Pirjo Moen

Univ. of Helsinki/Dept. of CS

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- . The target function could be discrete- or real- valued.
- For discrete-valued, the *k*-NN returns the most common value among the k training examples nearest to *xq*.
- Voronoi diagram: the decision surface induced by 1-NN for a typical set of training examples.

Data mining methods - Spring 2005

Page 37

Pirjo Moen

Univ. of Helsinki/Dept. of CS

Discussion on the k-NN Algorithm

- . The k-NN algorithm for continuous-valued target functions
 - * Calculate the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - * Weight the contribution of each of the k neighbors according to their distance to the query point x_a
 - giving greater weight to closer neighbors $w = \frac{1}{d(x_q, x_i)^2}$ * Similarly, for real-valued target functions
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes.
 - * To overcome it, axes stretch or elimination of the least relevant attributes.

Data mining methods - Spring 2005

Page 38