
Finding a diverse set of nodes
in probabilistic graphs

Laura Langohr

Department of Computer Science
PO Box 68, FI-00014 University of Helsinki, Finland

laura.langohr@cs.helsinki.fi

Abstract. We introduce the problem of identifying a diverse set of
nodes representing relations of query nodes. This is motivated by bio-
logical graphs, where not only the obvious relations, but especially non-
obvious relations are of interest. We introduce a method to find a set of
diverse nodes given query nodes on a probabilistic graph. The method
is based on a probabilistic similarity measure, a representative measures
for query nodes, and an extended representative measure for already se-
lected nodes or negative query nodes. Experimental results on real data
sets show that our method is able to find such a diverse set of nodes. This
is a seminar report about my own ongoing research and hence other’s
work is cited almost only in Section 4.

1 Introduction

Information contained in large networks is difficult to view and handle by users.
The problem is obvious for networks of hundreds of nodes, but the problems
start already with dozens of nodes.

We propose the identification of a diverse set of nodes, representing the rela-
tions of given query nodes in a given probabilistic graph. We use the term query
nodes for nodes for which the user is interested in their relations. A probabilistic
graph is a weighted graph with probabilities as weights. The set of nodes repre-
senting the relations of query nodes should be diverse, i.e., the identified nodes
should be distant to each other.

Consider, as an example the graph in Figure 1 where nodes represent terms
and edges relations between them. A user who wants to know how Barcelona
and Helsinki are related might already know that Barcelona is a city in Spain,
Helsinki the capital of Finland, and both, Spain and Finland are in the EU
– an obvious (well known) relation. Thus, non-obvious relations are more in-
teresting. For example, the user might have not known that architects Antoni
Gaud́ı (who lived in Barcelona) and Alvar Aalto (who lived in Helsinki) both
exhibited at a world′s fair (also known as Expo). Another user again might not
know that soccer player Jari Litmanen has played for FC Barcelona as well as
for HJK Helsinki. Therefore a diverse set of nodes, like EU , world′s fair, and
Jari Litmanen, representing diverse relations, obvious as well as non-obvious,
is interesting.

2

Barcelona

FC Barcelona

Spain

Antoni Gaud́ı

Jari Litmanen

EU

World’s fair

architect

HJK Helsinki

Finland

Alvar Aalto

Helsinki

0.8based in

0.8
city in

0.8lived in

0.5
was twice held in

0.6
played for

0.8
member of

0.7 exhibited at

0.7
played for

0.8
member of

0.7
exhibited at

0.5
was an

0.5 was an

0.7 based in

0.9
capital of

0.6
lived in

Fig. 1. An example graph with two positive query nodes Barcelona and Helsinki (in
bold) with more and less obvious relations.

The problem thus is to find a diverse set of nodes, representing the query
nodes’ relations, but being distant to each other. The solution proposed in this
paper is an incremental method based on defining a probabilistic similarity mea-
sure for nodes, a representative measures for query nodes, and an extended rep-
resentative measure for query nodes as well as already selected nodes. In each
step the method selects one node representing a relation of the query nodes, but
is as distant as possible to the nodes selected so far.

Our approach can be applied on probabilistic graphs in general. However,
our motivation for this problem comes from genetics, where scientists study spe-
cific diseases. Consider a scientist who researches a specific disease and identified
numerous genes related to the disease from high-throughput techniques. The sci-
entist is interested to know how these genes relate to each other. Thereby obvious
relations are often not only well-known, but also reveal no further knowledge for
further research. Non-obvious relations might again reveal more interesting, or
even surprising knowledge about the relations of a group of genes.

In order to make our approach better understandable we will use the graph
shown in Figure 1 to visualize our proposed method. For the performed experi-
ments the network for application is Biomine [1], an integrated network database
currently consisting of about 1 million biological concepts and about 10 million
links between them. Concepts include genes, proteins, biological processes, cel-
lular components, molecular functions, phenotypes, articles, etc.; weighted links
mostly describe their known relationships. The data originates from well known
public databases such as Entrez1, GO2, and OMIM3.

For our proposed method, two design decisions need to be made: how to
measure similarities or distances of nodes in a probabilistic network (Section 2),
and how to find nodes representing the query nodes’ relations but being diverse
to each other (Section 3). We will demonstrate our proposed method with the
example graph of Figure 1. In Section 4 we report on related work. Experimental

1 www.ncbi.nlm.nih.gov/Entrez/
2 www.geneontology.org/
3 www.ncbi.nlm.nih.gov/omim/

3

results of our method with real biological datasets are reported in Section 5. In
Section 6 we conclude with some notes about the results and future work.

2 Similarities in probabilistic graphs

Probabilistic graphs offer a simple yet powerful framework for modeling rela-
tionships in weighted networks. A probabilistic graph is simply a weighted graph
G = (V,E) where the weight associated with an edge e ∈ E is probability p(e)
(or can be transformed to a probability). The interpretation is that edge e exists
with probability p(e), and conversely e does not exist, or is not true, with proba-
bility 1− p(e). Edges are assumed mutually independent. The graph in Figure 1
is a probabilistic graph, which is in addition a labeled one.

Probability of a path is the product of the probabilities of the edges along the
path p = e1e2...ek. This corresponds to the probability that the path exists, i.e.,
that all of its edges exist:

p(p) =
k∏

i=1

p(ei) .

Probability of the best path between two nodes u, v ∈ V is a measure for their
connectedness or similarity:

s(u, v) = max
p is a path from u to v

p(p),

with s(u, u) = 1 .

The best path of Figure 1 is Barcelona−Spain−EU−Finland−Helsinki with
a probability of 0.4608 = 0.8 · 0.8 · 0.8 · 0.9. Obviously, this is not necessarily the
path with the least number of edges. This similarity function s(·) is our choice
for a similarity measure between pairs of nodes.

Other similarity functions could be used, too. For example, the (two-terminal)
network reliability is an alternative measure of the connectivity of two given
nodes s and t (see, e.g., [2]). This is the probability that there exists at least
one path (not necessarily the best one) between s and t. Network reliability is
potentially a more powerful measure of connectedness than the probability of
the best path, since reliability uses more information – not only the best path.
However, computing the two-terminal network reliability has been shown to be
NP-hard [3]. Fortunately, the probability can be estimated, for instance, by using
a straightforward Monte Carlo approach (see, e.g., [1, 4] for more details). Due
to the complexity of computing the network reliability, we stick to the simpler
definition of similarity s(·) as the probability of the best path.

3 Finding a diverse set of nodes

Our method to find a diverse set of nodes representing relations of query nodes
is an incremental one. In each step we find one node that is representative for the

4

query nodes and, on the same time, as distant as possible to the nodes selected
so far.

In this section we will first define the concepts of positive and negative query
nodes, and our objective. Afterwards we present how to select a representative
node given positive (and negative) query nodes and then show how they can be
utilized to find a diverse set of nodes. Finally, we will demonstrate our method
with an example.

The idea of finding a diverse set of nodes representing relations of (positive)
query nodes and being distant to each other can be extended to negative query
nodes. Negative query nodes are nodes in whose neighborhood the user is not
interested in. This approach is similar to information retrieval, where a search
term can be negated, if the user is interested in results not related to that specific
term (see Section 4 for more details). To distinguish between both query node
types, we will refer in the following to positive and negative query nodes.

Our goal is to find a diverse set of nodes representing relations of the positive
query nodes, but being distant to each other and to the negative query nodes.
In other words, these nodes should be central in respect to the positive query
nodes VP , and at the same time, as distant to each other and to the negative
query nodes as possible. This is, to find the set of representative nodes VR for
which ∏

u∈VP
v∈VR

s(u, v)
∏

{v,w}∈VR

v 6=w

(1− s(v, w))
∏

v∈VR
x∈VN

(1− s(v, x)) (1)

is maximum.
The first term is the product of similarities of every representative node to

every positive query node. The second term is the product of pairwise similarities
of every pair of representative nodes. We consider ordered pairs as we want each
distance between pairs of selected nodes to be considered only ones. The third
term is the product of similarities of every representative node to every negative
query node. For the two last terms the similarities are subtracted from one. The
representative should be as distant as possible to the other representatives and to
the negative query nodes. As we deal with probabilities we can simply subtract
the probability from one to maximize the distance.

A representative for a set of positive query nodes VP , VP ⊆ V, VP 6= ∅, is
the node that is most central, i.e., that maximizes the similarities to the nodes
u ∈ VP :

representative(VP) = argmax
v∈V

∏
u∈VP

s(u, v) .

We have used this measure to find representative nodes from a given set of nodes
[5]. There, we restricted the representative nodes r to be one of the query nodes
(r ∈ VP). Here we select any node in the center of the positive query nodes as a
representative.

If |VP | = 2, all nodes along the best path between both query nodes are
equally central according to this measure. The value is exactly the probability

5

of the best path. From the nodes M along the best path, the node that has the
smallest Euclidean distances (square root can be omitted here) to the positive
query nodes, is the most central one:

representative(VP) = argmin
v∈M

∑
u∈VP

s(u, v)2 .

Thus, the representative will not be central in respect to the number of edges, but
in respect to the weighted edges. See Figure 2 for an extreme, but exemplary
case. There are two positive query nodes Barcelona and Helsinki and three
nodes Pablo P icasso, Picasso′s art, and Ateneum4 along the best path. If path
lengths would be considered, Picasso′s art would be selected as representative.
With our measure, Ateneum is selected with

∑
u∈VP

s(u, x3)2 = 1.0369. Nodes’

Pablo P icasso and Picasso′s art similarities (best path probabilities) to query
node Barcelona are 0.9. Hence, they can be interpreted to be closely related
to Barcelona. Ateneum again is most central with our measure, representing
this specific relation shown in Figure 2 of Helsinki and Barcelona and this is the
reason to use the modified Euclidean distance.

Barcelona Pablo Picasso Picasso’s art Ateneum Helsinki
0.9 1.0 0.7 0.8

Fig. 2. An example graph with two positive query nodes Barcelona and Helsinki
(displayed in bold). Applying the introduced representative measure for two positive
query nodes node Ateneum will be chosen as first representative.

A representative for a set of positive and negative query nodes, VP and VN ⊆ V ,
respectively, is the node that maximizes the similarities to the positive nodes
u ∈ VP and minimizes the similarity to the negative nodes w ∈ VN :

representative(VP , VN) = argmax
v∈V

∏
u∈VP

s(u, v)
∏

w∈VN

(1− s(w, v)) , (2)

where
∏

w∈VN

(1− s(w, v)) = 1 if VN = ∅ .

Note that node types allowed as representatives can be easily restricted. The
argument of the maximum will just be selected from nodes v ∈ VT = {v | v ∈
V ∧ v is of type t ∈ T} instead of all nodes V in the given graph. Thus, only
nodes of type t ∈ T are considered as possible representative nodes.

Now, we can present an algorithm to find a ranked list R of representatives
nodes VR. The set VR being a diverse set of nodes, which represent the relations
4 Ateneum is a museum for classical art located in the center of Helsinki. From Septem-

ber 2009 to January 2010 it held an exhibition of Picasso’s art.

6

between the positive query nodes. The list R will be ranked as the representatives
will be found in a specific order.

To find this list, we first find the most central node between the positive
query nodes, representing the best relation between all positive query nodes. If
negative query nodes are given it has to be as distant as possible to them, at the
same time. Second, we add it to the set of negative query nodes, and then select
the next node. Thus, in step n a node is selected that is representative to the
positive query nodes, but distant to the m+n−1 negative (n−1 so far selected
and m predefined negative query) nodes. See Algorithm 1 for this algorithm.

Algorithm 1 Finding a diverse set of nodes
Require: G = (V, E), a weighted graph,

VP ⊆ V , VP 6= ∅, a set of positive query nodes,
VN ⊆ V , a set of negative query nodes, and
T , a set of node types, which are allowed as representatives, and

Returns: R, a list of ranked representatives
1: R← ” ”
2: VT = {v | v ∈ V ∧ v is of type t ∈ T}
3: if VN = ∅ and |VP | = 2 then
4: M ← {v | max

v∈V

Q
u∈VP

s(u, v)}

5: representative← argmin
v∈M

P
u∈VP

s(u, v)2

6: R← R + ”, ” + representative
7: VN ← VN ∪ representative
8: end if
9: repeat

10: representative← argmax
v∈VT

Q
u∈VP

s(u, v)
Q

w∈VN

(1− s(w, v))

11: R← R + ”, ” + representative
12: VN ← VN ∪ representative
13: until |R| = |VT |
14: return R

Note that our method does not maximize equation (1). It might not find the
optimal set with regard to equation 1, as it find the representatives incrementally.
That is, it selects the first representative only in regard to the given query nodes
and never changes it in regard to the following representatives. The choice of
finding representatives incrementally does not only save computational time,
but has also an advantage for the user: for any |R| (the number of representative
found) the top k representative will always be the same. In other words, the
result is not only a set of representative nodes, but a ranked list of them. This
gives the user the possibility to choose the number k of representatives he is
interested in by simply selecting the top k representatives from the list.

Example As an example consider the graph shown in Figure 3. We will ap-
ply Algorithm 1 to find two representatives with VP = {Barcelona,Helsinki},

7

VN = ∅, and T consisting of all node types. As |VP | = 2 and VN = ∅
we first have to find the most central node along the best path. The best
path is Barcelona − Spain − EU − Finland − Helsinki with a probability
of 0.4608 = 0.8 · 0.8 · 0.8 · 0.9. Thus, M = {Spain,EU, F inland, } where the
most central one is EU with

∑
u∈VP

s(u, EU)2 = 0.928. Now, R = EU and

VN = {EU}. As a second representative node Jari Litmanen will be chosen with∏
u∈VP

s(u, Jari Litmanen)
∏

w∈VN

(1− s(w, Jari Litmanen)) ≈ 0.1522. Now, R =

EU, Jari Litmanen and VN = {EU, Jari Litmanen}. As third node world′s fair
will be chosen and so on. Assuming the user was interested in only three nodes,
he would get as a result R = EU, Jari Litmanen,world′s fair.

Barcelona

FC Barcelona

Spain

Antoni Gaud́ı

Jari Litmanen

EU

World’s fair

architect

HJK Helsinki

Finland

Alvar Aalto

Helsinki

0.8

0.8

0.8

0.5

0.6

0.8

0.7

0.7

0.8

0.7

0.5
0.5

0.7

0.9

0.6

Fig. 3. An probabilistic graph with two positive query nodes Barcelona and Helsinki
(displayed in bold). The graph has the same structure and weights as the graph in
Figure 1. Edge labels have been omitted for simplify matters. As first three nodes of
the ranked list of representative nodes our algorithm finds EU , Jari Litmanen, and
world′sfair (displayed with a double border).

For the user it might be useful not only to get a ranked list of representative
nodes, but in addition to each node its best paths to the query nodes. In the
example this would be Barcelona−Spain−EU and EU −Finland−Helsinki
for EU , Barcelona − FC Barcelona − Jari Litmanen and Jari Litmanen −
HJK Helsinki−Helsinki for Jari Litmanen, and Barcelona−Antoni Gaud́ı−
world′sfair and world′s fair−Alvar Aalto−Helsinki for world′s fair. These
paths illustrate the relations of the representative nodes to the query nodes
shown in Figure 3.

4 Related work

Representatives are used to reduce the number of data points in large databases,
i.e., to eliminate irrelevant and redundant examples in databases to be tested
by data mining algorithms. Riquelme et al. [6] use ordered projections to find
representative patterns, Rozsypal and Kubat [7] genetic algorithms, and Pan

8

et al. [8] measure the representativeness of a set with mutual information and
relative entropy.

Representatives are used to reduce the number of objects also in other ap-
plications. Clustering can be approximated by finding representative objects,
clustering them, and assigning the remaining objects to the clusters of their rep-
resentatives. Yan et al. [9] use k-means or RP trees to find representative points,
Kaufman and Rousseeuw [10] k-medoids, and Ester et al. [11] the most central
object of a data page.

DeLucia and Obraczaka [12] as well as Liang et al. [13] use representative
receivers to limit receiver feedback. Only representatives provide feedback and
suppress feedback from the other group members. Representatives are found
by utilizing positive and negative acknowledgments in such a way that each
congested subtree is represented by one representative.

The cluster approximation and example reduction methods use clustering
algorithms to find representatives, but are not applied on graphs. The feedback
limitation methods again use graph structures, but not clustering to find repre-
sentatives.

Other applications like viral marketing [14], center-piece subgraphs [15], or
PageRank [16] search for special node(s) in graphs, but not for representative
nodes. We introduced an approach to find representatives by clustering nodes
and utilizing the graph structure [5].

Negative query nodes are related to negative query terms in information retrieval.
Queries for a set of web pages in a web browser or for literature list in a digital
library catalogue are specified with query terms. These query terms might also
include negations. Jansen et al. [17] showed that in 5% of the queries a minus
sign was used.

A user can use negated query terms (minus sign before query term) to find
documents that do not include these query terms [18]. Thus, often documents
containing the query term are simply ignored [19, 20], or they are assigned into
the class of documents, which are assumed to be most uninteresting for the user
[21].

Spink et al. made a survey of Web searchers, where 72% of the users stated
that they had retrieved relevant information with their searches [22], for the
remaining 28%, i.e. about topics that might lead to unsatisfactory results, more
information is needed [23]. Glover et al. [24] see the problem for search engines
in finding results consistent with the user’s information need, instead of just
relevant results. They describe a metasearch engine architecture, where the user
can specify the information need category. However, their categories are set by
hand and only sample queries (no extensive experiments) are shown.

Wang et al. [25] improved the retrieval accuracy for difficult queries by using
negative feedback. They consider cases where the first ten documents in the
search result include no relevant document. From these top-ranked, but non-
relevant documents they learn to rerank the following documents in the search
result. They rerank the documents by penalizing those that are similar to the
first ten documents. The penalization is performed by a negative model, which is

9

combined with the original query model. In addition they propose two strategies
to improve their method: One strategy is to down-weight or eliminate the query
terms in the negative model. The other strategy is to model multiple possible
distracting negative subtopics in the non-relevant documents in order to penalize
documents similar to the non-relevant documents. They evaluate the proposed
methods using difficult queries of the TREC collection. Their results show that
the negative feedback improves the retrieval accuracy of difficult queries.

Xu and Akella [26] develop these approaches further by using mixture mod-
eling. Thus, terms are captured that overlap between the positive and neg-
ative feedback documents. Their results indicate a performance improvement
compared to different feedback models. However, they did not compared their
method to the negative feedback method introduced by Wang et al.

We are neither aware of approaches to find a diverse set of nodes representing the
relations to (positive) query nodes nor utilizing negative query nodes in graphs.

5 Experiments

Our goal in this section is to evaluate how successful our method is in finding a
diverse set of nodes.

5.1 Test setting

Test data We used data published by Köhler et al. [27], who defined 110 disease-
gene families based on the OMIM database. The families contain three to 41
genes each; each family is related to one disease. Köhler et al. originally used
the families in their experiments on candidate gene prioritization. Given a list
of candidate genes they used a protein-protein interaction network to score the
given genes by distance to all genes that are known to be related to a particular
disease. Then they set up a ranking of the candidate genes based on their scores.
Although their aim was different from ours, and the network they used was only
a protein interaction network, the data sets give a natural real test case for our
problem, too.

Test setting In each test run, two gene families were randomly chosen, and from
each family a gene is chosen. Both genes are considered as positive query nodes
VP . We then queried Biomine [1] with the positive query nodes. Biomine finds
a graph G connecting the given query nodes. Here, we will omit the details how
Biomine finds the graph. We assume that a connected graph G is given. Given
the graph G and the positive query nodes VP , we apply Algorithm 1 and obtain
a ranked list of representatives.

We report on an exemplary result. We show how well the found sets of repre-
sentatives represent the positive query nodes in respect to equation 1. In addition
we compare our method against random selection of representatives, hierarchical
clustering and k-medoids.

10

Note, that in in the reported experiments T , the node types allowed as rep-
resentative nodes, consist of all node types. That is, we do not restrict the node
types of the representative nodes.

5.2 Results

The graph G obtained with two positive query nodes had 20 nodes. Thus, there
are 18 nodes to be ranked as representatives. In Figure 4 k = 1 . . . 18 is plotted
against the value of equation 1 for the top k representatives from the ranked
list. It’s fractions of positive and negative parts are shown. The positive part is
the product of similarities of every representative node to every positive query
node. The negative part is the product of every pair of representative nodes. In
addition the value of equation 2 is shown, which is the value that determined
the kth representative node to be chosen as a next representative.

For k = 1 the negative fraction is one, as there were no negative query nodes.
With increasing k the negative fraction decreases as the previously selected rep-
resentatives are considered as negative nodes.

The positive fraction is 0.648 for k = 1, which is equation’s 1 value as well.
With increasing k both are decreasing, but the positive fraction much more
slowly as it is product of the similarities to the two positive query nodes for the
top k representative nodes. See Figure 5 for a closer look for k = 1 . . . 5 of the
same results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (r)
rep.ness (0..r)

rep.ness (0..r) pos. part
rep.ness (0..r) neg. part

 1e-90

 1e-80

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 0 2 4 6 8 10 12 14 16 18

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (r)
rep.ness (0..r)

rep.ness (0..r) pos. part
rep.ness (0..r) neg. part

Fig. 4. Representativeness of the top k representatives. The x-axis specifies the number
of representatives k considered from the top of the ranked list. Shown are the value of
equation 1, for the top k representatives (green line), it’s positive fraction (blue line),
it’s negative fraction (pink line), and the value of equation 2 (red line). In the right
figure the same data is plotted as on the left, but with logscale for the y-axis.

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (r)
rep.ness (0..r)

rep.ness (0..r) pos. part
rep.ness (0..r) neg. part

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (r)
rep.ness (0..r)

rep.ness (0..r) pos. part
rep.ness (0..r) neg. part

Fig. 5. Zoomed look at the results shown in Figure 4. Only values for k = 1 . . . 5
are shown: value of equation 1, for the top k representatives (green line), it’s positive
fraction (blue line), it’s negative fraction (pink line), and the value of equation 2 (red
line). In the right figure the same data is plotted as on the left, but with logscale for
the y-axis.

In Figure 6 our method to obtain k representative nodes is compared to ran-
dom selection of representatives, hierarchical clustering and k-medoids. Figure 7
shows a closer look on the same results for k = 1 . . . 5.

The values for both clustering methods drop rapidly, which is no surprise as
they optimize something else. Our method however not only outperforms both
clustering methods, but also the random selection in respect to equation 1.

6 Conclusion

We have described the problem of finding a diverse set of nodes representing
relations of query nodes in large probabilistic graphs. We based our definition of
representative nodes on node similarity on a simple probabilistic interpretation
of edge weights. We then specified the concept of representative nodes given
positive (and negative) query nodes. Afterwards, we introduced an incremental
method for identifying a diverse set of representative nodes, and demonstrated
our method on an exemplary graph, which showed how three nodes might rep-
resent different relations between positive query nodes and how to find a diverse
set of them. Finally we showed in an experimental evaluation that our method
outperforms two clustering methods as well as random selection of representative
nodes.

Further work is is needed to understand and measure the performance of the
introduced method. Therefore, the introduced method will be compared to a
variation of itself, allowing the method to adjust the selected nodes afterwards,
if it results in a better choice. Thus, we could see, how often and how much the

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (0..r)
rep.ness (0..r) random

rep.ness (0..r) hierarchical
rep.ness (0..r) kmedoids

 0

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 0 2 4 6 8 10 12 14 16 18

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (0..r)
rep.ness (0..r) random

rep.ness (0..r) hierarchical
rep.ness (0..r) kmedoids

Fig. 6. Representativeness of the top k representatives. The x-axis specifies the number
of representatives k considered from the top of the ranked list. Shown are the value
of equation 1, for the top k representatives (green line), for random selection of k
representatives (blue line), for k medoids obtained with hierarchical clustering (orange
line), and k medoids obtained with k-medoids (black line). In the right figure the same
data is plotted as on the left, but with logscale for the y-axis.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (0..r)
rep.ness (0..r) random

rep.ness (0..r) hierarchical
rep.ness (0..r) kmedoids

 1e-120

 1e-100

 1e-80

 1e-60

 1e-40

 1e-20

 1

 0 1 2 3 4 5

re
pr

es
en

ta
tiv

en
es

s

representative

rep.ness (0..r)
rep.ness (0..r) random

rep.ness (0..r) hierarchical
rep.ness (0..r) kmedoids

Fig. 7. Zoomed look at the results shown in Figure 6. Only values for k = 1 . . . 5
are shown: value of equation 1, for the top k representatives (green line), for random
selection of k representatives (blue line), for k medoids obtained with hierarchical
clustering (orange line), and k medoids obtained with k-medoids (black line). In the
right figure the same data is plotted as on the left, but with logscale for the y-axis.

result could still be improved in respect to equation 1. It should also be studied
if the previous selected nodes have a too large effect as negative query node on
finding the next representative.

13

References

1. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link Discovery
in Graphs Derived from Biologican Databases. In Leser, U., Naumann,
F., Eckmann, B., eds.: 3rd International Workshop on Data Integration in the
Life Sciences 2006 (DILS’06). Volume LNBI 4705., Berlin/Heidelberg, Germany,
Springer-Verlag (2006) 35–49

2. Colbourn, C.: The Combinatorics of Network Reliability. Oxford University
Press (1987)

3. Valiant, L.: The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing 8(3) (1979) 410–421

4. Hintsanen, P., Toivonen, H.: Finding Reliable Subgraphs from Large Prob-
abilistic Graphs. Data Mining and Knowledge Discovery 17(1) (2008) 3–23

5. Langohr, L., Toivonen, T.: Finding Representative Nodes in Probabilistic
Graphs. In: EIN ’09: Proceedings of the Workshop on Explorative Analytics of
the Information Networks at ECML PKDD. (2009) 65–76

6. Riquelme, J.C., Aguilar-Ruiz, J.S., Toro, M.: Finding Representative Patterns
with Ordered Projections. Pattern Recognition 36(4) (2003) 1009–1018

7. Rozsypal, A., Kubat, M.: Selecting Representative Examples and At-
tributes by a Genetic Algorithm. Intelligent Data Analysis 7(4) (2003) 291–
304

8. Pan, F., Wang, W., Tung, A.K.H., Yang, J.: Finding Representative Set from
Massive Data. In: The 5th IEEE International Conference on Data Mining
(ICDM’05), Washington, DC, USA, IEEE Computer Society (2005) 338–345

9. Yan, D., Huang, L., Jordan, M.I.: Fast Approximate Spectral Clustering. In:
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’09), New York, NY, USA, ACM (2009) 907–916

10. Kaufman, L., Rousseeuw, P.: Finding Groups in Data – An Introduction to
Cluster Analysis. John Wiley & Sons, Inc. (1990) p. 68–72.

11. Ester, M., Kriegel, H.P., Xu, X.: Knowledge Discovery in Large Spatial
Databases: Focusing Techniques for Efficient Class Identification. In: 4th
International Symposium on Advances in Spatial Databases (SDD’95), London,
UK, Springer-Verlag (1995) 67–82

12. DeLucia, D., Obraczka, K.: Multicast Feedback Suppression Using Rep-
resentatives. In: 16th Annual Joint Conference of the IEEE Computer and
Communications Societies. Driving the Information Revolution (INFOCOM’97),
Washington, DC, USA, IEEE Computer Society (1997) 463–470

13. Liang, C., Hock, N.C., Liren, Z.: Selection of Representatives for Feed-
back Suppression in Reliable Multicast Protocols. Electronics Letters 37(1)
(2001) 23–25

14. Domingos, P., Richardson, M.: Mining the Network Value of Customers. In:
7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’01), New York, NY, USA, ACM (2001) 57–66

15. Tong, H., Faloutsos, C.: Center-Piece Subgraphs: Problem Definition and
Fast Solutions. In: 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’06), New York, NY, USA, ACM (2006) 404–413

16. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report, Stanford Digital Library
Technologies Project (1999)

14

17. Jansen, B., Spink, A., Saracevic, T.: Failure Analysis in Query Construction:
Data and Analysis from a Large Sample of Web Queries. In: DL ’98:
Proceedings of the Third ACM Conference on Digital Libraries, New York, NY,
USA, ACM Press (1998) 289–290

18. Huibers, T., Bruza, P.: Situations: a General Framework for Studying In-
formation Retrieval. In: Information Retrieval: New Systems and Current Re-
search. Volume 2. (1994) 3–25

19. Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a Very Large
Web Search Engine Query Log. SIGIR Forum 33(1) (1999) 6–12

20. Gey, F., Chen, A., He, J., Xu, L., Meggs, J.: Term Importance. Boolean
Conjunct Training, Negative Terms, and Foreign Language Retrieval:
Probabilists Algorithms at TREC-5. In: TREC-5: the Fifth Text Retrieval
Conference. (1996)

21. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Core Algorithms in
the CLEVER System. ACM Transactions on Internet Technology 6(2) (2006)
131–152

22. Spink, A., Bateman, J., Jansen, B.J.: Searching the Web: a Survey of EX-
CITE Users. In: Internet Research: Electronic Networking Applications and
Policy. Volume 9. (1999) 117–128

23. Eastman, C., Jansen, B.: Coverage, Relevance, and Ranking: The Impact
of Query Operators on Web Search Engine Results. ACM Transactions on
Information Systems 21(4) (2003) 383–411

24. Glover, E., Lawrence, S., Gordon, M., Birmingham, W., Giles, C.: Web Search
– Your Way. Communications of the ACM 44(12) (2001) 97–102

25. Wang, X., Fang, H., Zhai, C.: A Study of Methods for Negative Relevance
Feedback. In: SIGIR ’08: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, New
York, NY, USA, ACM Press (2008) 219–226

26. Xu, Z., Akella, R.: Active Relevance Feedback for Difficult Queries. In:
CIKM ’08: Proceeding of the 17th ACM Conference on Information and Knowledge
Management, New York, NY, USA, ACM Press (2008) 459–468

27. Köhler, S., Bauer, S., Horn, D., Robinson, P.: Walking the Interactome for
Proritization of Candidate Disease Genes. American Journal of Human
Genetics 82(4) (2008) 949–958

