systems. Next we give examples of the use of discovered rules.
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5.1.1. Knowledge Acquisition for Alarm Correlation

We use as an example an alarm correlation system which operates in real

time and is also able to handle delayed alarms and slightly inaccurate time

stamps. In the correlation patterns, delays are handled with a special wait func-

tion. Episode and association rules can be applied in this system in a rather

straightforward way. The rule

link alarm < link failure [5] Þ < high fault rate [60] (0.7)

discovered by TASA can be coded in the system as follows:

if ª alarm type = link alarmº  then

start time;

wait until ª alarm type = link failureº  or ª time = 5 sº ;

if ª alarm type = link failureº  then

send an alarm ª high fault rate with 70% probability in 60 sº

else forward the original alarm;

® ;

®

That is, if a link alarm occurs and a link failure follows within 5 seconds, the

rule right-hand side information is sent and the original alarms are suppressed.

If a link failure does not follow within 5 seconds, the original link alarm is

forwarded.

The correlation procedure can be enhanced using association rules. For exam-

ple, assume that we have detected that if the alarm type is link alarm , the time of

the day is of® ce hours, and alarm severity is 1, then with probability of 95% the

alarming element type is BS. After expert evaluation of the rule we know that such

alarms from network elements of type BS are of no interest. However, if an element

of any other type sends that alarm, it is an interesting one. Thus, we can specify the

following correlation function that removes such alarms.

if ª alarm type = link alarmº  and ª of® ce hoursº  and ª severity = 1º  and

ª element type = BSº  then

exit

else forward the original alarm;

®

5.1.2. Network Surveillance

As an example of how the system can be used for off-line network surveil-

lance, consider the following typical scenario. Assume the network manager has

used TASA to discover association rules for the current month. First he might

want to see what the alarms have been like during the current week, say week

30, so he uses a template to select rules with the predicate ª week = 30º  as the

left-hand side.
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The number of selected rules is still very large. The network manager

decides to restrict the rule right-hand side to only contain predicate, and he also

sorts the rules by their con® dences.

Looking at the selected rules, he sees the rule ª if week = 30 then alarm

type = connection failureº  with con® dence 0.12, and he infers that an unusually

large fraction of alarms during the week has been of type connection failure .

To see in more detail what the alarms have been like, he re® nes the template

and selects rules with ª week = 30 and alarm type = connection failureº  as the

left-hand side.

Looking at the new set of selected rules, the network manager sees that a

lot of rules concern the network element EL1. That reminds him of maintenance

undertaken in the beginning of the week that explains those rules. To remove

the rules, he applies a rejective template with the predicate ª network element =
EL1º .

The resulting set of rules shows nothing special, but just to make sure the

network manager wants to compare the rules with the corresponding rules from

some previous week. He opens a copy of the window, and changes the ® rst

template to ª week = 29º . If there is anything special or interesting, the viewing

criteria can be re® ned or altered again.

5.1.3. Rules in Changing Environments

Telecommunication networks usually change and evolve quickly over time.

It should be noted that even small changes can sometimes affect the behavior

of the network substantially. In practice, this means that old rules that hold at

a certain moment do not necessarily hold in a changing environment, whether

because of actual topological changes in the devices, software etc. The strength

of our approach is that reruns to get valid rules can be done ef® ciently. However,

human evaluation is needed in deciding whether the rerun requires modi® cations

to the rule-base of the correlation expert system.

5.2. Performance Results

We have evaluated the ef® ciency of the episode discovery algorithm using

several alarm databases from ® xed and cellular networks. Typical running times

on a Pentium-based PC range from few seconds to an hour, depending on the

database and the parameters. Episodes with the alarm type as the only predi-

cate can be discovered in a sequence of 70 000 alarms with a window width

of 60 seconds in few seconds, whereas ® nding association rules with over

8 000 different predicates can take an hour (the 8 000 predicates were derived

by considering about every bit of information contained in alarm messages, e.g.,

ª seconds = 0º , ª seconds = 1º , etc).

The following representative results have been obtained with an alarm
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Table I. Performance for Serial Episodesa

Frequency Frequent Total

threshold Candidates episodes Iterations time (s)

50 12732 2735 83 28

100 5893 826 71 16

250 2140 298 54 16

500 813 138 49 14

1000 589 92 48 14

2000 405 64 47 13

aMaximum time bound win* = 60 s.

database consisting of 73 679 alarms and covering a time period of 7 weeks.

We examined the sequence of alarm types; there were 287 different types with

diverse frequencies and distributions. The experiments have been run on a PC

with 166 MHz Pentium processor and 32 MB main memory, under the Linux

operating system. A ¯ at text ® le copy of the necessary alarm information was

used in the tests.

Tables I and II represent performance statistics for ® nding frequent epi-

sodes in the alarm database with various frequency thresholds. The number of

frequent episodes decreases rapidly as the frequency threshold increases. The

running times are moderate, between 12 and 30 seconds for thousands of dis-

covered episodes. The number of iterations equals the size of the largest episodes

considered.

The method can easily produce very large amounts of rules. Table III repre-

sents experimental rule generation results with serial episodes and with a varying

number of possible time bounds in W . The rules have been obtained with maxi-

mum time bound 60 s and with con® dence threshold 0. The time requirement

increases slowly as more time bounds are used, but the time increases slowlier

than the number of rules. The initial episode generation took around 14 s.

Table II. Performance for Unordered Episodesa

Frequency Frequent Total

threshold Candidates episodes Iterations time (s)

50 10041 4856 89 30

100 4376 1755 71 20

250 1599 484 54 14

500 633 138 49 13

1000 480 89 48 12

2000 378 66 47 12

aMaximum time bound win* = 60 s.
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Table III. Experimental Rule Generation Results with Serial Episodesa

Number of Rule gen.

time bounds Rules time (s)

1 1221 13

2 2488 13

4 5250 15

10 11808 18

20 28136 22

30 42228 27

60 79055 43

aMaximum time bound win* = 60 s, con® dence threshold 0, frequency threshold 1000.

The amount of almost 80 000 rules, obtained with 60 time bounds, may

seem unnecessarily large. There are, however, only 1221 distinct rules if the

time bounds are ignored; the rest of the rules present different combinations of

time bounds, in this case down to the granularity of one second. For the cost of

43 s we thus obtain very ® ne-grained rules from our frequent episodes. Different

criteria can then be used to select the most interesting rules from these. Figure 9

represents the effect of the con® dence threshold to the number of distinct rules

found. Although the initial number of rules may be quite large, it decreases fairly

rapidly if we require a reasonable con® dence.

Example 8. We have analyzed several real-world datasets from telecom-

munication companies. To this example, we have selected four datasets. These

datasets, described in more detail in Table IV, have partly been preprocessed so

that only actual alarms have been selected, if also warnings, noti® cations etc.

have appeared in the data sequence. That is, the original data sequence contains

usually substantially more items without preprocessing.

Fig. 9. Total number of distinct rules found with various con® dence thresholds; maximum time

bound 60 s, frequency threshold 100.



Rule Discovery in Telecommunication Alarm Data 419

The datasets represent typical usage of TASA system in analysing both

short-term sequences, a couple of days, and long-term sequences, a couple of

months. They also re¯ ect the real-world situation, where the material to be ana-

lysed contains plenty of different types of events, i.e., here hundreds or thousands

of types of alarms. In the resulting rules, however, many alarm types are not

present at all due to their low frequencies that do not exceed the given thresholds;

see Table V.

As can be seen in Table V, the number of resulting rules can be quite large

even when the threshold values have been properly selected. This is not a prob-

lem, however, because the tool described in Section 4 can be applied to browse

the rule collection ef® ciently.

The time requirement of the algorithm is linear in the number of alarms,

and much larger databases can be analyzed with acceptable response times.

6. CONCLUSIONS

Fault management is a critical but dif® cult task in network management.

The ¯ ow of alarms received by a management center should be correlated auto-

matically to a more intelligible form, in order to facilitate identi® cation and cor-

rection of faults. Unfortunately, the construction of an alarm correlation system

requires a lot of both expertise and time, and is a process that never is complete.

We proposed automatic methods for the discovery of recurrent patterns in

alarm databases, in order to help in the construction of alarm correlation sys-

tems. We described a methodology for the discovery of episode rules and asso-

ciation rules in telecommunication alarm databases. Episode rules describe tem-

porally related sets of alarms, and they are useful for building and augmenting

alarm correlation systems. Episode rules also have potential for anomaly detec-

tion. Association rules describe statistical properties of single alarms without

taking temporal relationships into account. The discovery of association rules

has proved to be valuable in network surveillance.

A prototype system, TASA, implements these ideas. Using TASA, telecom-

munication operators have been able to discover new and useful regularities for

their alarm correlation systems. The discovery methods are also being integrated

to the alarm analysis and surveillance systems of operators.
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Table V. Episodes and Rules Exceeding the Thresholds in Example Datasets

Singleton Total No. of Max episode

Dataset episodes episodes size Rules

1 242 4112 10 9 321

2 299 1318 4 1 318

3 18 325 4 325

4 58 7438 6 7 438
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