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Abstract. Chemical and biological research is facilitated by big data
repositories of chemical compounds from ultra-high-throughput screen-
ing techniques, where large numbers of molecules are tested and classified
based on their activities against given target. With the increasing avail-
ability of data, it is quite necessary to develop accurate and robust models
to predict chemical and biological properties of novel molecules based on
their structural representations of different dimensions. In this report,
we will briefly review literatures of several machine learning approaches
on molecular classification problem. These approaches include mining
statistically significant molecular substructures, graph walk kernel, and
molecular fingerprints. We will focus on recently developed methodol-
ogy of mining statistically significant molecular substructures. Then, we
will propose our novel method which we call atom properties enrichment
kernel. The new method can incorporate huge amount of atom level
properties. Finally, we will give experimental results of these methods
by applying them on standard datasets.

1 Introduction

Chemical and biological research is facilitated by big data repositories of chemical
compounds from ultra-high-throughput screen techniques, where large number of
molecules are tested and classified based on their activities against given targets.
The increasing availabilities of data offer both challenges and opportunities to
machine learning, where the goal is to infer chemical or biological properties
of molecules based on structural representations in different dimensions. The
prediction is based on the assumption that molecules with similar geometric or
physiologic properties will also have similar chemical and biological characters,
which is also the basis for early studies [1] of quantitative structure activity
relationship (QSAR).

Molecules are represented by strings, or more commonly, graphs in 2D or
3D space where atoms are represented by nodes and bonds are represented by
edges. Therefore, a prediction model should solve the problem of generating
features from a molecule and construct a learning model effectively. There are
two mainstream methods. One direction is to generate feature representations
of molecules through ”molecular fingerprints”, which maps the molecule into
a fixed width bit vector. Each position in the vector denotes the presence or
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absence of certain substructure or fragment in the molecule. Another way is to
represent a molecule by a set of statistically significant substructures which was
developed in literature [2].

Support vector machine and kernel methods [3] emerged during the last
decade and became important prediction methods in machine learning. They
are suitable for structured data of various kinds. The advantage of these meth-
ods is that the learning machine does not have to access high dimensional feature
space when it interacts with samples in the dataset. The challenges for kernel
methods is to construct or learn a good kernel for a given task. In molecule
classification problem, these kernels are functions capable of calculating similar-
ity between molecules based on different molecule representations. One of the
first successful applications of kernel methods in molecule classification is of-
ten known as walk kernel [4]. Later, a fast method for calculating walk kernel
with dynamic programming algorithm was introduced [5]. Besides walk kernel,
marginalized graph kernel, which used random walks on graphs was developed
in the literature [6]. It was further extended by adding morgan indices on node
labels and preventing nodes being revisited during generating walks [7]. After
that, a number of kernel methods was developed and applied in this area, in-
cluding kernels based on fingerprints [8] and kernels considering different string
representations [9], local substructures [10] or three-dimensional substructures
[11]. It is worth mentioning that subgraph kernels were proved hard to calcu-
late [12], as they are NP-hard graph isomorphism problems in nature. However,
subgraph kernels, which are restricted to several salient subgraphs and applied
to moderate-sized datasets, can still product satisfactory results. These methods
are usually known as reduced graph approaches [13].

Even though a number of methods have already been developed for molecule
classification, new methods in this area are bing developed. The reason is that
no single method can adequately capture all properties of molecules and can
be universally applied to each specific area. Therefore, in the following sections,
we will first review a substructure mining algorithm developed [2], and a graph
walk kernel method [4]. We will also define molecular fingerprints approaches in
a detailed manner. Then, we will describe our new method, which is a kernel
method that can combine chemical properties in atom level into molecular repre-
sentations. We will also show experimental results for the quality measurements
of these methods.

2 Related work

In this section, we will briefly review several popular feature mining algorithms
that are widely used in molecular classification. These algorithm includes Graph-
Sig (an statistical method that aims to find statistically significant subgraph
patterns), graph walk kernel (kernel methods using similar path to measure
pairwise similarities), molecular fingerprints methods(feature representations of
molecules).
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2.1 Mining statistically significant subgraphs

GraphSig [2] is an algorithm for mining statistically significant subgraphs for
efficient molecular classification. The algorithm aims to mine molecular sub-
structures, which have p-value below a predefined threshold, from the entire
dataset. After that, the algorithm represents each molecule by a feature vector
that takes the statistically significant substructures as features. Then it employs
support vector machine (SVM) for classification.

Incorporating domain knowledge on molecular graphs. Two different
approaches are applied in the model to combine domain knowledge in molecular
graphs. The first one is to enhance atom labels in graphs. Atoms in molecule
graph are originally labeled by a simple atom type. For example a carbon atom
is labeled by C and an oxygen atom is labeled by O. When atom labels are
enhanced, they will also incorporate part of structural information, as shown
in Figure 1. For example a carbon atom in an aromatic ring structure will be
labeled by C.ar and an oxygen atom connected by a double chemical bond will
be labeled by O.2.

Fig. 1. [2] Enhanced atom labels.

Second, molecular graph will no longer be represented only in atom level.
GraphSig detects functional groups in each molecule and replaces atoms that
are part of functional groups by names of functional groups. for example, six
carbon atoms in an aromatic ring structure will be replaced by a special node
called ”benzene”, as shown in Figure 2.

Representing molecules as sets of histograms. Once domain knowledge is
combined into molecular graph, it is necessary to represent molecule into a set
of histograms. This is because GraphSig builds probability framework base on
the histogram representations. GraphSig performed random walk with restart
(RWR) from each nodes of a molecular graph to convert molecule to a set of
histograms. The idea of RWR is to capture the distribution of node-node pairs
in each molecule.

RWR simulates a random walker that starts from a target node and keeps
jumping from one node in graph to its neighbors. Each neighbor of the current
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Fig. 2. [2] Extract benzene function group.

node has equal probability to be reached in the next step. The walker has a
restart probability of α, because we do not want the walker go too far from the
starting point. In GraphSig, restart probability α is set to 0.25, which means the
walker restarts after four jumps on average. Perform RWR on each node of a
molecular graph repeatedly until the distribution of node-node pairs converges.
Then the distribution of node-node pairs is normalized and discretized. Figure 3
shows the results from RWR on carboxamide.

Fig. 3. [2] RWR results on carboxamide. In its graph representation, hydrogen atoms
are omitted.

Probabilistic framework. Suppose we have four sample graphs G1, G2, G3,
and G4 as shown in Figure 4. The histograms of node a from RWR are shown in
Table 5. The results of the histogram reveal there could be one common subgraph
among G1, G2 and G3 which is formed by node-node pairs a− b, b− c and b−d.
Therefore, we can calculate the significant of the substructures if we are able to
calculate the p-value of the histogram.

Suppose the database has only one molecule, which is carboxamide as shown
in Figure 3. Histograms of different starting nodes can be calculated from a
RWR procedure, as shown in the table of Figure 3. The histograms denote the
distributions of all node-node pairs from different starting nodes in the database.
A prior probability matrix, as shown in Finger ??, can be obtained by analyzing
the histogram matrix. The histogram matrix denotes the probability of finding a
node-node pair with a frequency over n. for example, third column of the second
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Fig. 4. [2] Sample graph database.

Fig. 5. [2] Histograms of node a in sample graphs of Figure 4.

row represents the probability that finding the C-1-C with frequency over 3 in
table of Figure 3 is 2/4.

Fig. 6. [2] Prior probability matrix.

Therefore, the probability of finding a histogramX = [x1 = f1, x2 = f2, ..., xn =
fn] in a database with a fixed prior probability matrix Mprior is modeled by a
joint probability of finding each component node-node pair xi with a frequency
over fi in the prior probability matrix, defined as:

p(X) = Mprior(x1, f1) ∗Mprior(x2, f2) ∗ ... ∗Mprior(xn, fn)

for example, finding histogram h1 in table of Figure 3 is calculated as:

p(h1) = Mprior(O− 2−O, 4) ∗Mprior(C− 1−C, 2) ∗Mprior(C− 1−N, 2) = 1/4

p-value of the histogram. Given histogram of a database, the probability of
finding X in a database can be calculated by p(X), as described in the previous
section. Suppose the number of histogram in the database is m, finding a specific
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histogram X in the database with frequency µ can be modeled by a binomial
distribution:

P (X;µ) =
(
m
µ

)
p(X)µ(1− p(X))m−µ

Therefore, the p-value of finding a histogram X with a given frequency µ0

can be calculated by measuring the area under probability distribution function
(PDF) of p(X), defined as:

p-value(X;µ0) =
∑

i∈[µ0,m]

P (X; i)

statistically significant histograms. Given such a probability framework,
p-value threshold and µ frequency threshold (the expectation of the number of
certain histogram in dataset), GraphSig uses GraphRank [14] to generate all
histograms that satisfies the thresholds in the database. Each histogram from
GraphRank will represent a significant substructure that can be used as a feature
to represent the molecule.

2.2 Walk kernel

Another approach for molecular classification problem is by kernel methods.
Kernel methods are different from using feature representations of molecules
which tries to map a molecule into a feature vector. It actually measures the
similarity between each pair of molecular graphs and organizes these similarity
values into a matrix form. The kernel matrix can be used by support vector
machine directly.

Walk kernel is one of the kernel methods that is based on measuring walks
in two graphs that have same labels. The calculation is based on direct product
graph and calculating the multiplication of adjacent matrix.

Graph terminology. An undirected graph G = (V,E) is defined by a finite
set of nodes V = {v1, v2, ..., vn} and a finite set of edges E = {e1, e2, ..., en}. The
n × n adjacency matrix E of graph G is defined such that the (i, j) entry of E
equal to 1 if and only if there is an edge between vi and vj . A walk length of
m in the graph G is defined as w = {v1, v2, ..., vm} so that for i = 1, 2, ...,m− 1
there exists an edge (vi, vi+1) ∈ E.

Walk kernel definition. A product graph between two graphs G1 = (V1, E1)
and G2 = (V2, E2) is denoted by G×(G1, G2) = G1 ×G2. The nodes and edges
of the product graph G×(G1, G2) is defined as:

V×(G1, G2) = {(v1, v2) ∈ V1 × V2, label(v1) = label(v2)}
E×(G1, G2) = {((v1, v2), (u1, u2)) ∈ V× × V×, (v1, u1) ∈ E1 ∧ (v2, u2) ∈ E2}
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Walk kernel between two graphs denoted by Kwk(G1, G2) is defined as the num-
ber of same walks up to infinite length shared by two graphs [4]. The contribution
of single walk is also downscaled according to its length. Walk kernel can be eas-
ily calculated from the adjacency matrix of product graph obtained from two
original graphs:

Kwk(G1, G2) =
|v×|∑

[
∞∑
n=0

λnEn×],

where v× is the node in product graph and λ is the positive downscaling factor
which is strictly less than 1.
Walk kernel using walks up to moderate length can mimic the one with infinite
length of walks [4]. Therefore, dynamic programming algorithm was employed
for fast calculation of walk kernel with finite walks. A walk kernel using walk up
to length of p is defined as

Kwk(G1, G2) =
∑

v×i∈V×

Dp(v×i),

where Dp(vi) is calculated by

D0(vi) = 1

Dn(vi) =
∑

(v×i,v×j)∈E×

Dn−1(v×j)

2.3 Molecular fingerprints

Besides kernel methods and methods which aims to mine statistically significant
part subgraphs, there is another method exists and widely used. The method is
known as molecular fingerprints. Molecular fingerprints are designed to encode
a molecular structure in a fixed width binary bit vector, which represents the
present or absence of particular substructures or fragments in the molecule. As
a result, molecular fingerprints are capable of encoding large number of features
in a compact manner, and are extensively used for various tasks in chemical
informatics, with the hope that two similar molecules create similar fingerprints
and similar fingerprints mean the molecules are similar. There are two variations.

Hash fingerprints. One kind of fingerprints is commonly known as ”hash
fingerprints”, which enumerates all linear fragments of length n in the molecule.
Parameter n is usually bounded from three to seven. A hash function assigns
each of the fragments a hash value, which determines its position in descriptor
space.

Substructure keys. Another major fingerprint type is called ”substructure
keys”, which is based on pattern matching of a molecular structure to a set of
pre-defined substructures. Each substructure becomes a key and have a fixed po-
sition in descriptor space. These substructures are considered to be independent
functional units and are identified by domain experts as prior knowledge.
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Tanimoto coefficient. Once the molecules have been represented as finger-
prints, Tanimoto coefficient is usually employed to measure the similarity be-
tween pair of molecules. Given two molecular fingerprints fp1 and fp2, Tanimoto
coefficient is defined as

T (fp1, fp2) =
Nfp1,fp2

Nfp1 +Nfp2 −Nfp1,fp2
,

where Nfp1 is the number of bits being ”ON” in fingerprint fp1, Nfp2 is the
number of bits being ”ON” in fingerprint fp2, and Nfp1,fp2 is the number of
bits being ”ON” in both of the fingerprints.

3 Feature enrichment method

In this section we describe a novel method which we call atom properties enrich-
ment kernel. It uses detailed atom level properties for substructure comparisons.
Follow the idea of molecule fingerprints, it is possible to assign a bit vector to
each atom in the molecule. The positions of the vector represent properties of
this atom. Possible properties include chemical properties, electric ones and geo-
metric ones as shown in Table 1. We call this bit vector atom fingerprints, which
represents pharmacophore properties of atoms. Therefore, atoms can be further
specified in graph kernel methods. The comparison between each pair of atoms
will return a similarity value based on their fingerprints, other than binary 0
or 1. For example, given two atom v1 and v2 together with their atom level
fingerprints fp1, fp2, the similarity between this pair of atoms can be defined as

σ(vi, vj) =

{
0 if vi 6= vj

γ(fp1,fp2)
γ(fp1,fp1)+γ(fp2,fp2)−γ(fp1,fp2) if vi = vj

,

where γ function measures the number of same positions in two vectors.

Bit positions Set when

1 Atom is acceptor
2 Atom is donor
3 Atom is negative
4 Atom is positive
5 Atom in ring
6 Atom is terminal carbon
... ...

Table 1. Atom fingerprint



9

Decomposition kernel [10] uses similarities of substructure pairs to calculate
the similarity between two molecules. When comparing two substructures, de-
composition kernel actually compares the spectrum of the selector atoms, which
contain atom type, bond type and atom charge information of surrounding
atoms. However, surrounding atoms in different radius are mixed together in
the spectrum. It is necessary also to consider neighboring atoms on different
radius. Therefore, an atom properties enrichment kernel, which derives from de-
composition kernel by adding atom properties and considering atom in different
radius, is defined as:

K(G1, G2) =
∑

vi,si∈R(vi,si,G1)vj ,sj∈R(vi,si,G2)

σ(vi, vj)Ks(si, sj)

Ks(si, sj) =
∑
r∈R

Kr(si, sj)

Kr(si, sj) =
∑

vm∈virvn∈vjr

σ(vm, vn)

R(vi, si, G) is one substructure decomposition of molecule graph G, the selector
node of substructure si is vi. Function Ks(si, sj) returns similarity value between
two substructures si and sj . Function Kr(si, sj) returns similarity value between
two substructures si and sj according to radius r neighboring atoms. vir and vjr
are atoms in radius r of two subgraphs si and sj .

4 Data

We apply methodologies described in the previous sections to the problem of
predicting mutagenicities and anti-cancer activities based on two public available
standard dataset respectively (Mutag and NCI-cancer).

4.1 Mutag dataset

Mutag dataset [15] was constructed based on data from review of literatures
about mutagenicities in Salmonella Typhimurium based on 200 aromatic and
heteroaromatic nitro compounds. The determinants for mutagenecity in the
study are hydrophobicity and energies of the lowest unoccupied molecular or-
bitals. As a result, 188 congeners were extracted together with their structure-
activity relationship (SAR) data. Therefore, Mutag dataset is very suitable for
machine learning and is widely used as one of the standard dataset. The measures
of success of various learning methods on Mutag dataset are usually reported as
accuracies from a leave-one-out(LOO) cross validation procedure and are com-
pared with each other.

More specifically, 125 molecules in Mutag dataset are labeled as positive and
63 are labeled as negative. Distribution of number of atoms in molecules is shown
in Figure 7. Distribution of number of chemical bonds in molecules is shown in
Figure 8.
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Fig. 7. Distributions of number of atoms in molecules in Mutag dataset
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Fig. 8. Distributions of number of chemical bonds in molecules in Mutag dataset

4.2 NCI cancer dataset

Developmental Therapeutics Program1 (DTP) from National Cancer Institute
and National Institutes of Health (NCI/NIH) was designed to screen up to 3, 000
compounds every year searching for potential anti-cancer drugs. This program
utilizes compound data in several human cancer cell lines including leukemia,
melanoma and cancers of the lung, colon, brain, ovary, breast, prostate, and
kidney. The data for each cell line can be obtained through PubChem Bioassay2

[16] data repository. For each tested molecule in certain cell line, PubChem
[17] provides its bioactivity score and bioactivity outcome. Bioactivity score
provides relative ranking score of the molecular activity. Bioactivity outcome
categorizes bioactivity scores and includes five classes, namely chemical prob,
active, inactive, inconclusive, and unspecified.

1 http://dtp.nci.nih.gov/index.html
2 http://pubchem.ncbi.nlm.nih.gov
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Currently, there are 43, 884 compounds in the PubChem Bioassay database
together with anti-cancer activities in 73 cell lines. 59 cell lines have screen exper-
imental results for most compounds, therefore are suitable for machine learning
algorithms. The number of active compounds and total number of compounds in
each cell line is reported in Table 2 and Table 3. Since NCI-cancer datasets are
relatively big, performances of algorithms are usually analyzed by n-fold cross
validation methods.

NCI-cancer datasets were first employed in literature [9] of early study in
predicting mutagenecity, toxicity and anti-cancer activity by sampling equiva-
lent number of active molecules and inactive ones from original datasets. The
datasets resulted from sampling were mostly used in researches that followed.
However, we found the sampled datasets were erroneous and lots of molecules
were mislabeled compared to PubChem Bioassay database. Therefore, we use
data from PubChem Bioassay database directly in our experiments.

AIDs Cell line names Actives Total AIDs Cell line names Actives Total

1 NCI-H23 2052 40560 3 NCI-H226 1811 37365

5 NCI-H322M 1533 39213 7 NCI-H460 2351 39224

9 HOP-62 1862 39283 11 HOP-18 594 10999

13 HOP-92 1933 35764 15 NCI-H522 2707 36809

17 LXFL 720 13300 19 A549/ATCC 1961 40785

21 EKVX 1444 39570 23 LOX 2481 37850

25 M14 1940 39821 27 M19-MEL 789 14450

29 MALME-3M 1959 37933 31 UACC-62 2147 39636

33 UACC-257 1646 40244 35 SK-MEL-2 1600 37926

37 SK-MEL-5 2200 39585 39 SK-MEL-28 1448 39937

41 PC-3 1571 27596 43 DU-145 1488 27511

45 SF-268 2005 40113 47 SF-295 2023 40482

49 SF-539 2067 37933 51 XF 771 11853

53 SNB-19 1686 39999 55 SNB-75 2047 37810

57 SNB-78 580 13360 59 U251 2166 40482

61 DMS 888 13100 63 DMS 931 14174

65 HT29 2108 40408 67 COLO 2120 40124

69 DLD-1 766 13925 71 HCT-15 2099 40117

73 KM12 2000 40261 75 KM20L2 683 13608
Table 2. Information of NCI-cancer datasets
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AIDs Cell line names Actives Total AIDs Cell line names Actives Total

77 HCC-2998 1802 36296 79 HCT-116 2473 40194

81 SW-620 2405 40733 83 MCF7 2292 28003

85 MDA-MB-435 1810 27669 87 MDA-N 1757 27083

89 BT-549 1243 24766 91 T-47D 1508 26113

93 NCI/ADR-RES 1428 27950 95 MDA-MB-231/ATCC 1411 27180

97 HS 1417 26059 99 OVCAR-3 2100 39315

101 IGROV1 2034 40153 103 SK-OV-3 1524 38427

105 OVCAR-4 1523 38587 107 OVCAR-5 1301 39512

109 OVCAR-8 2077 40724 111 P388 331 980

113 RPMI-8226 2697 37663 115 SR 3267 33647

117 P388/ADR 249 959 119 CCRF-CEM 3526 38895

121 K-562 2899 39790 123 MOLT-4 3130 40189

125 HL-60(TB) 3331 37125 127 SN12K1 251 995

129 A498 1620 34968 131 CAKI-1 2053 37869

133 RXF 2012 36135 135 RXF-631 496 10746

137 786-0 2093 39667 139 ACHN 2016 39918

141 TK-10 1278 39346 143 UO-31 1875 39892

145 SN12C 1953 40201
Table 3. Information of NCI-cancer datasets

5 Experimental results

5.1 Measurements of success

One way to measure the quality of classification is by accuracy (ACC), which
is the proportion of true results, including true positive (TP) and true negative
(TN), in the entire population. As we sometimes come up with biased data and
accuracy is affected by the number of positive labeled examples in the dataset,
it does not always tell the true stories of the classification quality. Therefore,
we also measure the quality by calculating the area under the receiver operator
characteristics (ROC) curve, known as AUC. ROC curve can be represented as
the ratio between true positive rate (TPR) and false positive rate (FPR). The
AUC of an ideal classifier is 1, and an random classifier should have AUC around
0.5.

For NCI-cancer dataset, both accuracy and AUC score are reported from a
5-fold cross-validation method. Given a training set Z = {xi, yi}ni=1, the k-fold
cross-validation is calculated as follow: first of all, the training set Z is randomly
divided into k subset Z1, Z2, . . . , Zk of approximatly equal size. Then SVM is
trained based on k − 1 subsets, and error rate is estimated on the remaining
subset. The process is repeated k times, such that each subset is tested once.
The overall error rate from cross-validation is the average error rate from each
testing. For Mutag dataset, a leave-one-out procedure is employed. Leave-one-
out method is equivalent to n-fold cross-validation, which divides training set Z
into n subsets and uses each subset for testing.
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5.2 Results

We use following notations for different methods: SK for molecular fingerprints
of substructure keys, HF for molecular fingerprints of hash fragments, WK for
graph walk kernel method, FE for atom properties enrichment kernel, and GS
for GraphSig. These notations are listed in Table 4. Substructure keys and hash
fragments features are generated by OpenBabel 3. Support vector machine used
in the experiments is LibSVM 4. To obtain a fare comparisons of these methods,
SVM C parameter is fixed to 1 for all the experiments.

Notations Methods

SK Substructure keys

HF Hash fingerprints

WK Graph walk kernel

FE Feature Enrichment kernel

GS GraphSig
Table 4. Notations used for different methods.

Mutag dataset. For Mutag dataset, the prediction accuracies of all methods
are above 80%, which means it is a well-defined dataset and the prediction task
is relatively easy. The best accuracy and AUC score are achieved by the atom
properties enrichment kernel, as shown in Table 5. GraphSig did not use Mutag
dataset. Besides, it uses different file format to represent graph, which makes it
difficult to use it on new datasets. Therefore we do not have results available
from GraphSig here.

Methods Accuracies AUCs

SK 84.57% 86.56%

HF 86.17% 89.92%

WK 81.38% 88.33%

FE 90.02% 95.45%
Table 5. Prediction accuracies and AUC scores in Mutag dataset

3 http://openbabel.org
4 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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NCI-cancer dataset. For NCI-cancer datasets, we again carried out the ex-
periments by using substructure keys, hash fragments, graph walk kernel and
our atom properties enrichment kernel. Totally, 59 datasets were used based on
the criterion that there was no missing screen data for molecules. The behavior
of different methods are shown in Figure 9. The results show that these three
methods have similar behaviors on NCI-cancer dataset. Besides, one can infer
that hash fragments features worked better than the others. Graph walk kernel
and substructure keys features are almost equivalent methods on NCI-cancer
datasets. Atom properties enrichment kernel did not work as well as other meth-
ods.

●

● ●
●

●

●

●

●

●

● ● ●
● ●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

● ●

● ●

●

●

● ● ● ●
●

●

●

●
●

●
● ●

● ●

●
●

●
●

●
● ●

●
●

● ●

0 10 20 30 40 50 60

60
70

80
90

10
0

NCI−cancer datasets

A
cc

ur
ac

y 
%

●

●
●

●

●
● ●

●
● ● ●

● ●

● ● ● ● ●

●

●
● ●

●

●

●
●

●
●

● ● ● ●
● ●

●
●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●
● ● ●

●

●

●

●
●

●

●

●
●

●

●

● ● ●
● ●

● ●

●
● ●

●
●

●
●

●
●

●
●

●

●

●

●
● ●

●

● ●
●

●
●

●
●

●

●
●

●
●

● ●
● ●

●

● ●
● ●

●

●

●

●
● ●

● ●
●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ●

hash fragments
substructure keys
walk kernel
feature enrichment kernel

Fig. 9. Prediction accuracies on NCI-cancer dataset.

GraphSig sampled molecules from original database and there is no informa-
tion about the real data employed [2]. Besides, in GraphSig accuracy and AUC
score were not calculated directly from SVM but from other evaluation software.
Therefore in our experiments, the results from GraphSig and other methods are
not directly comparable.

To make GraphSig comparable to other methods, we carried out experiments
on the sample dataset in GraphSig package. By using GraphSig and the eval-
uation software, we achieved an AUC score of 91.66% which coincided with
the AUC scores from the experiments on NCI-cancer in the literature [2]. We
then used GraphSig and LibSVM package for evaluation, giving an accuracy of
84.48%. This means GraphSig should have similar behavior with other methods.

Performance differences. As illustrated in the results, feature enrichment
kernel has good performances in Mutag dataset. However, it does not work well
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on NCI-cancer datasets. The differences in performances may be caused by the
differences in properties of molecules shows in two kinds of datasets. Mutag is
about the activity data of molecules causing gene mutations, and NCI-cancer
is about the activity data of molecules that kill cancer cells. Needless to say,
different aspects of activities are represented by different molecular features.
The feature enrichment kernel may well capture the molecular features which
can explain gene mutations. However, the kernel can not represent those features
that kill cancer cells. That’s why the performance differences are so different.
Besides, the mechanism of gene mutations seem to be simpler than one that kills
cancer cells. This may be the reason that algorithm always work well on Mutag
rather than NCI-cancer.

6 Conclusions

In the report, we first reviewed several current popular approaches for molecu-
lar classification problem. These approaches include GraphSig which is a newly
developed algorithm for mining statistically significant subgraphs in a graph
dataset, graph kernel methods and molecular fingerprints methods. After analyz-
ing these methods, we then proposed our novel methods which is atom properties
enrichment kernel that is able to combine detailed chemical, electric and geomet-
ric properties of atom level into graph kernels. Experimental results were also
available in the report in order to measure the performances of these methods.

GraphSig is a newly developed method that aims to mine statistically signif-
icant substructures from molecular graphs. It also combines domain knowledge
into molecular graph representations, such as detailed atom labels and func-
tional group extractions. Besides, it offers good classification accuracies. In a
sense, GraphSig is one of the the-state-of-the-art methods in molecular classifi-
cation problem. However, the results of the experiments show that GraphSig is
not reasoning as good as described in [2]. Other methods can offer competing
results as well, which can be seen from last section.

Molecular fingerprints methods including substructure keys and hash frag-
ments also make good predictions. Besides, they are computational more efficient
than GraphSig. They also combine prior knowledge in chemical domain about
functional groups in molecules. However, there is no feature selection in these
methods, which means some features are irrelevant and some are redundant.

Kernel methods derived from support vector machine are flexible for clas-
sification tasks. Most of them are also efficient to calculate. Graph walk kernel
was proved in this article to have a good performance in molecular classification.
The atom properties enrichment kernel, which combines chemical properties in
atom level, achieves the best result in Mutag dataset. The performances of atom
properties enrichment kernel on NCI-cancer datasets are also acceptable.

Though lots of methods exist and have good performances on molecular
classification tasks, new methods are still actively pursued. This is because no
single method can collect all information of molecules. In the future, we will
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mainly focus on combine other domain knowledge in representing molecules, for
example from chemical and biological areas.
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