Harnessing Constraint Programming for Poetry Composition

Jukka M. Toivanen and Matti Jarvisalo and Hannu Toivonen
HIIT and Department of Computer Science
University of Helsinki
Finland

Abstract

Constraints are a major factor shaping the conceptual space
of many areas of creativity. We propose to use constraint pro-
gramming techniques and off-the-shelf constraint solvers in
the creative task of poetry writing. We show how many as-
pects essential in different poetical forms, and partially even
in the level of language syntax and semantics can be repre-
sented as interacting constraints.

The proposed architecture has two main components. One
takes input or inspiration from the user or the environment,
and based on it generates a specification of the space and
aesthetic of a poem as a set of declarative constraints. The
other component explores the specified space using a con-
straint solver.

We provide an elementary set of constraints for composition
of poetry, we illustrate their use, and we provide examples of
poems generated with different sets of constraints.

Introduction

Rules and constraints can be seen as an essential ingredi-
ent of creativity. First, there typically are strong constraints
on the creative artefacts. For instance, consider traditional
western music. In order for a composition to be recognized
as (western) music in the first place, it must meet a number
of requirements concerning, e.g., timbre, scale, melody, har-
mony, and rhythm. For any specific genre of western music,
the constraints usually become much tighter.

Similarly, the composition of many types of poetry is gov-
erned by numerous rules specifying such things as strict
stress and syllable patterns, rhyming and alliteration struc-
tures, and selection of words with certain associations —
in addition to the basic constraints of syntax and semantics
that are needed to make the expressions understandable and
meaningful.

However, constraints are not just a nuisance that creative
agents need to cope with in order to produce plausible re-
sults. On the contrary, constraints are often considered to be
an essential source of creativity for humans. For instance,
composer Igor Stravinsky associated constraints with creat-
ing freedom, not containment:

“The more constraints one imposes, the more one frees
one’s self of the chains that shackle the spirit.”

(Stravinsky 1947)

Constraints can also be used as computational tools for
studies of creativity or creative artefacts. Artificial intelli-
gence researcher Marvin Minsky suggested that a good way
to learn about how music “worked” was to represent musical
compositions as interacting constraints, then modify these
constraints and study their effects on the musical structures
(Roads 1980). This essential idea has been explored exten-
sively in the field of computer music research afterwards.

Our domain of interest in this paper is composition of
poetry. We envision a computational environment where
formally expressed constraints and constraint programming
methods are used to (1) specify a conceptual search space,
(2) define an aesthetic of concepts in the space, (3) explore
the space to find the most aesthetic concepts in it.

Any given set of (hard) constraints on poems specifies a
space of possible poems. For instance, the number of lines
and the number of syllables per line could be such con-
staints, contributing to the style of poetry. Soft constraints,
in turn, can be used to indicate (aesthetical) preferences over
poems and to rank poems that match the hard constraints.
For instance, rhyme could be a soft constaint, giving pref-
erence to poems that follow a given rhyme structure but not
absolutely requiring it.

In this paper we study and illustrate the power of con-
straint programming for creating poems. In our current set-
up, the creative system consists of two subcomponents. One
takes input from user or from some other source of inspi-
ration, and based on it specifies the space and poetical aes-
thetic (as a set of constraints). The other subcomponent ex-
plores the specified space using the aesthetic, i.e., produces
optimally aesthetic poems in the space (using a constraint
solver).

We show how poems can be generated by applying dif-
ferent kinds of constraints and constraint combinations us-
ing an off-the-shelf constraint programming tool. The ele-
gance of this approach is that it is not based on specifying
a step sequence to produce a certain kind of a poem, but
rather on declaring the properties of a solution to be found
using mathematical constraints. An empirical evaluation of
the obtained poetry is left for future work.

We next briefly review some related work on constraint
programming in creative applications, and on poetry genera-
tion. Then we provide a description of a constraint model for
composing poems, illustrating the ideas with examples. We

discuss the results and conclude by outlining future work.

Related Work

Constraint-based methods have been applied in various
fields such as configuration and verification, planning, and
evolution of language, to name a few. In the area of com-
putational creativity, constraints have been used mostly to
describe the composition of various aspects of music. For
example, Boenn et al. (2011) have developed an extensive
music composition system called Anton which uses Answer
Set Programming to represent the musical knowledge and
the rules of the system. Anton describes a model of mu-
sical composition as a collection of interacting constraints.
The system can be used to compose short pieces of music as
well as to assist the composer by making suggestions, com-
pletions, and verifications to aid in the music composition
process.

On the other hand, composition of poetry with constraint
programming techniques has received little if any atten-
tion. Several different approaches have been used (Manu-
rung, Ritchie, and Thompson 2000; Gervas 2001; Manurung
2003; Diaz-Agudo, Gervds, and Gonzdlez-Calero 2002;
Wong and Chun 2008; Netzer et al. 2009; Colton, Good-
win, and Veale 2012; Toivanen et al. 2012), many involving
constraints in one form or another, but we are not aware of
any other work systematically based on constraints and im-
plemented using a constraint solver.

The system developed by Manurung et al. (2003) uses
a grammar-driven formulation to generate metrically con-
strained poetry out of a given topic. This approach performs
stochastic hillclimbing search within an explicit state-space,
moving from one solution to another. The explicit repre-
sentation is based on a hand-crafted transition system. In
contrast, we employ constraint-programming methodology
based on searching for optimal solutions over an implicit
representation of the conceptual space. Our approach should
scale better to large numbers of constraints and a large input
vocabulary than explicit state-space search.

The ASPERA poetry composition system (Gervas 2001),
on the other hand, uses a case-based reasoning approach.
This system generates poetry out of a given input text via
composition of poetic fragments retrieved from a case-base
of existing poetry. These fragments are then combined to-
gether by using additional metrical rules.

The Full-FACE poetry generation system (Colton, Good-
win, and Veale 2012) uses a corpus-based approach to gen-
erate poetry according to given constraints on, for instance,
meter and stress. The system is also argued to invent its
own aesthetics and framings of its work. In contrast to our
system, this approach uses constraints to shape only some
aspects of the poetry composition procedure whereas our ap-
proach is fully based on expressing various aspects of poetry
as mutually interacting constraints and using a constraint-
solver to efficiently search for solutions.

The approach of this paper extends and complements our
previous work (Toivanen et al. 2012). We proposed a
method where a template is extracted randomly from a given
corpus, and words in the template are substituted by words

related to a given topic. Here we show how such basic func-
tionality can be expressed with constraints, and more inter-
estingly, how constraint programming can be used to add
control for thyme, meter, and other effects.

Simpler poetry generation methods have been proposed,
as well. In particular, Markov chains have been widely used
to compose poetry. They provide a clear and simple way
to model some syntactic and semantic characteristics of lan-
guage (Langkilde and Knight 1998). However, the resulting
poetry tends to have rather poor sentence and poem struc-
tures due to only local syntax and semantics.

Overview

The proposed poetry composition system has two subcom-
ponents: a conceptual space specifier and a conceptual space
explorer. The former one determines what poems can be like
and what kind of poems are preferred, while the latter one
assumes the task of producing such poems.

The modularity and the explicit specification of the con-
ceptual search space have great potential benefits. Modular-
ity allows one to (partially) separate the content and form
of poetry from the computation needed to produce matching
poetry. An explicit, declarative specification, in turn, gives
the creative system a potential to introspect and modify its
own goals and intermediate results (a topic to which we will
return in the conclusion).

A high-level view to the internal structure of the poetry
composition system considered in this work is shown in
Figure 1. In this paper, our focus is on the explorer com-
ponent and on the interface between the components. Our
specifier component is built on the principles of Toivanen
et al. (2012), but ideas from many other poetry generation
systems (Gervas 2001; Manurung 2003; Colton, Goodwin,
and Veale 2012) could be used in the specifier component as
well.

The assumption in the model presented here is that the
specifier can generate a large number of mutually depen-
dent choices of words for different positions in the poem,
as well as dependencies between them. The specifier uses
input from the user and potentially other sources as its inspi-
ration and parameters and automatically generates the input
for the explorer component, shielding user from the details
of constraint programming.

The automatically generated “data” or “facts” are con-
veyed to the explorer component that consists of a con-
straint solver and a static library of constraints. The library
is provided by the system designers, i.e., by us, and any
constraints that the specifier component wishes to use are
triggered by the data it generates. The user of the system
does not need to interact directly with the constraint library
(but the specifier component may offer the user options for
choosing which constraints to use).

Our focus in this paper is on the explorer component, and
in the constraint specifications that it receives from the spec-
ifier component or from the static library:

e The number of lines, and the number of words on each
line (we call this the skeleton of the poem).

Specifier
component

User

Generator

o of speciﬁcationsg words
Inspiration and based on user - Form
arameters i i
P input and requirements
possibly - Content
other i
requirements
resources

Data

- Candidate

- Explorer component | Result

Constraint
solver

Static
constraint library

Figure 1: Overview of the poetry composition workflow. The user provides some inspiration and parameters, based on which
the space specifier component generates a set of constraints, used as “data” by the constraint solver in the explorer component.
The explorer component additionally contains a static library of constraints that are dynamically triggered by the data. Explorer
component then outputs a poem that best fulfills wishes of the user.

e For each word position in the skeleton, a list of words that
potentially can be used in the position (collectively called
the candidates).

e Possible additional requirements on the desired form of
the poem (e.g., rhyming structure).

e Possible additional requirements on the syntax and con-
tents of the poem (e.g., interdependencies between words
to make valid expressions).

We will next describe these in more detail.

Poetry Composition via Answer Set
Programming

The explorer component takes as input specifications dy-
namically generated by the specifier, affecting both the
search space and the aesthetic. In addition, it uses a static
constraint library. Together, the dynamic specifications and
the constraint library form a constraint satisfaction problem
(or, by extension, an optimization problem; see end of the
section). The constraint satisfaction problem is built so that
the solutions to the problem are in one-to-one correspon-
dence with the poems that satisfy the requirements imposed
by the specifier component of the system (as potentially in-
structed by the user). Highly optimized off-the-shelf con-
straint satisfaction solvers can then be used to find the solu-
tions, i.e., to produce poems.

In this work, we employ answer set programming
(ASP) (Gelfond and Lifschitz 1988; Niemeld 1999; Simons,
Niemeld, and Soininen 2002) as the constraint programming
paradigm, since ASP allows for expressing the poem con-
struction task in an intuitively appealing way. At the same
time, state-of-the-art ASP solvers, such as Clasp (Gebser,
Kaufmann, and Schaub 2012), provide an efficient way of
finding solutions to the poem construction task. Further-
more, ASP offers in-built support for constraint optimiza-
tion, which allows for searching for a poem of high quality
with respect to different imposed quality measures.

We will not provide formal details on answer set program-
ming and its underlying semantics; the interested reader
is referred to other sources (Gelfond and Lifschitz 1988;
Niemeld 1999; Simons, Niemel4d, and Soininen 2002) for a
detailed account. Instead, we will in the following provide
a step-by-step intuitive explanation on how the task of po-
etry generation can be expressed in the language of ASP. For
more hands-on examples on how to express different com-
putational problems in ASP, we refer the interested reader to
Gebser et al. (2008).

Answer set programming can be viewed as a data-centric
constraint satisfaction paradigm, in which the input data,
represented via predicates, expresses the problem instance.
In our case, this dynamically generated data will express,
for example, basic information on the poem skeleton (such
as length of lines), and the candidate words within the in-
put vocabulary that can be used in different positions within
the poem. The actual computational problem (in our case
poetry generation) is expressed via rule-based constraints
which are used for inferring additional knowledge based on
the input data, as well as for imposing constraints over the
solutions of interest. The rule-based constraints constitute
the static constraint library: once written, they can be re-
used in any instances of poem generators just by generating
data that activates the constraints. Elementary constraints
are an integral part of the system — comparable to program
code. More rule-based constraints can be added by the spec-
ifier component if needed. The end-user does not need to
write any constraints.

The Basic Model

We next describe a constraint library, starting with elemen-
tary constraints. We also illustrate dynamically generated
specifications. While these are already sufficient to gener-
ated poetry comparable to that of Toivanen et al. (2012), we
remind the reader that these constraints are examples illus-
trating the flexibility of constraint programming in compu-

Table 1: The predicates used in the basic ASP model

Predicate

Interpretation

rows (X) the poem has X rows

positions (X,Y)

the poem contains Y words on row X

candidate (W, I,J,S)

the word W, containing S syllables, is a candidate for the Jth word of the Ith line

word (W, I,J,S) \ the word W, containing S syllables, is at position J on row I in the generated poem]

% Generator part
{ word(w,I,J,S) }

o)

% Testing part: the constraints

:— not 1 { word(W,I,J,S) } 1, rows(X),

:— candidate(W,I,J,S). (G1)

I =1..X, positions(I,Y), J=1l..Y. (T1)

Figure 2: Answer set program for generating poetry: the basic model

tational poetry composition, and different sets of constraints
can be used for different effects.

We will first give a two-line basic model of the constraint
library that takes the skeleton and candidates as input. This
model simply states that exactly one of the given candidate
words must be selected for each word position of the poem.

Predicates The predicates used in the basic answer set
program are listed in Table 1, together with their intuitive
interpretations.

The input predicates rows /1 and positions/2 char-
acterize the number of rows and the number of words al-
lowed on the individual rows of the generated poems. The
input predicate candidate/4 represents the input vocab-
ulary, i.e., the words that may be considered as candidates
for words at specific positions.

The output predicate word/ 4 represents the solutions to
the answer set program, i.e., the individual words and their
positions in the generated poem.

Example. The following is an example of the basic structure
of a data file representing a possible input to the basic ASP
model

rows (6) .

positions(1l,6).
positions(2,8).

positions (3,8).
positions(4,5).

positions (5,6) .
positions (6, 6) .

candidate ("I",1,1,1).
candidate ("melt",1,2,1).
candidate ("weed",1,2,1) .
candidate ("teem",1,2,1).
candidate ("kidnap",1,2,2).
candidate ("perspire",1,2,2).
candidate ("shut",1,2,1).
candidate ("eclipse",1,2,1).
candidate ("sea",1,2,1).
candidate ("plan",1,2,1).
candidate ("hang",1,2,1).
candidate ("police",1,2,2).
candidate ("revamp",1,2,2).
candidate ("flip",1,2,1).

candidate ("wring",1,2,1).
candidate ("sting",2,2,2).

Rules The answer set program that serves as our basic
model for generating poetry is shown in Figure 2. The pro-
gram can be viewed in two parts: the generator part (Rule
G1) and the testing part (Rule T1). The test part consists of
rule-based constraints that filter out poems that do not sat-
isfy the conditions for acceptable poems characterized by
the program.

In the generator part, Rule G1 states that each candidate
word for a specific position of the poem may be consid-
ered to be chosen as the word at that position in the gen-
erated poem (expressed using the so-called choice construct
{ word(w,1,J,S) }.

In the testing part, Rule T1 imposes the most fundamental
constraint that exactly one candidate word should be chosen
for each word position in the poem: the empty left-hand-
side of the rule is interpreted as falsum, a contradiction. The
rule then states that, for each row and each position on the
row, it is a contradiction if it is not the case that exactly one
word is chosen for that position (expressed as the cardinality
construct 1 { word (W, I,J,S) } 1).

Example. Given the data presented above these basic rules
are now grounded as follows. There are six lines in the poem
as described by the rows predicate and each of these lines has
a certain number of positions to be filled with words as de-
scribed by the positions predicate. The candidate predicates
specify which words are suitable choices for these positions.
During grounding the solver tries to find a suitable candi-
date for each position, which is trivial in the basic model
that lacks any constraints between the words. We consider
more interesting models next.

Controlling the Form of Poems

We will now describe examples of how the form of the po-
ems being generated can be further controlled in a modu-
lar fashion by introducing additional predicates and rules
over these predicates to the basic ASP model. The addi-
tional predicates introduced for these examples are listed in

Table 2: Predicates used in extending the basic ASP model

Predicate

| Interpretation

|

must_rhyme (I, J,K, L)

the word at position J on row I and the word at position L on row K are required to rhyme

rhymes (X, Y)

the words X and Y rhyme

nof_syllables(I,C)

the Ith row of the poem is required to contain C syllables

min_occ (W, L)

L is the lower bound on the number of occurrence of the word W

max_occ (W, U)

U is the upper bound on the number of occurrence of the word W

o)

% Generator part

{ word(w,I,J,S) } :- candidate(W,I,J,S). (G1)
rhymes (Y, X) :— rhymes(X,Y). (G2)
syllables (W,S) :- candidate(W,_,_,S). (G3
% Testing part: the constraints

:— not 1 { word(w,I,J,S) } 1, rows(X), I = 1..X, positions(I,Y), J=1..Y. (T1
:— word(W,I,J,S), word(V,K,L,Q), must_rhyme(I,J,K,L), not rhymes(W,V). (T2
:— Sum = #sum [word(W,I,J,S) =S], Sum != C, nof_syllables(I,C), (T3

I = 1..X, rows (X).
:— not L { word(W,_,_,_) } U, min_occ(W,L), max_occ(W,U). (T4)

Figure 3: Answer set program for generating poetry: extending the basic model

Table 2. Using these predicates, rules that refine the basic
model are shown in Figure 3 (Rules G2, G3, and T2-T4).

Rhyming The predicate must_rhyme/4 is used for pro-
viding pairwise word positions that should rhyme. Knowl-
edge on the pairwise relations of the candidate words,
namely, which pairs of candidate words rhyme, is pro-
vided via the rhymes /2 predicate. Rule G2 enforces that
rhyming of two words is a symmetry relation. In the testing
part Rule T2 imposes the constraint that, in case two words
chosen for specific positions in a poem must rhyme, but the
chosen two words do not rhyme, a contradiction is reached.

Numbers of Syllables The basic model can also be ex-
tended to generate poetical structures with more specific
constraints. As an example, one can consider forms of po-
etry that have strict constraints on the numbers of syllables
in every line, such as haikus, tankas, and sonnets.

We use the additional predicate nof_syllables/2 for
providing as input the required number of syllables on the
individual rows. At the same time, Rule G3 projects the
information on the number of syllables of each candidate
word to the syllables/2 predicate. Rule T3 can then
be used to ensure that the number of syllables on each
row (line) of the poem (computed and stored in the Sum
variables using the counting construct Sum = #sum [
word (W, I,J,S) = S]) matches the number of sylla-
bles specified for the row by the nof_syllables/2 pred-
icate.

Word Occurrences The simple model above does not
control possible repetitions of words at all. Such con-
trol can be easily added by introducing input predicates
min_occ (W, L) and max_occ (W, U), which are then
used to state for each word W the minimum L (respectively,

maximum U) number of occurrences allowed for the word.
Using these additional predicates, Rule T4 then constrains
the number of occurrences to be within these lower and up-
per bounds (expressed by the cardinality constraint L {
word (W, _,_,_) } U).

Further Possibilities for Controlling Form The possi-
bilities of controlling poetical forms are not of course lim-
ited to simple requirements for fulfilment of certain sylla-
ble structures or rules for thyming and alliteration. Besides
strict constraints on numbers of syllables on verse, classi-
cal forms of poetry usually obey a specific stress pattern,
as well. Stress can be handled with constraints similar to the
ones governing syllables. Metric feet like iamb, anapest, and
trochee can be used by specifying constraints that describe
positions where the syllable stress must lie in every line of
verse.

Controlling poetical form also provides interesting possi-
bilities for using constraint optimization techniques (to be
described below). As an example, consider different forms
of lipograms i.e. poems that avoid a particular letter like e or
univocal poems where the set of possible vowels in the poem
is restricted to only one vowel. Similarly, more complex op-
timisations of the speech sound structure can be handled de-
pending on whether the wished poetry is required to have
soft or brutal sound, or to have characteristics of a tongue-
twister.

Controlling the Contents and Syntax of Poems

While the example constraints presented above focus on
controlling the form of poems, linguistic knowledge of
phonology, morphology, and syntax (as examples) can simi-
larly be controlled by introducing additional constraints in a
modular fashion. This includes rules of syntax that specify

failed_rhyme(I,J,K,L)

:— word(W,I,J,S),

word (V,K,L,Q),

must_rhyme (I,J,K,L), not rhymes (W,V). (T27)
failed_syllable_count (I) :- Sum = #sum [word(w,I,J,S) =S], Sum != C,
nof_syllables(I,C), I = 1..X, rows(X). (T3")
failed_occount (W) :— not L { word(W,_,_,_) } U, min_occ(W,L), max_occ (W,U). (T4'")
#minimize [failed_rhyme(I,J,K,L) @3]. (02
#minimize [failed_syllable_count (I) I=1..X rows (X) @2 1. (03)
#minimize [failed_occount (W) @1]. (04

Figure 4: Handling inconsistencies by relaxing the constraints and introducing optimization criteria

how linguistic elements are sequenced to form valid state-
ments and rules of semantics which specify how valid refer-
ences are made to concepts.

Consider, for example, transitive and intransitive verbs,
i.e., verbs that either require or do not require an object to
be present in the same sentence. Here one can impose addi-
tional constraints for declaring which words can or cannot be
used in the same sentence where a transitive verb requiring
certain preposition and an object has been used. Similarly
other constraints not directly related to the poetical forms
but rather to linguistic structures like idioms, where several
words are always bundled together, can be effectively de-
clared as constraints. The same holds for syntactic aspects
such as rules governing the constituent structure of sentences
(Lierler and Schiiller 2012).

As a simple, more concrete example, consider the follow-
ing. In order to declare that the poems of interest start with
the word 1", the fact word ("I", 1,1, 1) . can be added
to the constraint model. In order to ensure that all verbs as-
sociated with the first person should be in past tense, the ad-
ditional predicate in_past_tense/1 can be introduced,
and specified for each past-tense verb in the data. Combin-
ing the above, one can as an example declare that the word
following any “I” is in a past tense, using the following two
rules.

:- word("1i",I1,dJ,1), word(w,I,J+1,.),
not in_past_tense (W) .

:— word("1",I,dJ,1), positions(I,Jd),
word(W,I+1,1,_.), not in_past_tense (W).

Here the first rule handles the case that the occurrence of
”I” is not the last word on a row. The second rule handles
the case that ”’I” is the last word on a row, in which case the
first word on the following row should be in past tense.

More generally, one can pose constraints that ensure that
two (or more) words within a poem are compatible (in some
specified sense), even if the words are not next to each
other. For an example, consider the additional predicated
pronoun/1 and verb/1 that hold for words that are pro-
nouns and verbs, respectively, and the predicate person/2
that specifies the grammatical person, expressed as an inte-
ger value, of a given word: person (W, P) is true if and
only if the word W has person P. Using these predicates, one
can enforce that, for the first verb following any pronoun
(not necessarily immediately after the pronoun), the pronoun
and the verb have to have the same person. For instance, af-
ter the pronoun “she” the first following verb has to be in

the third person singular form. This can be expressed as the
following rule:

:— word(wW,I,J,.), pronoun (W), person(W,P),
0{ word(u,I,L,.) verb (U) : L>J L<K }0,
word(V,I,K,.), verb(V), person(V,Q),

K>J, P!=0.

Similarly, by specifying the additional predicate verb/1
for each verb in the input data, one can require that the whole
poem should be in past tense:

:— word(W,_,_,-), verb (W),
not in_past_tense (W) .

Specifying an Aesthetic via Optimization

Up to now, we have only considered hard constraints, and
did not address how to assess the aesthetics of generated po-
ems, or how to generate poems that are maximally aesthetic
by some measures.

In the constraint programming framework, an aesthetic
can be specified using soft constraints. The constraint solver
then attempts to look for poems which maximally satisfy the
soft constraints. In ASP, this is achieved by using optimiza-
tion statements offered by the language.

As concrete examples, we will now explain how Rules
T2-T4 can be turned into soft constraints. The soft vari-
ants, Rules T2’-T4’, are shown in Fig. 4, together with the
associated optimization statements O2-O4. Taking Rule
T3 as an example, the idea is to introduce a new predi-
cate failed_syllable_count/1 with the following in-
terpretation: Predicate failed syllable_count (I) is
true for row I if and only if the number of syllables on the
row was not made to match the required number. In contrast
to Rule T3, which rules out all solutions of the model imme-
diately in such a case, Rule T3’ simply results in assigning
failed.syllable_count (I) to true. Thus the predi-
cate failed_syllable_count/1 acts as an indicator of
failing to have the required number of syllables on a specific
row.

The optimization statement associated with Rule T3’ is
Rule O3. This minimize statement declares that the num-
ber of rows I for which failed_syllable_count (I)
is assigned to true should be minimized, or equivalently,
that the numbers of syllables should conform to the required
numbers of syllables for as many rows as possible. The op-
timization variants T2’ and T4’ and the associated optimiza-
tion statements follow a similar scheme.

When multiple such optimization statements are intro-
duced to the model, the relative importance of the statements
is declared using the @1 attached to each of the optimization
statement. In the example of Figure 4, the primary objective
is to minimize the number of rhyming failures (specified us-
ing @3). The secondary objective is then to find, among the
set of poems that minimize this primary objective, a poem
that has a minimal number of lines with a wrong number of
syllables, (using @2), and so forth.

Examples

We will now illustrate the results and effects of some com-
binations of constraints.

In the data generation phase (the specifier component) we
use the methodology by Toivanen et al. (2012), including
the Stanford POS-tagger and morpha & morphg inflectional
morphological analysis and generation tools (Toutanova et
al. 2003; Minnen, Carroll, and Pearce 2001). The poem tem-
plates are extracted automatically from a corpus of human-
written poetry. The only input by the user is a topic for the
poem, and some other parameters as described below.

As a test case for our current system we study how the ap-
proach manages to produce different types of quatrains. It is
a unit of four lines of poetry; it may either stand alone or be
used as a single stanza within a larger poem. The quatrain is
the most common type of stanza found in traditional English
poetry, and as such is fertile ground on which to test theories
of the rules governing poetry patterns.

The specifier component randomly picks a quatrain from
a given corpus of existing poetry. It then automatically anal-
yses its structure, to generate a skeleton for a new poem.
The following poem skeleton is marked with the required
part-of-speech for every word position (PR = pronoun (or
noun of the same number), VB = verb, PR_PS = possessive
pronoun, ADJ = adjective, N_SG = singular noun, N_PL =
plural noun, C = conjunction, ADV = adverb, DT = deter-
miner, PRE = preposition):

N_SG VB, N_SG VB, N_SG VB!

PR_PS ADJ N_PL ADJ PRE PR_PS N_SG:
- CADV, ADV ADV DT N_SG PR V!

DT N_SG PRE DT N_PL PRE N_SG!

The specifier component then generates a list of candidate
words for each position. If we give “music” as the topic of
the poem, the specifier specifically uses words related to mu-
sic as candidates, where possible (Toivanen et al. 2012). A
large number of poems are possible, in the absense of other
constraints, and the constraint solver in the explorer compo-
nent outputs this one (or any number of alternative ones, if
required):

Music swells, accent practises, traditionalism marches!
Her devote narrations bent in her improvisation:
— And then, vivaciously directly a universe

she ventilates!
An anthem in the seasons of radio!

This example does not yet have any specific requirements
for the prosodical form. Traditional poetry often has its

prosodic structure advertised by one or more of several po-
etic devices, with rhyming and alliteration being best-known
of these. Let the specifier component hence generate the
additional constraints that the first and the third line must
rhyme, as well as the second and fourth line. As a result of
this more constrained specification we now get a very simi-
lar poem, but with some words changed to rhyme.

Music swells, accent practises, traditionalism hears!
Her devote narrations bent in her chord:
— And then, vivaciously directly a universe

she disappears!
An anthem in the seasons of record!

Addition of this simple constraint adds rhyme to the
poem, which in turn draws attention to the prosodic struc-
ture of the poem. Use of prosodic techniques to advertise the
poetical nature of a given text can also enhance coherence of
the poetry as the elements are linked together more tightly.
For example, a rhyme scheme of ABAB would give the lis-
tener a strong sense that the first and third as well as the
second and fourth lines belong together as a group, height-
ening the saliency of the alternating structure that may be
present in the content, as well.

The constraint on rhyming reflects the intuition that
rhyme works by creating expectation and satisfaction of that
expectation. Upon hearing one line of verse, the listener
expects to hear another line that rhymes with it. Once the
second rhyme is heard, the expectation is fulfilled, and a
sense of closure is achieved. Similarly, adding constraints
that specify a more sophisticated prosodic structure or con-
tent related aspects may lead to improved quality of the gen-
erated poetry.

Let us conclude this section with an example of an aes-
thetic, an optimization task concerning the prosodic struc-
ture of poetry. Consider composition of lipograms, i.e., po-
ems avoiding a particular letter. (Also univocalism or more
complex optimizations of the occurrence of certain speech
sounds can be composed in a similar fashion.) The follow-
ing poem is an example of a lipogram that avoids the letter
0. As a result of this all words that contained that letter in
the previous example are changed to match the strengthened
constraints:

Music swells, accent practises, theatre hears!

Her delighted epiphanies bent in her universe:

— And then, singing directly a universe she disappears!
An anthem in the judgements after verse!

Empirical results of Toivanen et al. (2012) indicate that
in Finnish, already the basic mechanism produces poems of
surprisingly high quality. The sequence of poems above il-
lustrates how their quality can be substantially improved by
relatively simple addition of new, declarative constraints.

Discussion and Conclusions

We have proposed harnessing constraint programming for
composing poetry automatically and flexibly in different
styles and forms. We believe constraint programming has
high potential in describing also other creative phenomena.

A key benefit is the declarativity of this approach: the con-
ceptual space is explicitly specified, and so is the aesthetic,
and both are decoupled from the algorithm for exploring the
search space (an off-the-shelf constraint solver). Due to its
modular nature, the presented approach can be an effective
building block of more sophisticated poetry generation sys-
tems.

An interesting next step for this work is to build an inter-
active poetry composition system which makes use of con-
straint programming in an iterative way. In this approach the
constraint model is refined and re-solved based on user feed-
back. This can be seen as an iterative abstract-refinement
process, in which the first abstraction specifies a very large
search-space that is iteratively pruned by refining the con-
straint model with more intricate rules that focus search to
the most interesting parts of the conceptual space.

Another promising research direction is to consider a self-
reflective creative system. Since the search space and aes-
thetic are expressed in an explicit manner as constraints,
they can also be observed and manipulated. We can envi-
sion a creative system that controls its own constraints. For
instance, after observing that a large amount of good results
is obtained with the current constraints, it may decide to add
new constraints to manipulate its own internal objectives.
Modification of the set of constraints may lead to different
conceptual spaces and eventually to transformational cre-
ativity (Boden 1992). Development of metaheuristics and
learning mechanisms that enable such self-supported behav-
ior is a great challenge indeed.

Acknowledgements

This work has been supported by the Academy of Finland
under grants 118653 (JT,HT), and 132812 and 251170 (MJ).

References
Boden, M. 1992. The Creative Mind. London: Abacus.

Boenn, G.; Brain, M.; vos, M. D.; and Ffitch, J. 2011. Au-
tomatic music composition using answer set programming.
Theory and Practice of Logic Programming 11(2-3):397-
4217.

Colton, S.; Goodwin, J.; and Veale, T. 2012. Full-face poetry
generation. In International Conference on Computational
Creativity, 95-102.

Diaz-Agudo, B.; Gervds, P.; and Gonzilez-Calero, P. A.
2002. Poetry generation in COLIBRI. In ECCBR 2002,
Advances in Case Based Reasoning, 73—102.

Gebser, M.; Kaminski, R.; Kaufmann, B.; Os-
trowski, M.; Schaub, T.; and Thiele, S. 2008. A
user’s guide to gringo, clasp, clingo, and iclingo.
http://downloads.sourceforge.net/
potassco/guide.pdf?use_mirror=.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-
driven answer set solving: From theory to practice. Artificial
Intelligence 187:52—89.

Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Logic Programming,

Proceedings of the Fifth International Conference and Sym-
posium, 1070-1080.

Gervés, P. 2001. An expert system for the composition of
formal spanish poetry. Journal of Knowledge-Based Systems
14(3—4):181-188.

Langkilde, I., and Knight, K. 1998. The practical value of
n-grams in generation. In Proceedings of the International
Natural Language Generation Workshop, 248-255.

Lierler, Y., and Schiiller, P. 2012. Parsing combinatory cat-
egorial grammar via planning in answer set programming.
In Erdem, E.; Lee, J.; Lierler, Y.; and Pearce, D., eds., Cor-
rect Reasoning, volume 7265 of Lecture Notes in Computer
Science, 436-453. Springer.

Manurung, H. M.; Ritchie, G.; and Thompson, H. 2000.
Towards a computational model of poetry generation. In
Proceedings of AISB Symposium on Creative and Cultural
Aspects and Applications of Al and Cognitive Science, 79—
86.

Manurung, H. 2003. An evolutionary algorithm approach
to poetry generation. Ph.D. Dissertation, University of Ed-
inburgh, Edinburgh, United Kingdom.

Minnen, G.; Carroll, J.; and Pearce, D. 2001. Applied mor-
phological processing of English. Natural Language Engi-
neering 7(3):207-223.

Netzer, Y.; Gabay, D.; Goldberg, Y.; and Elhadad, M. 2009.
Gaiku : Generating haiku with word associations norms.
In Proceedings of NAACL Workshop on Computational Ap-
proaches to Linguistic Creativity, 32-39.

Niemeld, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4):241-273.

Roads, C. 1980. Interview with Marvin Minsky. Computer
Music Journal 4.

Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181-234.

Stravinsky, 1. 1947. Poetics of Music. Cambridge, MA:
Harvard University Press.

Toivanen, J. M.; Toivonen, H.; Valitutti, A.; and Gross, O.
2012. Corpus-based generation of content and form in po-
etry. In International Conference on Computational Cre-
ativity, 175-179.

Toutanova, K.; Klein, D.; Manning, C.; and Singer, Y.
2003. Feature-rich part-of-speech tagging with a cyclic de-
pendency network. In Proceedings of HLT-NAACL, Human
Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics,
252-259.

Wong, M. T., and Chun, A. H. W. 2008. Automatic haiku
generation using VSM. In Proceedings of ACACOS, The 7th
WSEAS International Conference on Applied Computer and
Applied Computational Science, 318-323.

