
Interprocess Communication

 Tanenbaum, van Steen: Ch2 (Ch3)
 CoDoKi: Ch2, Ch3, Ch5

Fall 2008
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Overview of interprocess communication
 Remote invocations (RPC etc.)
 Message passing
 Streams
 Publish/subscribe
 Multicast

3 Kangasharju: Distributed Systems

Middleware Protocols

An adapted reference model for networked communication.

General purpose services
- Naming, “browsing”
- Security
- Atomicity
- Higher-level
communication

- RPC, RMI
- Message passing
- Reliable multicast

4 Kangasharju: Distributed Systems

Remote Procedure Calls

 Basic idea:
  “passive” routines

 Available for remote clients

 Executed by a local worker process, invoked by local infrastructure

 See examples in book

5 Kangasharju: Distributed Systems

RPC goals
 Achieve access transparent procedure call
 Cannot fully imitate

 naming, failures, performance

 global variables, context dependent variables, pointers

 Call-by-reference vs. call-by-value

 Call semantics
 Maybe, at-least-once, at-most-once

 Exception delivery

 Can be enhanced with other properties
 Asynchronous RPC

 Multicast, broadcast

 Location transparency, migration transparency, …

 Concurrent processing

6 Kangasharju: Distributed Systems

RPC: a Schematic View

FNCT(a,b)

c:={comp}

return c.

Thread P

…

Y=FNCT(X,Y)

…

X, Y, Z

System A System B

RPC
package

RPC
package

a:=X; b:=Y;

Y

Y=FNCT(X,Y)

7 Kangasharju: Distributed Systems

Implementation of RPC

 RPC components:
 RPC Service (two stubs)

-  interpretation of the service interface

-  packing of parameters for transportation

 Transportation service: node to node

-  responsible for message passing

-  part of the operating system

 Name service: look up, binding
 name of procedure, interface definition

8 Kangasharju: Distributed Systems

Passing Value Parameters

Steps involved in doing remote computation through RPC

9 Kangasharju: Distributed Systems

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

10 Kangasharju: Distributed Systems

Binding a Client to a Server

Client-to-server binding in DCE.

11 Kangasharju: Distributed Systems

Implementation of RPC

 Server: who will execute the procedure?
 One server process

  infinite loop, waiting in “receive”

 call arrives : the process starts to execute

 one call at a time, no mutual exclusion problems

 A process is created to execute the procedure
 parallelism possible

 overhead

 mutual exclusion problems to be solved

 One process, a set of thread skeletons:
 one thread allocated for each call

12 Kangasharju: Distributed Systems

Distributed Objects

 Remote Method Invocation ~ RPC
 A distributed interface

 binding: download the interface to the client => proxy

  “server stub” ~ skeleton

 The object
  resides on a single machine (possible distribution: hidden)

  if needed: “object look” through an adapter

 an object may be persistent or transient

 Object references:
  typically: system-wide

 binding: implicit or explicit resolving of an object reference

 Binding and invocation
 Examples: CORBA, DCOM (Ch. 10)

13 Kangasharju: Distributed Systems

Distributed Objects

Fig. 2-16. Common organization of a remote object with client-side proxy.

14 Kangasharju: Distributed Systems

Fig. 3-8.

 Organization of an object server

supporting different activation

policies.

Object Adapter

15 Kangasharju: Distributed Systems

Binding a Client to an Object

Fig. 2-17.
  (a) Example with implicit binding using only global references
  (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to …

 // … the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b)

16 Kangasharju: Distributed Systems

Parameter Passing

Fig. 2-18.The situation when passing an object by reference or by value.

17 Kangasharju: Distributed Systems

Design Issues

 Language independent interface definition
 Exception handling
 Delivery guarantees

 RPC / RMI semantics

 maybe

 at-least-once

 at-most-once

  (un-achievable: exactly-once)

 Transparency (algorithmic vs. behavioral)

18 Kangasharju: Distributed Systems

RPC: Types of failures

  Client unable to locate server

  Request message lost

  retransmit a fixed number of times

  Server crashes after receiving a request or reply message lost

(cannot be told apart!)

  Client resubmits request, server chooses:

-  Re-execute procedure: service should be idempotent

-  Filter duplicates: server should hold on to results until

acknowledged

  Client crashes after sending a request

  Orphan detection: reincarnations, expirations

  Reporting failures breaks transparency

19 Kangasharju: Distributed Systems

Fault tolerance measures

at-most-
once

retransmit
reply

yes yes

at-least-
once

re-execute no yes

maybe N/A N/A no

invocation
semantics

Re-execute/
retransmit

Duplicate
filtering

Retransmit
request

20 Kangasharju: Distributed Systems

CORBA

Interface
Repository

IDL
Compiler

Implementation
Repository

Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

• CORBA shields applications from heterogeneous platform dependencies
• e.g., languages, operating systems, networking protocols, hardware

21 Kangasharju: Distributed Systems

XML RPC

22 Kangasharju: Distributed Systems

RPC: Different Systems

23 Kangasharju: Distributed Systems

Communication: Message Passing

…
X=f(..);
send X to B
...

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process A Process B

OS procedure send buffer
kernel procedure receive A<=>B

Node

xxxxx
xxxxx

xxxxx
xxxxx 10

Net

OS Data Communication OS
kernel Network
kernel

24 Kangasharju: Distributed Systems

Binding (1)

 Structure of communication network
 one-to-one (two partners, one shared channel)

 many-to-one (client-server)

 one-to-many, many-to-many (client-service; group

communication)

 Types of message passing
 send, multicast, broadcast

 on any channel structure

25 Kangasharju: Distributed Systems

Binding (2)

 Time of binding

 static naming (at programming time)

 dynamic naming (at execution time)

-  explicit binding of channels

-  implicit binding through name service

26 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 General organization of a communication system in which hosts are connected through a network

27 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 Persistent communication
  a submitted message is stored in the system until delivered

to the receiver

  (the receiver may start later, the sender may stop earlier)

 Transient communication
  a message is stored only as long as the sending and

receiving applications are executing

  (the sender and the receiver must be executing in parallel)

28 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

Persistent communication of letters back in the days of the Pony Express.

29 Kangasharju: Distributed Systems

Persistence and Synchronicity in
Communication

 Asynchronous communication
  the sender continues immediately after submission

 Synchronous communication
  the sender is blocked until

-  the message is stored at the receiving host (receipt-

based synchrony)

-  the message is delivered to the receiver (delivery based)

-  the response has arrived (response based)

30 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

a)  Persistent asynchronous communication

b)  Persistent synchronous communication

31 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

c)  Transient asynchronous communication
d)  Receipt-based transient synchronous communication

32 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

e)  Delivery-based transient synchronous communication at message delivery
f)  Response-based transient synchronous communication

33 Kangasharju: Distributed Systems

The Message-Passing Interface (MPI)

 Traditional communication: sockets
 Platform of concern: high-performance multicomputers
  Issue: easy-to-use communication for applications
 Sockets? No: wrong level, non-suitable protocols
 a new message passing standard: MPI

 designed for parallel applications, transient communication

 no communication servers

 no failures (worth to be recovered from)

34 Kangasharju: Distributed Systems

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

35 Kangasharju: Distributed Systems

Message-Queuing Model (1)

Four combinations for loosely-coupled communications using queues.

2-26

36 Kangasharju: Distributed Systems

Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

37 Kangasharju: Distributed Systems

General Architecture of a Message-Queuing System

 The relationship between queue-level addressing and network-level

addressing.

38 Kangasharju: Distributed Systems

2-29. The general organization of a message-queuing system with routers.

General Architecture of a Message-Queuing System

39 Kangasharju: Distributed Systems

Message oriented middleware

  asynchronous messages
  reliable, fault-tolerant
  no loss, duplication, permutation, cluttering

  persistent subscriptions
  models supported

  message queue
  request-response
  multicast
  publish-subscribe

appl. A appl. B

appl. C

msg
queue
server

msg transfer
system

Q1

msg
queue
server

msg transfer
system

Q2

SSL tms

40 Kangasharju: Distributed Systems

MOM = message oriented middleware

 Basic model: pipe between client and server
 asynchronous messaging natural, synchronous

communication cumbersome

 message queues support reliability of message transport

 violates access transparency, no support for data

heterogeneity unless in programming language mapping, no

support for transactions

 suitable for event notifications, publish/subscribe-based

architectures

 persistent message queues support fault tolerance

41 Kangasharju: Distributed Systems

MOM Topics

 Topics for variation and development
 persistent/transient msgs

 FIFO/priority queues

  translations of msgs

 abstractions on msg ordering

 multithreading, automatic load balancing

 msg routing (source, cost, changes in topology etc)

 secure transfer of msgs (at least between msg servers)

42 Kangasharju: Distributed Systems

Message Brokers

The general organization of a message broker in a message-queuing system.

43 Kangasharju: Distributed Systems

CORBA Events & Notifications

  Event namespace (names and attributes)

  Typed events (header+body; fixed + other)

  Consumer event filtering, event batching, event priority, event expiration, logging,

internationalization, flow control mechanism

QoS properties

consumer1

consumerN

supplier1

supplierN

event channel

typed events

filter n constraints

... ...

44 Kangasharju: Distributed Systems

Publish-subscribe

 shared mailbox, everyone can send to it
 subscribers can select what filter to use
 guaranteed delivery of all relevant messages to all

subscribers
 models: header-based, topic-based
 problems

 scalability: comparing filters and messages

 ordering of messages

45 Kangasharju: Distributed Systems

Stream communication

  Setting up a stream between two processes across a network.

46 Kangasharju: Distributed Systems

Specifying QoS (1)

  A flow specification.

Characteristics of the Input Service Required

 maximum data unit size (bytes)

 Token bucket rate (bytes/sec)

 Toke bucket size (bytes)

 Maximum transmission rate (bytes/sec)

 Loss sensitivity (bytes)

 Loss interval (µsec)

 Burst loss sensitivity (data units)

 Minimum delay noticed (µsec)

 Maximum delay variation (µsec)

 Quality of guarantee

47 Kangasharju: Distributed Systems

Specifying QoS (2)

  The principle of a token bucket algorithm.

48 Kangasharju: Distributed Systems

Setting Up a Stream

  The basic organization of RSVP for resource reservation in a distributed
system.

49 Kangasharju: Distributed Systems

Synchronization Mechanisms (1)

  The principle of explicit synchronization on the level data units.

50 Kangasharju: Distributed Systems

Synchronization Mechanisms (2)

  The principle of synchronization as supported by high-level interfaces.

2-41

51 Kangasharju: Distributed Systems

Other forms of communication

 Multicast (application level)
 overlay network where relays not members of group (tree,

mesh)

 Gossip-based data dissemination
  infect other nodes with useful data by an epidemic algorithm

 periodically exchange information with a random node

 states: infected, susceptible, data removed

52 Kangasharju: Distributed Systems

Chapter Summary

 Overview of different interprocess communication
techniques and solutions

 Remote invocations (RPC etc.)
 Message passing
 Streams
 Publish/subscribe
 Multicast (more on this later)

