Finding frequent (closed) sets with
tree structures

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

FP-tree, FP-growth, CLOSETI

FP-tree data structure

FP-growth algorithm for finding all frequent sets

CLOSET algorithm for finding frequent closed sets

Literature for this part

Key properties'

Problem: discovery of frequent sets
e a compressed representation of the database (FP-tree)

e no explicit generation of candidates

e recursive partitioning of search space

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

e scan database once, compute the frequenies of singletons

e scan the database for a second time and store it as a tree, also
store counts in the tree

e while building the tree, prune and sort items by their frequency
(try to minimize the tree size)

e determine frequent sets using the tree, without accessing the

database again

Example relation I

(here a,b, ... € R are items)

Row Ordered frequent items

a,c7d’f,g’7’,m7p f’c,a’m,p

a’7b,c7f7l,m’0 f?c’a7b7m
b, f,h,j,0 f,0
b7c7 k7p’8 c7b7p

a’c,e7f,l7m’n,p f?c’a/ﬂm’p

Frequency threshold = 3/5.

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

Header table

head of

item node-links
i e e =
e | oo --
a | @ ———=—=a_
b ———
1 — -
o %

Constructing FP—treeI

e first database scan: frequent sets and absolute frequencies are
f:4,c:4,a:3,b:3, m:3,p:3

e initialize the FP-tree (frequent pattern tree) T"
T = node labeled “null”

e second database scan: for each row
— read the row

— remove infrequent items and sort the frequent ones in
descending order by frequency

— add the resulting string to T', update counts as necessary

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

FP-tree data structures'

a tree, with the root labeled “null”, and with paths in the tree

representing item prefixes

e links across the tree, linking all occurrences of the same item in
the tree
e each node (except null) consists of

— item name: item identifier
— count: nr of rows reaching this node

— node link: link to next node in the tree with the same item
identifier

frequent item header table: starting point for the cross links

String insertion procedure'

e procedure insert_tree(string [p|P], tree rooted at T)
e p is the first item of the string and P is the remaining string

e the 2nd database scan: for each row t € r call insert_tree(t’, T),
where t' is the pruned and resorted contents of the row, and T is
the root of the tree

if T has a child node N such that N.itemname = p then
N .count++;
else
create a new node N;
N.itemname := p; N.count := 1;
update nodelinks for p to include IV;
if P is non-empty
call insert_tree(P, N);

0N OG W

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

e Time complexity:
— 2 scans over the database

— tree building: O(||r||) (total number of items)
e Space complexity:
= O(lIr[)

— average complexity much better!? (pruning and sorting of
items)

— tree height bounded by the size of the maximal row

Finding frequent setsI

FP-growth algorithm
e for all frequent items A, in increasing order of frequency (i.e.,
starting from the bottom of the header table and the tree):
— traverse all occurrences of A in the tree using the node links

— at each node IV with N.itemname = A, determine the

frequent sets in which A occurs

— do this by only looking at the path from root to NV
(all sets including nodes below N have been generated already

in earlier iterations)

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures 11

item p

e two paths
—f:4,¢:3,a:3, m:2,p:2
—c:1,b:1,p:1

e i.e., fecam occurs twice with p and c¢b once; p's frequency is
2+1=3

e = p's conditional pattern base (note: p removed, counts
adjusted):
—f:2,¢:2,a:2, m:2
—c:1,b:1

e frequent sets that contain p are determined by the conditional

pattern base!

e = recursively build an FP-tree for the conditional base and find
frequent sets there, then add p to them all

the recursive call:

conditional “data base” given as input
—f:2,¢:2,a:2, m:2
—c:1,b:1

1st database scan: only ¢ : 3 is frequent

= cp is frequent, frequency 3/5

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

item m

e two paths
—f:4,¢:3,a:3, m:2
—f:4,¢:3,a:3,b:1,m:1

p can now be ignored, sets containing it were found already

m's conditional pattern base:
—f:2,¢:2,a:2
—f:1,¢:1,a:1,b:1

m's conditional FP-tree: just one path f:3,c:3,a:3

recursively find frequent patterns in the conditional FP-tree, first

for a, then for ¢ and f

13

Example, conditional FP-tree of mI

(f:2, 2, a:2)
(o1, e:1, a1, b:1)
Conditional pattern base of "m"

Header table @
item ‘ head of node-links o
e 4

Conditional FP-tree of "m"

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures 15

Example, conditional FP-trees of ma and mac'

Conditional pattern base of "am": (f:3, ¢:3) Conditional pattern base of "cam": (f:3)

H Conditional FP-tree of "cam" N
Conditional FP-tree of "am" e e

Conditional pattern base of "em": (f:3)

Observation: if the tree consists of just one path, one can simply

Conditional FP-tree of "cm"

generate all combinations of items

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures

1.

N

No oo~

FP-growth algorithm I

Algorithm FP-growth((conditional) FP-tree T', condition X C R)
First call: FP-growth(root, ()

if tree T consists of a single path then
for all combinations Y of items in the path

output set X UY and the minimum count

of nodes in Y;

else for each item A in the header table of T’
output Z := X U {A} and the count A.count;
construct Z's conditional FP-tree T'z;
if Ty # (0 then call FP-growth(T'z, Z);

Runtime (sec.)

140 1

-

3

=3
L

=

=3

=]
N

=]
=
X

an
=
i

)
=
N

[
=]
2

Experimental results I

——D1 FPgrowth
runtime

- -3+ - D1 Apriori runtime

—a— D2 FP-growth
runtime

‘-é\ - +/s - D2 Apriori runtime

—_—

0.5 1 15 2 25 3
Support threshold (%)

17

CLOSET: closed sets with FP—tree'

e use conditional pattern bases to locate closed sets

e Lemma Consider the conditional database of some set X and the
(possibly empty) set Y of items that appear in every row of the

conditional database. X UY is closed if no closed set Z has been
yet found such that X UY C Z and Z’s count is identical to Y's
count in the conditional database.

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures 19

CLOSET optimizations to FP-growth I

e the set Y of items that appear in every row of the conditional
database — if not empty — is a prefix of the only path from the
root of the conditional FP-tree
= handle these directly, not recursively

e in more general, if there exists a single prefix path from the root,
possibly several closed sets can be extracted directly

e if X CY, the counts are equal, and Y is closed, then there are no
closed sets that contain X but not Y
= such sets X can be pruned

Single path optimization'

frequent closed itemset
1. i kln 1

frequent closed itemset

il k2 2

frequent closed itemset
1.1 kln_l

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures 21

Experimental results I

e Again: number of frequent closed set vs. frequent sets

, #b.1

Support #F.C.I #F.1 Zr.ca
64179 (95%) 812 2,205 272
60801 (90%) | 3,486 27,127 7.78

47290 (70%) | 35,875 | 4,129,830 | 115.12

(.
54046 (80%) | 15,107 | 533,975 | 35.35
(

Table 2: The number of frequent closed itemsets
and frequent itemsets in dataset Connect-4.(F.C.I for
frequent closed itemsets and F.1 for frequent itemsets.)

sets
100 1
*\ Y — e ACLOSE
% ~ —=— CLOSET
B ~ s « —4& —ChARM
Ee) ~ ~
5 N ~
8 60+ kW ~
() . ~
2 N, ~
E 404 N *
5 e L
© e
204]
4] T T T J
0.7% 0.9% 1.1% 1.3% 1.5%
Support thre shold

Runtime (second)

10000 1

1000 4

100 1

e Performance comparision with other algorithms for closed frequent

—+— A-CLOSE
—=—CLOSET
— & —ChARM

40%

50% 60% 70% 80% 90% 100%

Support threshold

Data mining, Autumn 2002, Finding frequent (closed) sets with tree structures 23

o FP-tree, FP-growth:

e CLOSET:
Jian Pei, Jiawei Han, Runying Mao: CLOSET: An Efficient
Algorithm for Mining Frequent Closed Itemsets. ACM SIGMOD

Workshop on Research Issues in Data Mining and Knowledge
Discovery 2000.

Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns
without Candidate Generation. 2000 ACM SIGMOD Intl.
Conference on Management of Data.

