

. Chapter Outline

Clocks and time

Global state

Mutual exclusion
Election algorithms
Distributed transactions

Tanenbaum, van Steen: Ch 5
CoDoKi: Ch 10-12 (3rd ed.)

Kangasharju: Distributed Systems

Time and Clocks

What we need? How to solve?

Real time Universal time

(Network time)

Interval length Computer clock

Order of events Network time

(Universal time)

NOTE: Time is monotonous

Kangasharju: Distributed Systems

Measuring Time

Traditionally time measured astronomically
Transit of the sun (highest point in the sky)
Solar day and solar second
Problem: Earth’s rotation is slowing down
Days get longer and longer
300 million years ago there were 400 days in the year ;-)
Modern way to measure time is atomic clock
Based on transitions in Cesium-133 atom
Still need to correct for Earth’s rotation
Result:
UTC available via radio signal, telephone line, satellite
(GPS)

Kangasharju: Distributed Systems 4 4

Hardware/Software Clocks

Physical clocks in computers are realized as crystal
oscillation counters at the hardware level
Correspond to counter register H(t)
Used to generate interrupts
Usually scaled to approximate physical time t, yielding
software clock C(t), C(t) = aH(t) +
C(t) measures time relative to some reference event, e.g., 64
bit counter for # of nanoseconds since last boot
Simplification: C(t) carries an approximation of real time
|deally, C(t) =t (never 100% achieved)
Note: Values given by two consecutive clock queries will
differ only if clock resolution is sufficiently smaller than

processor cycle time
Kangasharju: Distributed Systems 5 5

Problems with Hardware/Software Clocks

Disagreement in the reading of two clocks
Difference in the rate at which two clocks count the
time
Due to physical differences in crystals, plus heat, humidity,
voltage, etc.
Accumulated drift can lead to significant skew
Difference in precision between a prefect
reference clock and a physical clock,

Usually, 106 sec/sec, 107 to 10-8 for high precision clocks

Kangasharju: Distributed Systems 66

Skew between computer clocks in a
distributed system

cCHICH:

Network

Figure 10.1

Kangasharju: Distributed Systems

. Clock Synchronization

Computer on 2144 2145 2146 2147 «— Time according
which compiler ¢ | | | to local clock
runs output.o created

Computer on 2142 2143 2144 2145 «— Time according
which editor | . | ; to local clock
runs

output.c created

When each machine has its own clock, an event that occurred after another

event may nevertheless be assigned an earlier time.

Kangasharju: Distributed Systems 8

Clock time, C

Clock Synchronization Problem

dC

g

a ” ' gc

s

& & ¢
Q'," Q® \ocrﬁ' dt
-

UTC, t

drift rate: 10
I ms ~17 min

1 s~11.6 days

UTC: coordinated
universal time

accuracy:
radio 0.1 — 10 ms,
GPS 1us

The relation between clock time and UTC when clocks tick at different rates.

Kangasharju: Distributed Systems

Synchronizing Clocks

Synchronize process’s clock with an authoritative external
reference clock S(t) by limiting skew to a delay bound D >0
|S(t) - Ci(t) | < D for all t

For example, synchronization with a UTC source

Synchronize the local clocks within a distributed system to
disagree by not more than a delay bound D > 0, without
necessarily achieving external synchronization
|ICi(t) - Cj(t)| <D foralli,j, t
Obviously:
For a system with external synchronization bound of D, the
internal synchronization is bounded by 2D

Kangasharju: Distributed Systems 16

Clock Correctness

When is a clock correct?
If drift rate falls within a bound r > 0O, then for any t and t’
with t' > t the following error bound in measuring t and t’
holds:
(1-r)(t-t) = H(t) - H(t) < (1+r)(t'-t)
Consequence: No jumps in hardware clocks allowed
Sometimes monotonically increasing clock is enough:
t'>t= C(t') > C(t)
Frequently used condition:
Monotonically increasing
Drift rate bounded between synchronization points

Clock may jump ahead at synchronization points

Kangasharju: Distributed Systems 1111

Synchronization of Clocks: Software-Based
Solutions

Techniques:
time stamps of real-time clocks
message passing
round-trip time (local measurement)
Cristian’s algorithm
Berkeley algorithm
Network time protocol (Internet)

Kangasharju: Distributed Systems 12

Christian’s Algorithm

Observations
Round trip times between processes are often reasonably
short in practice, yet theoretically unbounded
Practical estimate possible if round-trip times are sufficiently
short in comparison to required accuracy
Principle
Use UTC-synchronized time server S
Process P sends requests to S
Measures round-trip time T4
In LAN, T,,,,q Should be around 1-10 ms
During this time, a clock with a 10-¢ sec/sec drift rate
varies by at most 108 sec
Hence the estimate of T, 4 IS reasonably accurate

Naive estimate: Set clock to t + 2T, 4

Kangasharju: Distributed Systems 1@

Both Tgand Ty are measured with the same clock

To Ty
Client

Time server

|, Interrupt handling time

Current time from a time server: UTC from radio/satellite etc
Problems:

- time must never run backward

- variable delays in message passing / delivery

Kangasharju: Distributed Systems 14

Christian’s Algorithm: Analysis

Assumptions:
requests and replies via same net
min delay is either known or can be estimated conservatively

Calculation:
Earliest time that S can have sent reply: t, + min
Latest time that S can have sent reply: t, + T,,,,g — Min
Total time range for answer: T, .4 -2 * min
Accuracy is = (21,4 - Min)

Discussion
Really only suitable for LAN environment or Intranet

Problem of failure of S

Kangasharju: Distributed Systems 11§

. Alternative Algorithm

Berkeley algorithm (Gusella&Zatti ‘89)
No external synchronization, but one master server
Master polls slaves periodically about their clock readings
Estimate of local clock times using round trip estimation
Averages the values obtained from a group of processes
Cancels out individual clock’s tendencies to run fast
Tells slave processes by which amount of time to adjust
local clock
Master failure: Master election algorithm (see later)
Experiment
15 computers, local drift rate < 2x10-°, max round-trip 10 ms
Clocks were synchronized to within 20-25 ms

Note: Neither algorithm is really suitable for Internet
Kangasharju: Distributed Systems 1%

» The Berkeley Algorithm

Time daemon
3:00 ¥ 300 3:00 0 3:05

(D / () P
3:00 —_ 10y -« 15— @

3:00 +25 -20
ﬁ Network l (> f
O | D] K] €8] €D
2:50 3:25 2:50 3:25 3:05 3:05
(a) (b) (c)

)

AN

The time daemon asks all the other machines for their clock values
The machines answer
The time daemon tells everyone how to adjust their clock

Kangasharju: Distributed Systems 17

Clock Synchronization: NTP

Goals
ability to externally synchronize clients via Internet to UTC
provide reliable service tolerating lengthy losses of
connectivity
enable clients to resynchronize sufficiently frequently to
offset typical HW drift rates

provide protection against interference

Synchronization subnets / ;w /:
& S
U

strata 1

strata 2

strata 3
(user workstations)

Kangasharju: Distributed Systems 18

= NTP Basic Ildea

Layered client-server architecture, based on UDP
message passing

Synchronization at clients with higher strata number less
accurate due to increased latency to strata 1 time server
Failure robustness: if a strata 1 server fails, it may
become a strata 2 server that is being synchronized
though another strata 1 server

Kangasharju: Distributed Systems 19

= NTP Modes

One computer periodically multicasts time info to all other
computers on network
These adjust clock assuming a very small transmission delay
Only suitable for high speed LANSs; yields low but usually
acceptable sync.

similar to Christian’s protocol
Server accepts requests from clients
Applicable where higher accuracy is needed, or where multicast is

not supported by the network’s hard- and software

Used where high accuracy is needed

Kangasharju: Distributed Systems 20

‘ Procedure-Call and Symmetric Modes

All messages carry timing history information
local timestamps of send and receive of the previous NTP message

local timestamp of send of this message

For each pair i of messages (m, m’) exchanged between two servers

the following values are being computed

(based on 3 values carried w/ msg and 4™ value obtained via local timestamp):
offset o,: estimate for the actual offset between two clocks

delay d;: true total transmission time for the pair of messages

Kangasharju: Distributed Systems 21

NTP: Delay and Offset

Server B

Time

Server A Ui

Let o the true offset of B’s clock relative to A’s clock, and lettand t
the true transmission times of mand m’ (T, T., ... are not true time)
Delay
T,=Ts+t+o (1) andT,=T,_,+t -0 (2)which leads to
d=t+t'=T,-T. 5+ T, -T_ (clock errors zeroed out = true d)
Offset
o,=7%(T,,—T.3+T._—T,) (only an estimate)

Kangasharju: Distributed Systems 22

. NTP Implementation

Statistical algorithms based on 8 most recent <o,, d>
pairs: - determine quality of estimates

The value of o, that corresponds to the minimum d, is
chosen as an estimate for o

Time server communicates with multiple peers, eliminates
peers with unreliable data, favors peers with higher strata
number (e.g., for primary synchronization partner
selection)

NTP phase lock loop model: modify local clock in
accordance with observed drift rate

Experiments achieve synchronization accuracies of

10 msecs over Internet, and 1 msec on LAN using NTP

Kangasharju: Distributed Systems 23

Clocks and Synchronization

Requirements:
) ”. real-time order ~ timestamp order ("behavioral
correctness” — seen by the user)

/ . all members see the events in the same
order
” ". order of updates, consistency
conflicts?

: bases on a common

understanding of transaction order

Kangasharju: Distributed Systems 24

. Example: Totally-Ordered Multicasting (1)

i Update®t Qpﬁ_at?_%___i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Updating a replicated database and leaving it in an inconsistent state.

Kangasharju: Distributed Systems

25

r Happened-Before Relation ”a -> b”

v

v

\ 4

if @, b are events in the same process, and a occurs before b, thena->b

* 1f a 1s the event of a message being sent, and
b 1s the event of the message being received,
thena ->b

* a|| cifneither a ->bnor b ->a (aand b are concurrent)

Notice:ifa->b and b->c¢ then a->c¢

Kangasharju: Distributed Systems

26

Logical Clocks: Lamport Timestamps

Pl 0|6 | |12 18 24 130 (36| (42 || 48| |50 X
P2 (0|8 1% 24 (32|40 (48| |86 @&/ |77 .
p3 1% 10| |20 3| 40 [|50| |60 1717080 |99

o

U
process p , event e, clock L, timestamp

. at p; : before each event L, =L, + 1

. when p; sends a message m to p;
1. p: (L=L+1); t=L;; message = (m, t);
2. p;: Lj = max(Lj, t); LJ- = LJ- +1;

3. Lj(receive event) = L;;

Kangasharju: Distributed Systems

27

Lamport Clocks: Problems

1. Timestamps do not specify the order of events

e->¢e => L(e)<L(e)

L(e) < L(e’) does not imply that e -> €’
2. Total ordering

problem: define order of e, € when L(e) = L(e’)
solution: extended timestamp (T;, i), where T, is L(e)
definition: (T, 1) < (T,)
if and only if
either T, <T,

orT;=T; andi<]

Kangasharju: Distributed Systems

28

Example: Totally-Ordered Multicasting (2)

'ki
\

Total ordering:
all recervers (applications) see all messages in the same order
(which 1s not necessarily the original sending order)

Example: multicast operations, group-update operations

Kangasharju: Distributed Systems 29

Guaranteed delivery order

- new message => HBQ

- when a// predecessors have
arrived: message => DQ

- when at the head of DO:
message => application

':I\E;(ample: Totally-Ordered Multicasting (3)

Application

delivery |

hold-back queue

o

T~

(application: receive ...) u

Algorithms:
see. Defago et al ACM CS, Dec. 2004

Kangasharju: Distributed Systems

>

delivery queue

Message passing system

30

 Example: Totally-Ordered Multicasting (4)

HBQ 20.1
|
201 B= | P, H —» -
3020 s = Bl =
302 312
. X
|
= []
4 P
26.3 TS3 .!
[]

Multicast:

Original timestamps

P, P, 19
P, 29

15 P, 25

The key idea
- the same order in all queues
- at the head of HBQ:

when all ack’s have arrived
nobody can pass you

- everybody receives the message (incl. the sender!)
- messages from one sender are received in the sending order
- no messages are lost

Kangasharju: Distributed Systems

31

Various Orderings

Total ordering
Causal ordering
FIFO (First In First Out)

(wrt an individual communication channel)

Total and causal ordering are independent:

neither induces the other;
Causal ordering induces FIFO

Kangasharju: Distributed Systems

32

o Total, FIFO and Causal Ordering of Multicast Messages

Notice the consistent
ordering of
messages T,

and /.,

the FIFO-related
messages F, and F,
and the causally
related messages C,
and C,

— and the otherwise
arbitrary delivery
ordering of messages.

Kangasharju: Distributed Systems

Vector Timestamps

Goal:
timestamps should reflect causal ordering

L(e) < L(e’) => “ e happened before e “
=>

Vector clock
each process P, maintains a vector V, :

1. [l] is the number of events that have occurred at
(the current local time at P;)
2. if V.[[] = k then P, knows about (the first) k events that have

occurred at P,
(the local time at P;was k, as F; sent the last message that F; has

received from it)

Kangasharju: Distributed Systems 34

Order of Vector Timestamps

Order of timestamps
V=V iff V[[1=V'[j] for all j
V<V oiff V[j]1s V' [j] forall]
V<V iff VsV andV #V

Order of events (causal order)
e->e => V(e) < V(e)
V(e)<V(e') => e->¢
concurrency:

elle if notV() V(e)
and not V(e') < V(e)

Kangasharju: Distributed Systems

35

Causal Ordering of Multicasts (1)

J messages sent form Q

k messages sent from R

Kangasharju: Distributed Systems

P|oO 1 1 1
0 0 1
0 0 0 R
Qlo 1 1 1 2
0 0 1 1 2
0 0 0 |/m2 1 1 ‘
— >
R [0 1 I A 3
0 0 0 | .
0 0 1 1 N
m3
. - R: ml1[100] m4][211]
: Timestamp [i,j.K] :
Event: | P [i,3,k] m2 [110] m5 [221]
message sent i messages sent from P

m3 [101]
m4 [211] vs. 111

36

Causal Ordering of Multicasts (2)

Use of timestamps in causal multicasting

1) P, multicast: V[i] = V|[i] + 1

2) Message: include vt = V,[*]

3) Each receiving P; : the message can be delivered when
- vt[i] = V[i] + 1 (all previous messages from P; have
arrived)

- for each component k (k#i): V[k] 2 vt[k]
(P; has now seen all the messages that P; had seen
when the message was sent)

4) When the message from P; becomes deliverable at P, the
message is inserted into the delivery queue

(notice: the delivery queue preserves
causal ordering)

) At delivery: V.[i] = V|[i] + 1

angasharju: Distribdted S;’/stems 37

Causal Ordering of a Bulletin Board (1)

User < BB (“/local events’)
read: bb <= BB, (any BB)
write: to a BB, that
contains all causal

predecessors of all bb

messages
BB, => BBj (“messages”)

As§umpt|on: . BB: must contain all
reliable, order-preserving J
BB-to-BB transport nonlocal predecessors of

all BB, messages

Kangasharju: Distributed Systems 38

Causal Ordering of a Bulletin Board (2)

timestamps

=

N

1

J

Lazy propagation of messages betw.

bulletin boards

1) user => P,

vector clocks: counters

messages from
users to the node i

messages originally
received by the node |

Kangasharju: Distributed Systems

39

Causal Ordering of a Bulletin Board (3)

300 | {320 | | 024
100 | | 010 | | 001
200 | | 020 | | 002
300 | | 100 | | 003
200 | | 010

300 | | 020

024

nodes
clocks (value: visible user messages)
bulletin boards (timestamps shown)

user: read and reply

025

- read stamp: 023
- reply can be
delivered to: 1,2,
|— 023

Kangasharju: Distributed Systems

40

Causal Ordering of a Bulletin Board (4)

Updating of vector clocks
Process P,
Local vector clock V; [*]
Update due to a local event: V,[i] = V,[i] + 1

Receiving a message with the timestamp vt [¥]
Condition for delivery (to P; from P,):
wait until for all k: k#j: V. [k] 2 vt [K]
Update at the delivery: V,[j] = vt [j]

Kangasharju: Distributed Systems 41

: Global State (1)

7 +—

mngr

[]

Needs: checkpointing, garbage collection, deadlock detection,

termination, testing

e How to observe the state
e states of processes

e messages in transfer

A state: application-dependent specification

Kangasharju: Distributed Systems

42

Detecting Global Properties
Py

P,
object
reference
message
a. Garbage collection - garbage object
P, wait-for &
b. Deadlock wait-for
p1 p2
activate
<] |

c. Termination

Figure 10.8

Kangasharju: Distributed Systems 43

Distributed Snapshot

Each node: history of important events
Observer: at each node |
time: the local (logical) clock " T,”
state S; (history: {event, timestamp})
=> system state { S, }
A cut: the system state { S, } "at time T"
Requirement:
{Si} might have existed < consistent with respect to
some criterion
one possibility: consistent wrt ” happened-before

relation ”

Kangasharju: Distributed Systems

44

‘ Ad-hoc State Snaphots

account A account B
channel
500e 200e
50=>B =
450¢e 200e
450¢e 250¢e
(inconsistent or)
strorigly consistent

state changes: money transfers A < B

invariant: A+B = 700

Kangasharju: Distributed Systems

cut 3

45

Consistent and Inconsistent Cuts

Pl
ml
P2 / ><\m3’
P3 / \
' %)
/
/
/
Pl > _
ml m
P2 / A \ ’
7~ "’%
P3 i

Kangasharju: Distributed Systems

46

_ b. Cuts and Vector Timestamps

= |10
Xq1= 1 Xq= 100 Xq= 10
P1 * -
Physical
>

P2 time
X, and x, change locally Cut C,
requirement: |X;- x,|<50 Cut C;
a ’large” change (7>97)=>
send the new value to the other process
event: a change of the local x A cut is consistent if, for each event,
=> mcrease the vector clock it also contains all the events that

{S;} system state history: all events “happened-before”.
Cut: all events before the ”cut time”

Kangasharju: Distributed Systems 47

.

Implementation of Snapshot

= Chandy, Lamport

point-to-point, order-preserving connections

Kangasharju: Distributed Systems

48

. Chandy Lamport (1)

Incoming Outgoing
message Process State message

W A ¥

]
e _%/]_} q .
— Local
Marker filesystem
(a)

The snapshot algorithm of Chandy and Lamport
Organization of a process and channels for a distributed snapshot

Kangasharju: Distributed Systems

49

. Chandy Lamport (2)

I e o
@, QD,MFw

— 1 [— T
state

(b) (c) (d)

Process Q receives a marker for the first time and records its local state

Q records all incoming messages
Q receives a marker for its incoming channel and finishes recording the state of

this incoming channel

Kangasharju: Distributed Systems

.Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process p;
On p,’s receipt of a marker message over channel c:
if (p; has not yet recorded 1its state) it
records its process state now;
records the state of ¢ as the empty set;
turns on recording of messages arriving over other incoming channels;
else
p; records the state of ¢ as the set of messages it has received over ¢
since 1t saved its state.
end if
Marker sending rule for process p;
After p, has recorded its state, for each outgoing channel c:
p; sends one marker message over ¢
(before it sends any other message over c).

Figure 10.10

Kangasharju: Distributed Systems 51

Coordination of functionality
reservation of resources (distributed mutual exclusion)
elections (coordinator, initiator)
multicasting

distributed transactions

Kangasharju: Distributed Systems

52

Decision Making

Centralized: one coordinator (decision maker)
algorithms are simple
no fault tolerance (if the coordinator fails)

Distributed decision making
algorithms tend to become complex
may be extremely fault tolerant
behaviour, correctness ?
assumptions about failure behaviour of the platform !

Centralized role, changing “population of the role”

easy: one decision maker at a time
challenge: management of the “role population”

Kangasharju: Distributed Systems

53

. Mutual Exclusion:
. A Centralized Algorithm (1)

o) (0 (2 (0 (1) (2) U?@
| &

Request OK Req ues% Relea
message passing No reply

(@) (o) (c)

Process 1 asks the coordinator for permission to enter a critical region.

Permission is granted
Process 2 then asks permission to enter the same critical region. The

coordinator does not reply.
When process 1 exits the critical region, it tells the coordinator, which

then replies to 2

Kangasharju: Distributed Systems 54

. Mutual Exclusion:
. A Centralized Algorithm (2)

Examples of usage
a stateless server (e.g., Network File Server)
a separate lock server
General requirements for mutual exclusion
safety: at most one process may execute in the critical section at
a time
liveness: requests (enter, exit) eventually succeed (no deadlock, no
starvation)
fairness (ordering): if the request A happens before the request B

then A is honored before B
Problems: fault tolerance, performance

Kangasharju: Distributed Systems

55

A Distributed Algorithm (1)

resource
‘ ,
! The general idea:
~

~ _ ask everybody

~-——_

wait for permission from everybody

The problem:
several simultaneous requests (e.g., P,and P
all members have to agree (everybody “first #’ then P;")

Kangasharju: Distributed Systems 56

stMulticast Synchronization
e

41//

/ P
3

p

1

Reply
eply 3
Repl
\ §
41 A
Decision base: p 34
Lamport timestamp 2

Fig. 11.5 Ricart - Agrawala

Kangasharju: Distributed Systems 57

JA Distributed Algorithm (2)

= On initialization
state := RELEASED;
To enter the section

state .= WANTED:;
T :=request’s timestamp; request processing deferred here

Multicast request to all processes;

Wait until (number of replies received = (N-1));
state .= HELD;

On receipt of a request <T,, p> at p; (i # j)
if (state = HELD or (state = WANTED and (T, pj) <(T,,p;))
then
queue request from p; without replying;
else
reply immediately to p;;
end if;

To exit the critical section X .
state := RELEASED: Fig. 11.4 Ricart - Agrawala

reply to all queued requests;

Kangasharju: Distributed Systems 58

A Token Ring Algorithm

An unordered group of processes on a network.
(@) (b)
A logical ring constructed in software.

Algorithm:
- token passing: straightforward
- lost token: 1) detection? 2) recovery?

Kangasharju: Distributed Systems 59

Comparison

Messages per entry/ Delay before entry (in

Algorithm Problems

exit message times)
Centralized 3 2 Coordinator crash
Distributed 2(n-=-1) 2(n-1) Crash of any process

Lost token, process
Token ring 110 o0 Oton-1
crash

A comparison of three mutual exclusion algorithms.

Notice: the system may contain a remarkable amount of sharable resources!

Kangasharju: Distributed Systems 60

Election Algorithms

Need:
computation: a group of concurrent actors
algorithms based on the activity of a special role (coordinator, initiator)

election of a coordinator: initially / after some special event (e.g., the previous
coordinator has disappeared)

Premises:
each member of the group {Pi}
knows the identities of all other members
does not know who is up and who is down
all electors use the same algorithm
election rule: the member with the highest Pi
Several algorithms exist

Kangasharju: Distributed Systems

61

The Bully Algorithm (1)

P. notices: coordinator lost

1. Pito {all Pj st Pj>Pi}: ELECTION!

2. if no one responds => Pi is the coordinator

3. some Pjresponds => Pj takes over, Pi’s job is done
P, gets an ELECTION! message:

1. reply OK to the sender

2. if Pi does not yet participate in an ongoing election: hold

an election

The new coordinator P, to everybody: “P
COORDINATOR”
P.: ongoing election & no “P, COORDINATOR”: hold an
election

Pj recovers: hold an election

Kangasharju: Distributed Systems 62

. The Bully Algorithm (2)

‘\yﬁoﬁv
@ Election @ T OK @ @

Previous coordinator
has crashed

(@) (b) (©)

The bully election algorithm

a) Process 4 holds an election

b) Process 5 and 6 respond, telling 4 to stop
C) Now 5 and 6 each hold an election

Kangasharju: Distributed Systems 63

Process 6 tells 5 to stop

Process 6 wins and tells everyone

Kangasharju: Distributed Systems 64

A Ring Algorithm (1)

Group {Pi} "fully connected”; election: ring
Pi notices: coordinator lost

send ELECTION(PIi) to the next P
Pj receives ELECTION(PI)

send ELECTION(PI, Pj) to successor

Pi receives ELECTION(..., Pi, ...)

active list = {collect from the message}
NC = max {active_list}
send COORDINATOR(NC; active_list) to the next P

Kangasharju: Distributed Systems

65

- A Rina Alaorithm (2)

[5,6,0] 1
. Election message

(o) 2) »

A [2]
Previous coordinator .
has crashed [5.6] @
[2,3]

No response | 6

[5] \°
Election algorithm using a ring.

Kangasharju: Distributed Systems 66

Y
(=

Kangasharju: Distributed Systems 67

. The Transaction Model (1)

Previous
iInventory

New
() iInventory
Computer | > Output tape
O

Today's
updates

Input tapes <

Updating a master tape is fault tolerant.

Kangasharju: Distributed Systems 68

. The Transaction Model (2)

Primitive

Description

BEGIN_TRANSACTION

Make the start of a transaction

END_TRANSACTION

Terminate the transaction and try to commit

ABORT_TRANSACTION

Kill the transaction and restore the old values

READ

Read data from a file, a table, or otherwise

WRITE

Write data to a file, a table, or otherwise

Examples of primitives for transactions.

Kangasharju: Distributed Systems

69

The Transaction Model (3)

BEGIN _TRANSACTION BEGIN TRANSACTION
reserve WP -> JFK: reserve WP -> JFK;
reserve JFK -> Nairobi; reserve JFK -> Nairobi;

reserve Nairobi -> Malindi;

END_TRANSACTION ABORT_TRANSACTION

(a) Transaction to reserve three flightsl@ommits
Transaction aborts when third flight is unavailable

Notice:

* a transaction must have a name

 the name must be attached to each operation,
which belongs to the transaction

Kangasharju: Distributed Systems

reserve Nairobi -> Malindi full =>

70

. Distributed Transactions

. Nested transaction { | Distributed transaction |

ISubtransaction . ISubtransaction , ISubtransac’cion . ISubtrans;aotion |

Airline databa% /I:otel database

Distributed database

Two different (independent) Two physically separated
databases parts of the same database

(a) (b)

A nested transaction

A distributed transaction

Kangasharju: Distributed Systems 71

Concurrent Transactions

Concurrent transactions proceed in parallel
Shared data (database)

Concurrency-related problems
(if no further transaction control):
lost updates
inconsistent retrievals
dirty reads
etc.

Kangasharju: Distributed Systems

72

= The lost update problem

Transaction 7 : Transaction U :

balance = b.getBalance(); balance = b.getBalance();
b.setBalance(balance*1.1); b.setBalance(balance*1.1);
a.withdraw(balance/10) ¢ withdraw(balance/10)

balance = b.getBalance(); $200
balance = b.getBalance(); $200

b.setBalance(balance*1.1);

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80
c.withdraw(balance/10) $280

Figure 12.5 Initial values a: $100, b: $200 ¢: $300

Kangasharju: Distributed Systems 73

The inconsistent retrievals problem

Transaction V :

Transaction W :

a.withdraw(100) aBranch.branchTotal()
__b.deposit(100)
awithdraw(100); $100 ‘
‘ total = a.getBalance() $100
| total = total+b.getBalance() $300
‘ total = total+c.getBalance()
b.deposit(100) $300 } .

Figure 12.6 Initial values a: $200, b: $200

Kangasharju: Distributed Systems

74

A serially equivalent interleaving of T and U

Transaction T :

balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U :

balance = b.getBalance()
b.setBalance(balance*1.1)
c . withdraw(balance/10)

balance = b.getBalance() $200
b.setBalance(balance*1.1) $220

a.withdraw(balance/10) $80

balance = b.getBalance() $220
b.setBalance(balance*1.1) $242

c.withdraw(balance/10) $278

Kangasharju: Distributed Systems

Figure 12.7 The result corresponds the sequential execution T, U

75

A dirty read when transaction T aborts

TransactionT7:

a.getBalance()

a.setBalance(balance + 10)

TransactionU:

a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10) $110

abort transaction

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

Figure 12.11

Kangasharju: Distributed Systems

76

Methods for ACID

Atomic

private workspace,
writeahead log

Consistent
concurrency control => serialization
locks
timestamp-based control
optimistic concurrency control
Isolated (see: atomic, consistent)
Durable (see: Fault tolerance)

Kangasharju: Distributed Systems

77

Private Workspace

Private
o workspace
Original TN,
Index index - 0
0 0 11
1 L — 2
2 2 3
1] [2] |o 1 2| |o 1] |2
7|(7|L/‘/ | |OL 2 -

Free blocks

(2) (b) (©)

The file index and disk blocks for a three-block file

The situation after a transaction has modified block 0 and
appended block 3

After committing

Kangasharju: Distributed Systems 78

. Writeahead Log

x =0; Log Log Log
y=0;

BEGIN_TRANSACTION;

X=Xx+1,; [x=0/1] [x=0/1] [x=0/1]
y=yt+2 [y = 0/2] [y = 0/2]
X=y*y; [x =1/4]

END_TRANSACTION;
(@) (b) () (d)

a) A transaction
b) — d) The log before each statement is executed

Kangasharju: Distributed Systems 79

" Concurrency Control (1)

Transactions

\y/

READWRITE | Transaction

Mmanager

v A

Scheduler

v A

Data
manager

BEGIN_TRANSACTION
END_TRANSACTION

LOCK/RELEASE
or
Timestamp operations

Execute read/write

General organization of managers for handling transactions.

Kangasharju: Distributed Systems

80

Concurrency Control (2)

General organization of managers
\‘ l / for handling distributed
Transaction transactions.
manager
"
‘ Scheduler Scheduler Scheduler
*
Data Data Data
manager manager manager
Machine A Machine B Machine C

Kangasharju: Distributed Systems

81

[]

. Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION

x=0; x=0; x=0;

X=x+1; X=X+2; X=X+3;

END_TRANSACTION END_TRANSACTION END_TRANSACTION

Schedulﬁa1) x=0;x=x+1;x=0;x=x+(b2);x=0;x=x+3 ©) Legal
Schedule 2 x=0; x=0; x=x+1;, x=x+2; x=0; x=x+3; Legal
Schedule 3 x=0; x=0; x=x+1; x=0; x=x+2; x=x+3; lllegal

()

— ¢) Three transactions T,, T,, and T,. d) Possible schedules

- there exists a leading to the

Kangasharju: Distributed Systems

82

Implementation of Serializability

Decision making: the transaction scheduler

Locks
data item ~ lock
request for operation
a corresponding lock (read/write) is granted
the operation is delayed until the lock is released

Pessimistic timestamp ordering
transaction <= timestamp; data item <= R-, W-stamps
each request for operation:
check serializability
continue, wait, abort
Optimistic timestamp ordering
serializability check: at END_OF TRANSACTION, only

Kangasharju: Distributed Systems

83

Transactions T and U with Exclusive Locks

Transaction 7' :

balance = b.getBalance()
b.setBalance(bal*1.1)

Transaction U :

balance = b.getBalance()
b.setBalance(bal*1.1)

a.withdraw(bal/10) c withdraw(bal/10)
Operations Locks Operations Locks
openTransaction

bal = b.getBalance() lockB

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A

closeTransaction unlock A , B

bal = b.getBalance() waits forT’s

lock on B
XX
lock B
b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C
closeTransaction unlock B, C

Figure 12.14

Kangasharju: Distributed Systems

. Two-Phase Locking (1)

Growing phase

Lock point

-«

Shrinki h
rinking phase

Number of locks

¥

Two-phase locking (2PL).

Kangasharju: Distributed Systems

Time —»

. dirty reads?

85

= Two-Phase Locking (2)

Growing phase

Lock point

Shrinking phase >

Number of locks

All locks are released

> <
| at the same time
| A

Strict two-phase locking.

Kangasharju: Distributed Systems

Time —»

Centralized or distributed.

86

Pessimistic Timestamp Ordering

Transaction timestamp ts(T)
given at BEGIN_TRANSACTION (must be unique!)

attached to each operation
Data object timestamps tsyp(X), tsyyr(X)

tsgp(x) = ts(T) of the last T which read x

ts,(x) = ts(T) of the last T which changed x
Required serial equivalence: ts(T) order of T's

Kangasharju: Distributed Systems

87

Pessimistic Timestamp Ordering

The rules:
you are allowed to what
later transactions already have seen (or changed!)
you are allowed to what

later transactions already have changed

Conflicting operations
process the older transaction first
violation of rules: the transaction is aborted (i.e,
the older one: it is too late!)
if tentative versions are used, the final decision is made at

END_TRANSACTION

Kangasharju: Distributed Systems

88

=». Write Operations and Timestamps

(a) T; write

(b)T; write

Before | 2 Before| T4 Ty
After T T3 After | Ty Toll | Ts

®» Time ® Time
(c) T; write (d)T; write

Transaction

Before | 1 || | T4 Before | 14 aborts
After T4 T, Ty After | T 4

> T|me > Time

Figure 12.30

Kangasharju: Distributed Systems

Key: T
|

Committed

Tentative

object produced
by transaction T,
(with write timestamp T,)

T, <T,<T5<T,

&9

Optimistic Timestamp Ordering

Problems with locks
general overhead (must be done whether needed or not)
possibility of deadlock
duration of locking (=> end of the transaction)
Problems with pessimistic timestamps
overhead
Alternative
proceed to the end of the transaction
validate

applicable if the probability of conflicts is low

Kangasharju: Distributed Systems

90

Validation of Transactions

Working Validation Update

Earlier committed

. / transactions
2 |1]]
LEW I]
Transaction | I I I
being validated T,
active1 | |

Later active=" :

_ actlve2 l |
transactions

Figure 12.28

Kangasharju: Distributed Systems

91

. Validation of Transactions

of transaction T,
boolean valid = true;
for (int T; = startTn+1; T, <= finishTn; T ++){
if (read set of 7', intersects write set of 7)) valid = false;

h

of transaction 7,
boolean valid = true;
for (int T, = activel; T,; <= activeN; T, ++){
if (write set of 7', intersects read set of 7),) valid = false;

h

CoDoKi: Page 499-500

Kangasharju: Distributed Systems 92

