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581550-4 Data Mining (3 cu)I

e Data mining, also called knowledge discovery in databases (KDD)
e In Finnish: tiedon louhinta, tietamyksen muodostaminen

e Goal of the course: an overview of pattern discovery

e Biased overview

e Theory and examples

e Course home page:
http://www.cs.helsinki.fi/hannu.toivonen /teaching/timuS02/




Contents of the course.

e Introduction
e Discovery of association rules

e Case study: discovery of episodes from telecommunications alarm
databases

e Theoretical aspects of knowledge discovery
e Closed sets and formal concept analysis

e Sampling

e Search for integrity constraints in databases
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Course organization I
e lectures

— Tuesdays and Thursdays 10-12 A414
10 Sep — 17 Oct

— language of instruction: Finnish(?)

— (discussions: Finnish or English)

e exercises
— Tue 8-10 A320 (in English?), Fri 14-16 B450
— 17 Sep — 24 Oct

— (a new group needed?)




Course organization (cont) I

— programming, data analysis or essays

e project work

— acounts for appr. 1/3 of the course (1 cu)

detailed instructions will be given later

due by Fri 25 Oct
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Course organization (cont) I

e course exam: Fri 1 Nov 02, 14:00-18:00, Auditorium

e project works due: Fri 25 Oct 02

e course assistant: Taneli Mielikainen

e project work: 0—20 points, compulsory, at least 10 points required
to pass the course

e exam: 0-40 points, compulsory, at least 20 points required to pass
the course

o weekly exercises: 0—-10 extra points

e minimum 30/60 points, maximum 70/60 points!




e course notes: Heikki Mannila and Hannu Toivonen: Knowledge
Discovery in Databases: Search for Frequent Patterns

e original articles
e copies of slides

e available on the web during the course

e hardcopies available for copying in room A412
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Background check I

e prerequisities: cum laude, some mathematics

e design and analysis of algorithms (algoritmien suunnittelu ja
analyysi)

e machine learning (koneoppiminen)

e approbatur or more in statistics

e probability | (todennakaisyyslaskenta 1)

e database structures and algorithms (tietokannanhallinta tai tiha Il)

e working on or finished a M.Sc. thesis

e looking for a M.Sc. thesis topic




Data mining activities at UHI

basic research: algorithms, theory

applied research: genetics, ecology, ubiquitous computing,
documents, natural language, ...

e FDK “From Data to Knowledge”: center of excellence 2002-2007

HIIT Basic Research Unit
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Chapter 1. Introduction'

Introduction

What is KDD?

Two examples

e Data mining and databases

Data mining vs. statistics and machine learning
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What is data mining?'

Goal: obtain useful knowledge

from large masses of data.

e “Tell something interesting about this data.”

e “Describe this data.”

e exploratory data analysis on large data sets




Examples of discovered knowIedgeI

association rules:

"80 % of customers who buy beer and sausage buy also mustard”

rules: "if Age < 40 then Income < 10"

functional dependencies:
A — B, i.e., “if t{A] = u[A], then t[B] = u[B]"

belief networks

clusterings
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Example: sales dataI

e 0/1 matrix D

® rows:customers

e columns: products

e t(A) = 1 iff customer t bought product A
e thousands of products, millions of rows

e easy to collect

e find something interesting from this?




Association rules '

mustard, sausage, beer = chips

conditional probability (confidence) of the rule: 0.8

frequency of the rule: 0.2

arbitrary number of conjuncts on the left-hand side

Find all association rules with frequency

at least min_fr.
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Example: student/course data I

matrix D with D(¢, c¢) = 1 iff student ¢ has taken course c

110101010000000000000000000
01000000100000000000000O0O0O0O
110000001000101000100010000
00001000000000000O0O0O0O0O0O0O0OQ0OO0O0O01O
010011110000001000000000001
110001011000000000000000000




Example: student/course data I

e example rule:

if {Data Communications, Unix, Networks}
then (graduation) (0.3)
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Example: SKICAT sky survey'

approximately 1000 photographs of 13000x13000 pixels

= 3-10° smudges of light, each with 40 attributes

e task 1: classify the objects to
— stars
— galaxies

— others

e task 2: find some interesting clusters of objects

— quasars with high redshift

machine learning? pattern recognition?
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Why data mining?'

e raw data is easy to collect, expensive to analyze

e more data than can be analyzed using traditional methods
e suspicion that important knowledge could be there

e successful applications

e methods: machine learning, statistics, databases

e a tool for exploratory data analysis

e can and has to be used in combination with traditional methods

e strong interest from 1989—, hype from 1995—
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The KDD process'

understanding the domain,

preparing the data set,

discovering patterns (data mining),
e postprocessing of discovered patterns, and
e putting the results into use

Where is the effort?

iteration, interaction




Data mining vs. data warehousing and OLAPI

Very briefly:

e data warehousing makes data mining a lot cheaper

data mining is one of the reasons for data warehousing

OLAP: verification-driven

data mining: discovery-driven

MIS (management information systems)
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Data mining and related areas'

Possible comments:
e That's just machine learning!

e That's just statistics!

e What has that to do with databases?




Data mining vs. machine Iearning'

machine learning methods are used for data mining

— classification, clustering, ...

amount of data makes a difference

— accessing examples can be a problem

data mining has more modest goals:

— automating tedious discovery tasks, not aiming at human
performance in real discovery

— helping user, not replacing them

this course: data mining \ machine learning
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Data mining vs. statistics'

"tell me something interesting about this data” — what else is this

than statistics?
e the goal is similar
e different types of methods
e in data mining one investigates a lot of possible hypotheses
e amount of data

e data mining as a preliminary stage for statistical analysis

e challenge to data mining: better contact with statistics




Data mining and databasesI

ordinary database usage: deductive
knowledge discovery: inductive
new challenges for database vendors

parts of databases techniques are not very relevant

— transaction management

— recovery
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Database research for data mining II

making it possible to run data mining algorithms on very large
databases

modified learning algorithms
— minimize number of passes through the data

— modify access routes

data servers: architectures, algorithms, data structures, memory
Mmanagement

primitive operations inside a DBMS

several data mining applications use currently very little of what is

known about efficient access structures
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Database research for data mining III

e ‘“Inductive databases”

e why was the relational model so successful?

— ad hoc queries
e the same is needed for data mining
e high-level query languages for data mining applications
e query processing and optimization for such languages

e not easy

e Imielinski & Mannila: A database perspective on knowledge
discovery, CACM November 1996.
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Example: episodes in sequences'

e Data: events in time, e.g.,
— alarms in telecommunications networks
— user actions in an user interface

database transactions

biostatistical events

e Goals: understanding the structure of the process producing the
events, prediction of future events.

e How to discover which combinations of events occur frequently?




Example sequence I

EDF A BCEF C D BAD C EFC BEAECF A D

Observations:

e whenever E occurs, F occurs soon

e whenever A and B occur (in either order), C occurs soon
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Event Time

KE82K02-31 780560888
KE82K10-16 780560892
H-M-K09-57 780560917
SOT-K01-03 780560926
MUU-K03-04 780561011
KE82K10-16 780561015
PAK-K14-27 780561119
KE82K10-16 780561138

Telecommunications alarm Iog'

100-400 different events
events occur recurrently
1 month = 70 000 alarms




Sequences and episodes'

Data a sequence of (event, time) pairs
(4,123), (B, 125), (D, 140), (4, 150), (C, 151), (D, 201), (A, 220)

Patterns episodes: a set of events
occurring close to each other in time

in an order extending a given partial order
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Pattern class All serial episodes / all parallel episodes / all episodes

/..

Occurrence pattern occurs frequently in data if there are sufficiently
many windows of size W in the data such that the pattern occurs

in the window




Discovering frequent patterns'

find all frequent episodes of size 1

build candidate episodes of size 2

check which episodes of size 2 occur frequently

e continue

incremental recognition, using previous rounds of computation, ...
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A general model for data mining'

e given a class of patterns

® an occurrence criterion

e find all patterns from the class that occur frequently enough




Why is data mining fun?I

practically relevant

easy theoretical questions

the whole spectrum: from theoretical issues to systems issues to

concrete data cleaning to novel discoveries

easy to cooperate with other areas and with industry
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Chapter 2. Association ruIesI

e 1. Problem formulation
Rules from frequent sets

Finding frequent sets

°
oW N

Experimental results

Related issues

°
e

e 6. Rule selection and presentation

o 7. Theoretical results
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e Customer 1: mustard, sausage, beer, chips
Customer 2: sausage, ketchup
Customer 3: beer, chips, cigarettes

Customer 236513: coke, chips

e beer = chips

— confidence (conditional probability): 0.87

— frequency (support): 0.34




Problem formulation: data'

a set R of items

a 0/1 relation r over R is a collection (or multiset) of subsets of R

the elements of r are called rows

the number of rows in 7 is denoted by |r|

the size of r is denoted by ||r|[ =", |t|
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Row ID || Row
t1 {A,B,C,D,G}
£ {A,B,E, F}
t3 {Ba Ia K}
ta {A,B,H}
t5 {Ea Ga J}

Figure 1: An example 0/1 relation r over the set R = {4,...,K}.




Patterns: sets of items'

r a 0/1 relation over R

e XCR

X matchesarowter, if X Ct

the set of rows in r matched by X is denoted by M (X, r), i.e.,
M(X,r)={ter| X Ct}.

the (relative) frequency of X in r, denoted by fr(X,r), is
M(X,7)|

7]

Given a frequency threshold min_fr € [0, 1], the set X is frequent,
if fr(X,r) > min_fr.
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RwiD||A|B|C|D|E|F|G|H|I |J]|K
t1 11110 0100|000
to 1/1/0(0 |1 1(0|0|0O]O0O]O0
t3 oj1|0(00]0|0|0|1|0]|1
t4 1/1,0|0 (0| O0OfO0O|1|0O]|O0O]O
ts ojojojo0|1;0|1,0|0(1]0

a 0/1 relation over the schema {4,..., K}

° fr({A, B},T) = 3/5 = 0.6
o M({A7 B},?“) = {tlatz,tzl}




Frequent sets I

e given R (a set), r (a 0/1 relation over R), and min_fr (a
frequency threshold)

e the collection of frequent sets F(r, min_fr)

F(r, min_fr) = {X C R | fr(X,r) > min_fr},

e In the example relation:

F(r,0.3) = {0,{A},{B},{E},{G},{4, B}}
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Association rules '

e Let R be a set, r a 0/1 relation over R, and X,Y C R sets of
items

e X = Y is an association rule over r.

e The confidence of X = Y in r, denoted by conf(X = Y,r), is
|M(XUY,r)|
IM(X,r)] -~
— The confidence conf(X =Y, r) is the conditional probability

that a row in » matches Y given that it matches X




Association rules Il '

e The frequency fr(X = Y,r)of X =Y inris (X UY,r).

— frequency is also called support

e a frequency threshold min_fr and a confidence threshold min_conf

e X =Y holds in r if and only if fr(X = Y,r) > min_fr and
conf(X =Y, r) > min_conf.
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Discovery task I

e given R, r, min_fr, and min_conf

e find all association rules X = Y that hold in r with respect

to min_fr and min_conf

e X and Y are disjoint and non-empty

e min_fr= 0.3, min_conf=0.9

e The only association rule with disjoint and non-empty left and
right-hand sides that holds in the database is {A} = {B}

e frequency 0.6, confidence 1

e when is the task feasible?




How to find association ruIes'

Find all frequent item sets X C R and their frequencies.

Then test separately for all Y C X with Y # () whether the rule
X \Y =Y holds with sufficient confidence.

Latter task is easy.

exercise: rule discovery and finding frequent sets are equivalent

problems
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Rule generation I
Algorithm

Input: A set R, a 0/1 relation r over R, a frequency threshold min_fr, and

a confidence threshold min_conf.

Output: The association rules that hold in r with respect to min_fr and
min_conf, and their frequencies and confidences.

Method: .
// Find frequent sets (Algorithm 50):

compute F(r, min_fr) :== {X C R | f(X,r) > min_fr};
// Generate rules:
for all X € F(r, min_fr) do
for alY C X withY # 0 do
if fr(X)/fr(X \'Y) > min_conf then
output the rule X \Y =Y, f(X), and fr(X)/f (X \Y);

NooR~wbH




Correctness and running timeI

e the algorithm is correct

e running time?
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Finding frequent sets: reasoning behind Apriori'

e trivial solution: look at all subsets of R

e not feasible

e iterative approach

e first frequent sets of size 1, then of size 2, etc.
e a collection C; of candidate sets of size [

e then obtain the collection F;(r) of frequent sets by computing the
frequencies of the candidates from the database

e minimize the number of candidates?




e monotonicity: assume Y C X
e then M(Y) D M(X), and fr(Y') > fr(X)

e if X is frequent then Y is also frequent

e Let X C R be a set. If any of the proper subsets Y C X is not
frequent then (1) X is not frequent and (2) there is a
non-frequent subset Z C X of size | X| — 1.
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Fa(r) = {{4, B}, {4,C}, {4, B}, {4, F},{B,C},{B, E},{C,G}},

e then {A, B,C} and {A, B, E} are the only possible members of
F3(r),

e levelwise search: generate and test

e candidate collection:

C(Fi(r)) ={X CR|X|=1l+1and Y € Fi(r) forall Y C X,|Y| =




Apriori algorithm for frequent sets'
Algorithm

Input: A set R, a 0/1 relation r over R, and a frequency threshold min_fr.

Output: The collection F(r, min_fr) of frequent sets and their frequencies.

Method:

1. Ci:={{A}| A€ R}

2. 1:=1;

3. while C; #0 do

4. // Database pass (Algorithm 57):

5. compute Fi(r) := {X € C; | fr(X,r) > min_fr};

6. =141,

7. // Candidate generation (Algorithm 54):

8. compute C; := C(Fi—1(r));

9. for all [ and for all X € Fi(r) do output X and fr(X,r);
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Correctness I

e reasonably clear
e optimality in a sense?

e For any collection S of subsets of X of size [, there exists a 0/1
relation » over R and a frequency threshold min_fr such that

Fi(r) =S and Fipai(r) =C(S).

e fewer candidates do not suffice




Additional information can change things...'

frequent sets: {4, B}, {A,C}, {A,D}, {B,C}, and {B, D}
candidates: {4, B,C} and {4, B,D}

what if we know that fr({A, B,C}) = fr({A, B})

e how?

can infer fr({A, B, D}) < min_fr

Data mining, Autumn 2002, Chapter 2: Association rules 53

Candidate generation I

e how to generate the collection C(F;(r))?

e trivial method: check all subsets

e compute potential candidates as unions X UY of size [ + 1
e here X and Y are frequent sets of size [

e check which are true candidates

e not optimal, but fast

e collections of item sets are stored as arrays, sorted in the

lexicographical order




Candidate generation aIgorithmI
Algorithm

Input: A lexicographically sorted array F;(r) of frequent sets of size (.

Output: C(Fi(r)) in lexicographical order.

Method:

1. for all X € F(r) do

2. for all Y € Fi(r) such that X <Y and X and Y share their [ — 1
lexicographically first items do

3. for all Z C (X UY) such that |Z| =1 do

4. if Z is not in Fi(r) then continue with the next Y at line 2;

5. output X UY;
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Correctness and running time'

Theorem 1 Algorithm 54 works correctly.

Theorem 2 Algorithm 54 can be implemented to run in time
012 |Fi(r)|? log | Fi(r)])-




Optimizations I

compute many levels of candidates at a single pass

f2(7n) = {{A,B},{A,C},{A,D},{A,E},
{B,C},{B,D},{B,G},{C,D},{F,G}}.

C(F(r)) = {{A,B,C},{A,B,D} {A,C,D},{B,C,D}},
C(C(F(r))) = {{A,B,C,D}}, and
C(C(C(F2(r))) = 0.
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Database pass'

e go through the database once and compute the frequencies of
each candidate

e thousands of candidates, millions of rows




Algorithm

Input: R, r over R, a candidate collection C; O Fi(r, min_fr), and min_fr.
Output: Collection F;(r, min_fr) of frequent sets and frequencies.
Method:

1. // Initialization:

2. for all A € R do A.is_contained_in := ();

3. forall X €C; and for all A€ X do

4. A.is_contained_in := A.is_contained_in U {X };

5. for all X € C; do X.freq_count := 0;

6. // Database access:

7. forallterdo

8. for all X € C; do X.item_count := 0;

9. for all A€t do

10. for all X € A.is_contained_in do

11. X.item_count := X.item_count + 1;

12. if X.item_count = [ then X.freq_count := X.freq_count + 1
13. // Output:

14. for all X € C; do

15. if X.freq_count/|r| > min_fr then output X and X.freq_count/|r|;
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Data structures '

o for each A € R a list A.is_contained_in of candidates that
contain A

e For each candidate X we maintain two counters:

— X.freq_count the number of rows that X matches,

— X.item_count the number of items of X




Correctness '

e clear (7)

Time complexity'

o O(llrl[+]rlCi| + [RI)
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Experimental results I

small course registration database

4 734 students

127 courses

frequency thresholds 0.01-0.2




Size Frequency threshold

0.200 0.100 0.075 0.050 0.025 0.010

1 6 13 14 18 22 36
2 1 21 48 7 123 240
3 0 8 47 169 375 898
4 0 1 12 140 776 2203
5 0 0 1 64 1096 3 805
6 0 0 0 19 967 4 899
7 0 0 0 2 524 4 774
8 0 0 0 0 165 3 465
9 0 0 0 0 31 1845
10 0 0 0 0 1 690
11 0 0 0 0 0 164
12 0 0 0 0 0 21
13 0 0 0 0 0 1
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Table 1: Number of frequent sets of each size with different frequency
thresholds.

Frequency threshold

0.200 0.100 0.075 0.050 0.025 0.010
Candidate sets:
Count 142 223 332 825 4 685 24 698
Generation time (s) 0.1 0.1 0.2 0.2 11 10.2
Frequent sets:
Count 7 43 122 489 4 080 23 041
Maximum size 2 4 5 7 10 13
Database pass time (s) 0.7 1.9 35 10.3 71.2 379.7
Match 5% 19 % 37 % 59 % 87 % 93 %
Rules (min_conf = 0.9):
Count 0 3 39 503 15 737 239 429
Generation time (s) 0.0 0.0 0.1 0.4 46.2 2 566.2
Rules (min_conf = 0.7):
Count 0 40 193 2 347 65 181 913 181
Generation time (s) 0.0 0.0 01 0.8 77.4 5632.8
Rules (min_conf = 0.5):
Count 0 81 347 4 022 130 680 1810 780
Generation time (s) 0.0 0.0 01 11 106.5 7 613.62

Different statistics of association rule discovery with course database.
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Candidates

Frequent sets

Size Count Time (s) Count Time (s) Match

1 127 0.05 22 0.26 17 %

2 231 0.04 123 1.79 53 %

3 458 0.04 375 5.64 82 %

4 859 0.09 776 12,92 90 %

5 1168 0.21 1 096 18.90 94 %

6 1058 0.30 967 18.20 91 %

7 566 0.24 524 9.69 93 %

8 184 0.11 165 3.09 90 %

9 31 0.04 31 0.55 100 %

10 3 0.01 1 0.15 33%
11 0 0.00

Total 4 685 1.13 4080 71.19 87 %

Number of sets and time used for set of different sizes
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Figure 2: Results of scale-up tests.
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Extensions

e candidate generation
e rule generation
e database pass

— inverted structures

— Partition method

— hashing to determine which candidates match a row or to
prune candidates

e item hierarchies

e attributes with continuous values
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Rule selection and presentation'

e recall the KDD process

e association rules etc.: idea is to generate all rules of a given form
e lots of rules
e all rules won't be interesting

e how to make it possible for the user to find the truly interesting
rules?

e second-order knowledge discovery problem

e provide tools for the user




Uninteresting rules I

There are 2010 association rules in the course enrollment database
that match at least 11 students (i.e., the frequency (or support)
threshold is 0.01).

prior knowledge: Design and Analysis of Algorithms =
Introduction to Computers (0.97, 0.03).

uninteresting attributes or attribute combinations. Introduction to
Computers = Programming in Pascal (0.95, 0.60) is useless, if
the user is only interested in graduate courses.

Rules can be redundant. Data Communications, Programming in
C = Unix Platform (0.14, 0.03) and Data Communications,
Programming in C, Introduction to Unix = Unix Platform

(0.14, 0.03).
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filter out rules referring to uninteresting courses
all rules containing basic courses away: only half are left
focus to, e.g., all rules containing the course “Programming in C"

filter out “Unix Platform”

etc.
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Operations I

e pruning: reduction of the number of rules;

e ordering: sorting of rules according, e.g., to statistical significance;

and

e structuring: organization of the rules, e.g., to clusters or
hierarchies.

e other operations?
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Pruning using templates'

e hierarchies among attributes {Atrtificial Intelligence, Programming
in C, Data Communications} C Undergraduate Course C Any
Course,

e a template is an expression Ay, ..., Ay = Agt1,..., 4],
e A;: an attribute name, a class name, or an expression C'+ or C

e Graduate Course, Any Coursex = Design and Analysis of
Algorithms

e selective/unselective template




Theoretical analyses I

fairly good algorithm

is a better one possible?

how good will this algorithm be on future data sets

a lower bound (skipped)

association rules on random data sets (skipped)

sampling
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Sampling for finding association ruIesI

e two causes for complexity

e lots of attributes

e lots of rows

e potentially exponential in the number of attributes
e linear in the number of rows

e too many rows: take a sample from them

e in detail later




Chapter 3: Alarm correlation
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Part Il. Episodes in sequences'

Chapter 3: Alarm correlation

Chapter 4: Frequent episodes

Chapter 5: Minimal occurrences of episodes

Chapter 6: Episode discovery process




3. Alarm correlation: networks and aIarms'

e network elements: switches, base stations, transmission
equipment, etc.

e 10-1000 elements in a network

e an alarm: a message generated by a network element

1234 EL1 BTS 940926 082623 A1 Channel missing

e hundreds of different alarm types

e 200 — 10000 alarms a day

e each contains only local information
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Characteristics of the alarm row'

e a variety of situations

e bursts of alarms

e hardware and software change fast




Alarm correlation .

“correlating” alarms: combining the fragmented information contained
in the alarm sequence and interpreting the whole flow of alarms

e removing redundant alarms
e filtering out low-priority alarms
e replacing alarms by something else

e systems exist
— knowledge base (correlation rules) constructed manually

— look at the alarms occurring in a given time window

— apply actions given in the matching correlation rules

Data mining, Autumn 2002, Chapter 3: Alarm correlation 78

e how to obtain the information needed for the preparation of an
alarm correlation system

e more generally: how to obtain insight into the behavior of the

network (alarms)




e how to analyze a flow of alarms?

e lots of possibilities: hazard models, neural networks, rule-based

representations
e comprehensibility of the discovered knowledge
e simple rule-based representations

e "if certain alarms occur within a time window, then a certain

alarm will also occur”
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Figure 3.2: Episodes




Basic solution .

e look for repeated occurrences of episodes in the alarm flow
sequences

e occurrence: alarms of the specified type occur in the specified
order
e why this form?
— comprehensible
— “standard” for correlation systems
— represent simple causal relationships

— insensitive to inaccurate clocks

— allows analysis of merged, unrelated sequences
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Chapter 4: Episodes



4. Frequent episodesI

e The framework

o Algorithms

e Experiments
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Example sequence I
EDF A BCEF C D BAD C EFC BEAECF A D
time

Figure 3.1: A sequence of alarms
Observations:

e whenever E occurs, F occurs soon

e whenever A and B occur (in either order), C occurs soon




a set R of event types

an event is a pair (4,1)

e A€ Ris an event type

t is an integer, the (occurrence) time of the event

event sequence s on R: a triple (s,Ts,T.)

Ts < T, are integer (starting and ending time)

§= <(A17t1)7 (A2at2)a .- ’(Anatn)>
AieRand T, <t; <Tpforalli=1,...,n

tigtﬂ_l forallizl,...,n—l
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EDF A BCEF C D BAD C EFC BEAECF

e o— — —— ]

30 35 40 45 50 55 60

4.1: The example event sequence s and two windows of width 5.
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event sequence s = (s, 7T, Te)

a window on it: w = (w, ts, te)

ts <Teyte > T

w consists of those pairs (A,t) from s where t; <t < t,

width(w) = te — ts: the width of the window w

W(s, win): all windows w on s such that width(w) = win

first and last windows!
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e an episode « is a triple (V, <, g)

e V is a set of nodes
e < is a partial order on V
e g:V — R is a mapping associating each node with an event type

e intuition: the events in g(V') have to occur in the order described
by <

e size of o, denoted ||, is |V|
e parallel episode: the partial order < is trivial

e serial episode: < is a total order

e injective: no event type occurs twice in the episode




&—®

«

Figure 4.2: An episode

the set V', the mapping g
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Example, subepisode I

Figure 4.3: A subepisode and episode




Subepisodes I

B= (V' < g')is a subepisode of o = (V,<,9), B =X a, if:
there exists an injective mapping f : V' — V such that
e ¢'(v) =g(f(v)) forallve V'

o for all v,w € V' with v <"w also f(v) < f(w)

An episode « is a superepisode of 3 if and only if < «
B<aiffaanda A

In the example: 8 <X~
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Occurrences of episodesI

a = (V,<,g) occurs in an event sequence
s = (((A1,t1), (A2, t2),. .., (An,tn)), Ts, Te), if there exists an
injective mapping h : V — {1,...,n} from nodes to events, such that

o g(z) = Ap) forallz eV

e forall z,y € V with z # y and = < y we have tj,(5) < tp(y) (or
h(z) < h(y))

(w, 35,40) on the example sequence: events of types A, B, C, and E

both 8 and v occur




Frequency of occurrence'

the frequency of an episode « in s is

[{w € W(s, win) | o occurs in w}|

fr(a, s, win) = - ,
(@5, wi) W(s, win)
e i.e., the fraction of windows on s in which o occurs.
e a frequency threshold min_fr

« is frequent if fr(c, s, win) > min_fr

F (s, win, min_fr): collection of frequent episodes in s with respect

to win and min_fr

size = I: Fi(s, win, min_fr).
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Pattern discovery task'

given an event sequence s, a set £ of episodes, a window width win,

and a frequency threshold min_fr, find F (s, win, min_fr)




Algorithms
Algorithm 4.13

Input: A set R of event types, an event sequence s over R, a set £ of
episodes, a window width win, and a frequency threshold min_fr.

Output: The collection F(s, win, min_fr) of frequent episodes.

Method:

1. compute Ci:={a €& ||a] =1}

2. 1:=1;

3. while C; #0 do

4. // Database pass (Algorithms 4.19 and 4.21):

5. compute Fi(s, win, min_fr) := {a € C; | fr(c, s, win) > min_fr};

6. =141,

7. // Candidate generation (Algorithm 4.14):

8. compute C; :={a € & | |a| =1, and B € Fig/(s, win, min_fr) for all

B € & such that 8 < a and |3| < I};
9. for all [ do output Fi(s, win, min_fr);
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Basic lemma, once again I

Lemma 4.12 If an episode « is frequent in an event sequence s, then

all subepisodes 3 < « are frequent. 1




Parallel, serial, injective episodes'

e parallel episode: the partial order < is trivial
(= frequent sets)

e serial episode: < is a total order
(= frequent subsequence)

e injective: no event type occurs twice in the episode (= proper
sets, not multi sets)

e useful cases: (serial or parallel) [injective] episodes
— reduce redundancy in generated episodes

— keep episodes comprehensible

— simpler to implement
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Generation of candidate episodes'

parallel episodes, serial episodes (injective or non-injective)

same idea as for association rules

a candidate episode has to be a combination of two episodes of
smaller size

very small variations to the candidate generation procedure




Recognizing episodes in sequences'

e first problem: given a sequence and an episode, find out whether
the episode occurs in the sequence

e finding the number of windows containing an occurrence of the
episode can be reduced to this

e successive windows have a lot in common

e how to use this?

e an incremental algorithm
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Parallel episodes I

e for each candidate o maintain a counter a.event_count: how
many events of a are present in the window

e When a.event_count becomes equal to |«/|, indicating that « is

entirely included in the window

— save the starting time of the window in a.inwindow

e when a.event_count decreases again, increase the field
a.freq_count by the number of windows where o remained entirely

in the window




Serial episodes'

e use state automata that accept the candidate episodes

e example: episode A B AB

General episodes I

different alternatives
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Injective

Window Serial episodes parallel episodes
width (s) || Count Time (s) | Count Time (s)
10 16 31 10 8

20 31 63 17 9

40 57 117 33 14

60 87 186 56 15

80 145 271 95 21

100 245 372 139 21

120 359 478 189 22

Table 4.1: Results of experiments with s; using a fixed frequency

threshold of 0.003 and a varying window width




Injective
Frequency Serial episodes parallel episodes

threshold Count Time (s) | Count Time (s)

0.1 0 7 0 5
0.05 1 12 1 5
0.008 30 62 19 14
0.004 60 100 40 15
0.002 150 407 93 22
0.001 357 490 185 22

Table 4.2: Results of experiments with s; using a fixed window width

of 60 s and a varying frequency threshold
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Episode Number of Number of Number of

size episodes candidate frequent Match
episodes episodes

1 287 287.0 30.1 11 %

2 82 369 1078.7 44.6 4%

3 2.107 192.4 20.0 10 %

4 7109 17.4 10.1 58 %

5 2. 1012 7.1 53 74 %

6 61014 47 29 61 %

7 2. 1017 2.9 2.1 75 %

8 5. 1019 21 17 80 %

9 1.1022 17 1.4 83 %

10- 17.4 16.0 2%

Table 4.3: Number of candidate and frequent serial episodes in s; with
frequency threshold 0.003 and averaged over window widths 10, 20,
40, 60, 80, 100, and 120 s




Experiences in alarm correlation'

Useful in
e finding long-term, rather frequently occurring dependencies,

e creating an overview of a short-term alarm sequence, and

evaluating the consistency and correctness of alarm databases

discovered rules have been applied in alarm correlation

lots of rules are trivial
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Chapter 5: Minimal occurrences of
episodes



5. Minimal occurrences of episodes'

e an alternative approach to discovery of episodes
e no windows

e for each potentially interesting episode, find out the exact
occurrences of the episode

e advantages: easy to modify time limits, several time limits for one
rule (“if A and B occur within 15 seconds, then C follows within
30 seconds”)

e disadvantages: uses lots of space
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e an episode o and an event sequence s

e interval [ts,t.) is @ minimal occurrence of ¢ in s, if
— a occurs in the window w = (w, ts,te) on s

— « does not occur in any proper subwindow on w

e set of (intervals of) minimal occurrences of an episode «:

mo(a) = { [ts,te) | [ts,te) is a minimal occurrence of a}.




a B
EDF A BCEF C D BAD C EFC BEAECF A
30 35 40 45 50 55 60 5

Figures 5.1: Episodes and 5.2: The example event sequence s
mo(B) = {[35,38), [46, 48), [47, 58), [57, 60) }.
mo(vy) = {[35,39), [46,51), [57,62)}.
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Episodes rules, new versionI

episode rule: B [wini] = «a[wins],

B and « are episodes such that 8 < «
e winy and wing are integers

if episode 8 has a minimal occurrence at interval [tg,t.) with

te —ts < winy, then episode « occurs at interval [t,t.) for some
t. such that t/ — ¢, < winy

(old version: B[w] = a[w], in windows containing £3)




o formally: mOym, (8) = {[ts,te) € mo(B) | to — t, < wimi}

e given « and an interval [us, u.), define occ(a, [us, ue)) = true if
and only if there exists a minimal occurrence [u’, ul) € mo(«)
such that us < u) and ul < u,

e The confidence of an episode rule S [wini;| = «[wins] is now

H[t:ﬂ te) € moyjn, (B) ‘ OCC(Oé, [tsa ts + Win?))}‘ .

|MOwiny (B)]
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Example, cont. I

B3l = 4]

e three minimal occurrences 35, 38), [46,48), [57,60) of 5 of width
at most 3 in the denominator

e Only [35,38), has an occurrence of o within width 4, so the
confidence is 1/3.

e rule 3[3] = (5] the confidence is 1.




Rule forms

e temporal relationships can be complex
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Frequency and support'

e previously: frequency = fraction of windows containing the episode
e no fixed window size
e several minimal occurrences within a window

e support of an episode: the number of minimal occurrences of an

episode, |mo(a)|




Rule discovery taskI

an event sequence s

a frequency threshold min_fr

a class £ of episodes

a set W of time bounds

find all frequent episode rules of the form g [wini] = o [win]

B,a € £ and winy, winy € W.
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Chapter 6: Episode discovery process



6. Episode discovery process'

The knowledge discovery process

KDD process of analyzing alarm sequences

Discovery and post-processing of large pattern collections

TASA, Telecommunication Alarm Sequence Analyzer
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The knowledge discovery process'

Goal: discovery of useful and interesting knowledge
1. Understanding the domain
2. Collecting and cleaning data
3. Discovery of patterns
4. Presentation and analysis of results
5. Making onclusions and utilizing results

Pattern discovery is only a part of the KDD process (but the central

one)




The knowledge discovery process'

Questions implied by the KDD process model:
e How to know what could be interesting?
e How to ensure that correct and reliable discoveries can be made?
e How to discover potentially interesting patterns?

How to make the results understandable for the user?

How to use the results?
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Episode discovery process for alarm sequencesI
Collecting and cleaning the data I

e Can take a lot of time

e Collection of alarms rather easy
e Data cleaning? Inaccuracy of clocks
e Missing data?
e What are the event types?
— Alarm type? Network element? A combination of the two?

e How to deal with background knowledge: network topology,
object hierarchies for network elements

e “Alarm predicates”: properties of alarms




Discovery of patterns'

1. Find all potentially interesting patterns

Strategy:

= lots of rules

2. Allow users to explore the patterns iteratively and interactively

1. All potentially interesting patterns

— Episodes: combination of alarms

Association rules: what are alarms like
— Frequency and confidence thresholds

— Background knowledge coded into alarm predicates in various
alternative ways

— Network topology used to constrain patterns
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Presentation and analysis of resultsI

There can be lots of rules

e only a small part is really interesting

e — subjective
— hard to define in advance

— can depend on the case
e also expected regularities (or their absence) can be of interest

= iteration is necessary

= support for personal views is needed




4531 rules

Y

A

Pruning and ordering:

Ordering

Pruning

Structuring

Alarnl — Alarng
Alarml — Alarng8

Alarm2 — Alarmd
Alarn2 — Al arnb

Alarn8 — Alarn8

Y

e alarm predicates on the left or right side

e confidence, frequency, statistical significance

Structuring:

e clusters, hierarchies, etc.
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TASA: A KDD tool for alarm analysisI

= =t HNetscape: Unordered episodes from data set demo.
File Fle Eat View Go Bookmarks Options Diroctory
Produced on Wed Tun 14 19:26:21 1995
Start: 00
Attribute Information  Alarm Information  Atiribute Associations
Template: |_Select Rules —
Antecedent predicates: [
Consequent predicates: |1
‘onfidence thresholds: 5
o1 10%)
- Frequency thresholds: 7
Heb ko 1710%; L
Significance thresholds: [ =
et minf max[f
No Ordering - Options: lante Conse _ICont. IFreq. ISign
Produced on wed Tun 14 13:26:21 1995 Lpply selections: | Apply| Clear selections : Reset|
Data is demo. sea
Start: 00:49:44-05.09. 94 End: 04: 5912119, 10. 94 Alarms: 26795
Rule Generation Parameters
il Anunber  Count  Percentage Freauency  Burst .
Confidence threshold o
2084 3095 s 0.019% 2.6%104-05 1
e
2084_308%8 1 0.0037% 2.6%100-07 o Done. —_—

e pages are created automatically from analysis results
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TASA: Giving an overview of data

= Netscape: Attrib tc |
Fle Edit View Go Bookmarks Options Directory Help
Distances between occurrences of alarm 1234_5678
Attrute Unordered || | Ordered 0-10min, bar = 15, Total count = 138
b .
7
Alarm 1234_5678 Description 0 | ‘I I I i } h
P, & b illh... bl b .
Data is dermo. seq 0 50 100 150 200 250 300
Start: 00:49:44-05..09.94 End: 04:54:12-19.10.34 Alarms: 26795
0-300s

Alarn text(s):

FATLUREIN_CHAWNEL_ACTIVATION_0R_RESTORATION

Coun 138

Percentage
9
2

‘1"'_ Al -\m\'ﬂTLmts istances Between Alerm Occurrences Y
o u.l\l. s . L

£ 50 0 450 50 550 600
300-600s
tige | [Trordered | [ Ordred
fn)
§F 501 R

statistical information, histograms
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TASA: Rule presentation

Notecose: Unorsored optsoses rom osta ot demoseq
Mo G#_View Go_Bookmks _Optiors_Dimctary
| i (e |(F o | [ e e o oy
< cont quency  sign
= 1224 assas 1224 essse  0.55  0.0000157  1.00
Unordered Episodes
1200 ssses 1236 1085 0.58 00000152  0.99
Produced onwed 3un 14 19:26:21 1335
1234 44545 s7ae_ases  1.00  0,0000262  0.33
Dot aomzen
Start: 20:43:44-05..05. 25 Bt 0475451 S5, 10. 94 Alarms: 26755 1234 sssas  oréo eeese  0.50  ©0.0000157  0.97
1230 ssses  a7setioas 0.8 0.0000152  0.98
Template: _Select Rules — | 1234 44545 3245 44545 0.72 0.0000189 0.79
1200 ssses  32es eeese 035 0,0000094 .
Antecedent predicates: [1239%
1236 assas 3245 11095 ©0.34  0.0000089 -
Comseaqient preticates:  [FETHET 1224 3c0n 6282 31608 0.7  0.0000367  0.99
Confidence thresholds: T 1234 31608 3245 31608 0.69 ©0.0000330 0.88
Gontigene PN e S
1234 66850 1234 44545 0.59  0.0000157  0.09
I i maxf 1214 66656 1214 11095  0.58  0.0000152 .99
Siniticance treshotds: [ — sesss ey @
it min [0, 98 mex|[ 1234 66656 6789_44545 0.59 0.0000157 0.89
\224 soosc  s78e eessa 1.0 0,0000262 0,99
Ordering: | Descending Options: lante “IConse MCont. [MFreq, “iSign S LrE0 p10es  NRR  uo0e0tRm P
—_— s205 ssses 0.5 0,0000094 .
1224 cgese 2245 soess  0.72  0.0000183 1.0
Apply selections: | Apply| Clear selections : Reset] 1234 e6656 3245 11005 0.34  0.0000080 =
1234 11005 0.96  o0.0000152  0.99
1224 11005 0.6 0.0000152 0.8
Rule Generation Parameters 1234 11095 0.986 ©0.0000152 1.00
Confidence threshold o 2341108 ©0.96 ©.0000152 1.00
= —=
= HEE] i_alarms/1234_B6656.html

episode and association rules, views, histograms




TASA: Views with templates'

Template: = Select Rules — |

Antecedent predicates: I

Consequent predicates: | 1234 3245

Confidence thresholds: nlo. a5
{0.1-10%) min | 0. 80 maE

Promency thresholds: [ [0

Significance thresholds: z
(0.1=10%} min| 0.98 max

1]

e select/prune rules by their contents
= iteration!

e criteria: left-hand/right-hand side of the rule, thresholds
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Chapter 7: Generalized framework



7. Generalized framework'

e given a set of patterns, a selection criterion, and a database

find those patterns that satisfy the criterion in the database

what has to be required from the patterns

a general levelwise algorithm

analysis in Chapter 8
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Relational databases '

a relation schema R is a set {A1,..., Ay} of attributes.

each attribute A; has a domain Dom(A;)

e a row over a R is a sequence (ai, ..., a,;,) such that
a; € Dom(A;) foralli=1,...,m

the ith value of ¢ is denoted by t[A;]

a relation over R is a set of rows over R

a relational database is a set of relations over a set of relation

schema (the database schema)




Discovery task I

P is a set of patterns

e ¢ is a selection criterion, i.e., a predicate
q:P x{r |ris a database} — {true, false}.

@ is selected if g(p,r) is true

frequent as a synonym for “selected”.

give a database r, the theory T (P,r,q) of r with respect to P
and g is T(P,r,q) = {¢ € P | q(p,r) is true}.
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finding all frequent item sets

e a set R a binary database r over R, a frequency threshold min_fr

.P:{X‘XQR},

e q(p,r) = true if and only if fr(yp,r) > min_fr




Selection predicate I

no semantics given for the patterns

selection criterion takes care of that

“q(p,r) is true” can mean different things:

e ( occurs often enough in r

(@ is true or almost true in r

¢ defines, in some way, an interesting property or subgroup of r

determining the theory of r is not tractable for arbitrary sets P

and predicates ¢
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Methodological point I

e find all patterns that are selected by a relatively simple
criterion—such as exceeding a frequency threshold—in order to
efficiently identify a space of potentially interesting patterns

e other criteria can then be used for further pruning and processing
of the patterns

e e.g., association rules or episode rules




Specialization relation I

e P be a set of patterns, ¢ a selection criterion over P

=< a partial order on the patterns in P

e if for all databases r and patterns ¢, 6 € P we have that g(¢,r)
and 6 < ¢ imply ¢(6,r),

e then < is a specialization relation on P with respect to ¢

e 0 < ¢, then ¢ is said to be more special than 8 and 6 to be more
general than ¢

e 0 <p:0=<¢pandnot p <40

e the set inclusion relation C is a specialization relation for frequent

sets

Data mining, Autumn 2002, Chapter 7: Generalized framework 132

Generic levelwise algorithm I

e the level of a pattern ¢ in P, denoted level(y), is 1 if there is no 6
in P for which 6 < ¢.

e otherwise level(y) is 1 4+ L, where L is the maximum level of
patterns 6 in P for which 8 < ¢

e the collection of frequent patterns of level [ is denoted by

Ti(P,r,q) ={p € T(P,r,q) | level(p) = 1}.




Algorithm 7.6

Input: A database schema R, a database r over R, a finite set P of
patterns, a computable selection criterion g over P, and a computable
specialization relation < on P.

Output: The set 7(P,r,q) of all frequent patterns.

Method:

1. compute C1 :={p € P | level(p) = 1};

2. 1:=1;

3. whileC # 0 do

4. // Database pass:

5. compute T;(P,r,q) :={p € Ci | q(¢,r)};

6. l:=14+1;

7. // Candidate generation:

8. compute C; := {p € P | level() =1 and 0 € Tjeyeip)(P, 1, ) for all

6 € P such that § < ¢};

©

for all I do output 7;(P,r,q);
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Theorem 7.7 Algorithm 7.6 works correctly. 1




e association rules

e episodes: specialization relation

e exact database rules
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Chapter 8: Complexity of finding
frequent patterns



8. Complexity of finding frequent patterns'

border of a theory

e time usage

guess-and-correct algorithm

analysis

borders and hypergraph transversals
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The border of a theory'

o T(P,r,q) of P

e t whole theory can be specified by giving only the maximally
specific patterns in 7(P,r,q)

e collection of maximally specific patterns in 7 (P, r, q)




e collection of minimally specific (i.e., maximally general) patterns
not in T(P,r,q)

e P be a set of patterns, S a subset of P, < a partial order on P

e S closed downwards under the relation <: if ¢ € S and v =< ¢,
then y € S

e border Bd(S) of S consists of those patterns ¢ such that all more
general patterns than ¢ are in & and no pattern more specific
than ¢ is in S:

Bd(S) = {p€P|forall y € P suchthat y < ¢ we have y € S,
and for all # € P such that ¢ < 0 we have § ¢ S}.

Data mining, Autumn 2002, Chapter 8: Complexity of finding frequent patterns 139

e positive border Bd™ (S)

Bd*(S) = {p € S|for all § € P such that ¢ < 0 we have 6 ¢ S},

e the negative border Bd—(S)

Bd~(S) = { € P\Sffor all v € P such that v < ¢ we have v € S}.




e« R={A,...,F}
{{A},{B},{C},{F},{4, B},{A,C},{A,F},{C,F},{A,C,F}}.
o the negative border is thus
Bd~(F) = {{D},{E},{B,C},{B, F}}

e the positive border, in turn, contains the maximal frequent sets,
i.e.,

Bd+(‘?) ={{4,B},{4,C,F}}

e frequent episodes in a sequence over events A,..., D
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Figure 8.1: A collection F (s, win, min_fr) of frequent episodes.
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Figure 8.2: The positive border Bd™ (F(s, win, min_fr)).
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Figure 8.3: The negative border Bd™ (F(s, win, min_fr)).




Complexity of the generic algorithm I

Theorem 8.4 Let P, r, and ¢ be as in Algorithm 7.6. Algorithm 7.6
evaluates the predicate ¢ exactly on the patterns in

T(P,r,q) UBd— (T (P,r,q)). O
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Corollary 8.5 Given a set R, a binary database r over R, and a
frequency threshold min_fr, Algorithm 2.14 evaluates the frequency of
sets in F(r, min_fr) U Bd~ (F(r, min_fr)). O

candidate generation: computes the negative border




p__ minfr| |T(P,r,q)| [Bd"(T(P,r,q))| |Bd”(T(P,r,q))|
0.2 0.01 469 273 938
0.2 0.005 1291 834 3027
0.5 0.1 1335 1125 4627
0.5 0.05 5782 4432 11531

Table 8.1: Experimental results with random data sets.
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min_fr | |T(P,r,q)| |Bd*(T(P,r,q))| [Bd~(T(P,r,q))|
0.08 96 35 201
0.06 270 61 271
0.04 1028 154 426
0.02 6875 328 759

Table 8.2: Experimental results with a real data set.




The guess-and-correct algorithm I

e levelwise search: safe but sometimes slow

e if there are frequent patterns that are far from the bottom of the
specialization relation

e an alternative: start finding 7 (P, r, ¢) from an initial guess
S C P, and then correcting the guess by looking at the database

e if the initial guess is good, few iterations are needed to correct the

result
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Algorithm 8.7'

The guess-and-correct algorithm for finding all potentially interesting
sentences with an initial guess S.

Input: A database r, a language P with specialization relation <, a
selection predicate ¢, and an initial guess S C P for T (P,r,q). We

assume S is closed under generalizations.

Output: The set 7(P,r,q).




Algorithm 8.7
Method:
1. C*:=0;
// correct S downward:
2. C:=Bd"(S);
3. whileC # 0 do
4, C* . =C*UC;
5. S :=8\{peC|q(r ) is false};
6. C:=Bd"(S)\C*;
7. od;
// now S C T(P,r,q); expand S upwards:
8. C:=Bd (S)\C%
9. whileC #0 do
10. C*:=C"UC;
11. S:=8U{peC|q(r,o)is true};
12. C:=Bd=(S)\C%
13. od;
output S;
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Lemma 8.8 Algorithm 8.7 works correctly. 1

Theorem 8.9 Algorithm 8.7 uses at most

(SAT)UBA(T)UBAT(SNT)|

evaluations of ¢, where T = T (P, 1, q). O




Initial guesses? I

e sampling
e Take a small sample s from r
e compute 7(P,r,q) and use it as S

e Applied to association rules this method produces extremely good
results

e with a high probability one can discover the association rules
holding in a database using only a single pass through the
database

e other method: partitioning the database
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Complexity analysis I

Verification problem: assume somebody gives a set S C P and claims

that S = T(P,r, ¢q). How many evaluations of ¢ are necessary for
verifying this claim?

Theorem 8.10 Let P and S C P be sets of patterns, r a database, ¢
a selection criterion, and < a specialization relation. If the database r
is accessed only using the predicate ¢, then determining whether

S =T(P,r,q) (1) requires in the worst case at least |Bd(S)|
evaluations of ¢, and (2) can be done in exactly |Bd(S)| evaluations
of gq. 1

Corollary 8.11 Let P be a set of patterns, r a database, ¢ a
selection criterion, and < a specialization relation. Any algorithm that

computes T (P, r,q) and accesses the data only with the predicate ¢
must evaluate ¢ on the patterns in Bd(7T (P,r,q)). O




R=1{A,... F}

claim: frequent sets are

S = {{A}{B},{C},{F}, {4, B}, {4, C},{A, F},{C, F},{A,C, F}}.

verify this:
Bd*(S) = {{4,B},{A,C,F}} and
Bd_(S) = {{D}v {E}7 {37 C}v {Ba F}}
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Computing the border'

e S, we can compute Bd1(S) without looking at the data r

e the negative border Bd—(S) is also defined by S
e finding the most general patterns in P \ S can be difficult

e minimal transversals of hypergraphs can be used to determine the
negative border

e R be a set; a collection H of subsets of R is a simple hypergraph
on R, if no element of H is empty and if X, Y €e Hand X CY
imply X =Y

e elements of H are called the edges

e elements of R are the vertices
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a simple hypergraph H on a set R, a transversal T of H is a
subset of R intersecting all the edges of ‘H

T is a transversal if and only if TN X # () for all X € H

minimal transversal of H is a transversal T such that no 7/ C T is

a transversal

Tr(H)

Frequent sets I

vertices R; the complements of the sets in the positive border be
the edges of a simple hypergraph H.

for each set X in the positive border we have the set R\ X as an
edge in H;

Y C R; if there is an edge R\ X such that Y N (R\ X) = 0, then
Y C X, and Y is frequent.

if there is no such edge that the intersection is empty, then Y
cannot be frequent.

That is, Y is not frequent if and only if Y is a transversal of H.

Minimal transversals are now the minimal non-frequent sets, i.e.,

the negative border.
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Negative border = minimal transversals of the complements of the sets

in the positive border
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How to use this?.

e what if only the maximal frequent sets are needed, but they are
large?

e the levelwise algorithm does not work well

e Dualize-and-advance algorithm:

compute some maximal frequent sets using a randomized
algorithm

compute minimal nonfrequent sets
verify them against the database

continue until no new sets are found
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Chapter 9: Sampling
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9. Sampling in knowledge discovery'

why sampling?

what types of knowledge can be discovered using sampling?

basic techniques of sampling (from files)

sampling in finding association rules




Why sampIing?I

e |lots of data
e many algorithms are worse that linear
e hunting for relatively common phenomena

e solution: take a sample from the data, and analyze it

e if necessary, confirm the findings by looking at the whole data set
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What types of knowledge?'

e estimating the sizes of certain subgroups

e opinion polls: about 1000 persons gives an accuracy of around 2
% points

e (the size of the population does not have an influence)
e what about very rare phenomena?

e “there exists a subgroup of 100 objects having these and these
properties”

e very difficult to verify using sampling, if the population is large




Basic techniques of sampling'

e sampling from a file

e given a file of N records t4,...,tn,, we wish to choose K from
them

e with replacement or without replacement

e with replacement:

— fori=1to K do:
* generate a random integer b between 1 and N

*x output record t

— or sort the generated random integers into order and read the

data once
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Sampling without replacement, basic method'

e keep a bit vector of N bits

e generate random integers b between 1 and N and mark bit b, if it
is not already marked

e until K bits have been marked

e read through the bit vector and the data file, and output the

selected records




Sampling without replacement, sequential method'

1= 1;
while 7" > 0 do
let b be a random number from [0, 1];
if b < T/M then
output record t;;

T:=T-1;
M =M-1;
else
M:=M-1;
end;
end;
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Correctness I

e by induction on N; for N =0 and N = 1, the correctness is clear

e assume the algorithm works for N = N’; we show that it works
for N=N'+1

e the first element of the file will be selected with probability K /N,
as required

e what about the next elements? two cases: the first element was
selected or it wasn't
e probability that an element will be selected is

KK-1 N-K K K

NN_1" TN N_1 N




Sampling for association ruIesI

e Current algorithms require several database passes
e For very large databases, the |/O overhead is significant
e Random sample can give accurate results in sublinear time

e Random samples can be used to boost the discovery of exact
association rules (a variant of guess-and-correct algorithm)

e Result: 1 database pass, in the worst case 2 passes
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Simple random sampIeI

Use a random sample only

e Frequent sets can be found in main memory

= very efficient!

e Good news: approximations for frequencies and confidences are
good

e Bad news: applications may require exact rules




Algorithm: first pass'

Goal: Exact rules in (almost) one pass
1. Pick a random sample s from r
2. Select a lowered threshold low_fr < min_fr

3. Compute § = F(s, low_fr) in main memory
Goal: & D F(r, min_fr)

4. Compute the exact frequencies of sets in S using the rest of the

database
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A quick analysis I

I/O cost: sampling + 1 sequential database pass

The method may fail (a frequent set is not in S)

Larger sample size = lower failure probability
e Smaller low_fr = lower failure probability
e Smaller low_fr = S is larger i.e., more sets are checked

How to deal with potential failures?

How much must the threshold be lowered?

How many sets have to be checked?




Negative border'

e Recall: the border (both positive and negative) has to be
evaluated to verify the result

e Assume S = F (s, low_fr) has been computed from a sample s

e If any set not in S is actually frequent in 7, then a set in Bd~(S)

must be frequent
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Negative border'

e After sampling and computing S, verify both S and Bd~(S) in
the rest of the database (and obtain the exact frequencies)

e If no set in Bd~(S) is frequent, then S is guaranteed to contain
all frequent sets

e If a set X in Bd~(S) is frequent, then a frequent superset of X
might be missed

= Second pass over the database can be necessary, if there are
frequent sets in Bd™(S)




Second pass I

e Add the frequent sets in Bd~(S) to S

e Repeat:
— Recompute the negative border of S

— Add the new sets in the negative border to S

e Compute the frequencies of sets in S in one pass over the database
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Sampling as an instance of guess—and—correct'

e Use a random sample to obtain a guess &
— Goal: § D F(r, min_fr)
— 1st pass: correction in one direction only (removal of
infrequent sets)
e Negative border Bd™ (S) tells whether frequent sets were missed
— If necessary, add all possibly frequent sets to S

— Now 8 D F(r, min_fr) is guaranteed

— 2nd pass: evaluate S




Dynamic threshold I

e Second pass over the database is necessary, if there are frequent
sets in Bd— (S)

e = Frequencies of border sets can be used to estimate the
probability of a second pass

e |dea: set the lowered threshold in run time, so that the probability

of a second pass is within a desired range
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Chernoff bounds '

Theorem 9.8 Given an item set X and a random sample s of size

the probability that |fr( X, s) — fr(X)| > € is at most §.
Proof The Chernoff bounds give the result

Pr[|z — np| > a] < 2e=2°/" where « is a random variable with
binomial distribution B(n,p). For the probability at hand we thus have

Pr{|fr(X,s) — fr(X)| > €]
= Pr[|fr(X,s) — fr(X)|-|s| > e |s]]
< 90— 2(e1s1)?/1s] < 6.




What does this mean?'

Sufficient sample sizes (note: Chernoff bounds are rough!)

€ é Sample size
0.01 0.01 27 000
0.01 0.001 38 000
0.01 0.0001 50 000
0.001 | 0.01 2 700 000
0.001 | 0.001 3 800 000
0.001 | 0.0001 5 000 000

Table 9.1 Sufficient sample sizes, given ¢ and §.
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What about several sets?'

Corollary 9.9 Given a collection § of sets and a random sample s of
size
|s| > = In 2/5]
— 2e? A
the probability that there is a set X € S such that
|fr(X,s) — f(X)| > € is at most A.

Proof By Theorem 9.8, the probability that |fr(X,s) — fr(X)| > ¢ for
a given set X is at most é—|. Since there are |S| such sets, the

probability in question is at most A.




Experiments I

Three benchmark data sets from [AS94]

Assumption: real data sets can be much larger

Sampling with replacement (analysis is easier)

Sample sizes from 20,000 to 80,000

Every experiment was repeated 100 times

low_fr was set so that the probability of missing any given frequent
set is at most 0.001
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Figure 9.1 The number of database passes for frequent set
algorithms (T10.14.D100K)




Lowered frequency threshold

Sample size |s|
min_fr (%) | 20,000 | 40,000 | 60,000 | 80,000

0.25 0.13 0.17 0.18 0.19
0.50 0.34 0.38 0.40 0.41
0.75 0.55 0.61 0.63 0.65
1.00 0.77 0.83 0.86 0.88
1.50 1.22 1.30 1.33 1.35
2.00 1.67 1.77 1.81 1.84

Table 9.3 Lowered frequency thresholds for § = 0.001

Data mining, Autumn 2002, Chapter 9: Sampling 182

Number of sets checked: insignificant increase

Sample size
min_fr || 20,000 | 40,000 | 60,000 | 80,000 || Level-wise

0.50 || 382,282 | 368,057 | 359,473 | 356,527 318,588
0.75 || 290,311 | 259,015 | 248,594 | 237,595 188,024

1.00 || 181,031 | 158,189 | 146,228 | 139,006 97,613
1.50 52,369 | 40,512 | 36,679 | 34,200 20,701
2.00 10,903 7,098 5,904 5,135 3,211

Table 9.5 Number of itemsets considered for data set T10.14.D100K




Exact I/O savings?'

e Depends on storage structures and sampling
methods

e Example 1:
Database size 10 million rows,
sample size 20 thousand rows,
100 rows/disk block
= sampling reads at most 20 % of the database

e Example 2:
database size 10 billion rows

= sampling reads at most 0.02 % of the database




