
 Replication and Consistency

Fall 2008
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Replication
 Consistency models
 Distribution protocols
 Consistency protocols

3 Kangasharju: Distributed Systems

Data Replication

user C

user B

object

object

user A

4 Kangasharju: Distributed Systems

Reasons for Data Replication

  Dependability requirements
 availability

-  at least some server somewhere
-  wireless connections => a local cache

  reliability (correctness of data)
-  fault tolerance against data corruption
-  fault tolerance against faulty operations

  Performance
  response time, throughput
 scalability

-  increasing workload
-  geographic expansion

 mobile workstations => a local cache
  Price to be paid: consistency maintenance

 performance vs. required level of consistency
 (need not care  updates immediately visible)

5 Kangasharju: Distributed Systems

Object Replication (1)

 Organization of a distributed remote object shared by two different clients

(consistency at the level of critical phases).

6 Kangasharju: Distributed Systems

Object Replication (2)

a)  A remote object capable of handling concurrent invocations on its own.

b)  A remote object for which an object adapter is required to handle concurrent invocations

7 Kangasharju: Distributed Systems

Object Replication (3)

a)  A distributed system for replication-aware distributed objects.
b)  A distributed system responsible for replica management

8 Kangasharju: Distributed Systems

Services Provided for Process Groups

Join

Group

address

expansion

Multicast

communication

Group

send

Fail
 Group membership

management

Leave

Process group

CoDoKi, Figure 14.2

9 Kangasharju: Distributed Systems

A Basic Architectural Model for the Management of
Replicated Data

FE

Requests and

replies

C

Replica
C

Service
Clients
 Front ends

managers

RM

RM
FE

RM

Figure 14.1

10 Kangasharju: Distributed Systems

The Passive (primary-backup) Model for Fault
Tolerance

FE
C

FE
C

RM

Primary

Backup

Backup

RM

RM

Figure 14.4

11 Kangasharju: Distributed Systems

Active Replication

FE
 C
FE
C
 RM

RM

RM

Figure 14.5

12 Kangasharju: Distributed Systems

Replication and Scalability

 Requirement: ”tight” consistency
(an operation at any copy => the same result)

 Difficulties
 atomic operations (performance, fault tolerance??)
  timing: when exactly the update is to be performed?

 Solution: consistency requirements vary
 always consistent => generally consistent
 (when does it matter? depends on application)
 => improved performance

 Data-centric / client-centric consistency models

13 Kangasharju: Distributed Systems

Data-Centric Consistency Models (1)

 The general organization of a logical data store, physically distributed and

replicated across multiple processes.

14 Kangasharju: Distributed Systems

Data-Centric Consistency Models (2)

15 Kangasharju: Distributed Systems

Strict Consistency
Any read on a data item x
returns a value corresponding to the result of
the most recent write on x.

Behavior of two processes, operating on the same data item.

a)  A strictly consistent store.
b)  A store that is not strictly consistent.

A problem: implementation requires absolute global time.
Another problem: a solution may be physically impossible.

16 Kangasharju: Distributed Systems

Sequential Consistency

A sequentially consistent data store. A data store that is not sequentially consistent.

The result of any execution is the same as if
the (read and write) operations by all processes on the data store
were executed in some sequential order and
the operations of each individual process appear in this sequence
in the order specified by its program. Note: nothing said about time!

Note: a process sees all writes and own reads

17 Kangasharju: Distributed Systems

Linearizability

The result of any execution is the same as if
the (read and write) operations by all processes on the data store
were executed in some sequential order and
the operations of each individual process appear in this sequence
in the order specified by its program.

In addition,
if TSOP1(x) < TSOP2(y) , then
operation OP1(x) should precede OP2(y) in this sequence.

Linearizability: primarily used to assist formal verification of concurrent
algorithms.

Sequential consistency: widely used, comparable to serializability of
transactions (performance??)

18 Kangasharju: Distributed Systems

Linearizability and Sequential Consistency (1)

Execution sequences

 - 720 possible execution sequences (several of which violate program order)

 - 90 valid execution sequences

Process P1 Process P2 Process P3

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Initial values: x = y = z = 0

All statements are assumed to be indivisible.

Three concurrently executing processes

19 Kangasharju: Distributed Systems

Linearizability and Sequential Consistency (2)

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

 (a)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

 (b)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

 (c)

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

 (d)

20 Kangasharju: Distributed Systems

Causal Consistency (1)

Necessary condition:

 Writes that are potentially causally related must be
seen by all processes in the same order.

 Concurrent writes may be seen in a different order on
different machines.

21 Kangasharju: Distributed Systems

Causal Consistency (2)

 This sequence is allowed with a causally-consistent store,
 but not with sequentially or strictly consistent store.

22 Kangasharju: Distributed Systems

Causal Consistency (3)

A correct
sequence
of events in a
causally-consistent
store.

A violation of a
causally-consistent
store.

23 Kangasharju: Distributed Systems

FIFO Consistency (1)

Necessary Condition:

Writes done by a single process
are seen by all other processes
in the order in which they were issued,
but
writes from different processes
may be seen in a different order by different processes.

24 Kangasharju: Distributed Systems

FIFO Consistency (2)

A valid sequence of events of FIFO consistency

Guarantee:
•  writes from a single source must arrive in order
•  no other guarantees.

 Easy to implement!

25 Kangasharju: Distributed Systems

FIFO Consistency (3)

Statement execution as seen by the three processes from a previous
slide.

The statements in bold are the ones that generate the output shown.

x = 1;

print (y, z);

y = 1;

print(x, z);

z = 1;

print (x, y);

Prints: 00

 (P1)

x = 1;

y = 1;

print(x, z);

print (y, z);

z = 1;

print (x, y);

Prints: 10

 (P2)

y = 1;

print (x, z);

z = 1;

print (x, y);

x = 1;

print (y, z);

Prints: 01

 (P3))

26 Kangasharju: Distributed Systems

FIFO Consistency (4)

Process P1 Process P2

x = 1;

if (y == 0) kill (P2);

y = 1;

if (x == 0) kill (P1);

Sequential consistency vs. FIFO consistency
 both: the order of execution is nondeterministic

 sequential: the processes agree what it is

 FIFO: the processes need not agree

possible outcomes: P1 or P2 or neither is killed

FIFO: also possible that both are killed

assume: initially x = y = 0

27 Kangasharju: Distributed Systems

Less Restrictive Consistencies
 Needs

 FIFO too restrictive: sometimes no need to see all writes
 example: updates within a critical section (the variables are

locked => replicas need not be updated -- but the database

does not know it)

 Replicated data and consistency needs
 single user: data-centric consistency needed at all?

-  in a distributed (single-user) application: yes!
-  but distributed single-user applications exploiting

replicas are not very common …
 shared data: mutual exclusion and consistency obligatory

=> combine consistency maintenance with the
 implementation of critical regions

28 Kangasharju: Distributed Systems

Consistency of Shared Data (1)

 Assumption: during a critical section the user has access to one

replica only

 Aspects of concern
-  consistency maintenance timing, alternatives:

- entry: update the active replica
- exit: propagate modifications to other replicas
- asynchronous: independent synchronization

-  control of mutual exclusion:
- automatic, independent

-  data of concern:
- all data, selected data

29 Kangasharju: Distributed Systems

Consistency of Shared Data (2)
 Weaker consistency requirements

 Weak consistency
 Release consistency
 Entry consistency

  Implementation method
 control variable

-  synchronization / locking
 operation

-  synchronize
-  lock/unlock and synchronize

30 Kangasharju: Distributed Systems

Weak Consistency (1)

 Synchronization independent of “mutual exclusion”
 All data is synchronized

 Implementation
-  synchronization variable S
-  operation synchronize
-  synchronize(S):

-  all local writes by P are propagated to other copies
-  writes by other processes are brought into P’s copy

31 Kangasharju: Distributed Systems

Weak Consistency (2)

An invalid sequence for weak consistency.

A valid sequence of events for weak consistency.

32 Kangasharju: Distributed Systems

P1

P2

P3

Weak Consistency (4)

•  Weak consistency enforces consistency of a group of
 operations, not on individual reads and writes

•  Sequential consistency is enforced
 between groups of operations

•  Compare with: distributed snapshot

33 Kangasharju: Distributed Systems

Weak Consistency (3)

Properties:
1.  Accesses to synchronization variables associated with

a data store are sequentially consistent (synchronizations

are seen in the same order)

2.  No operation on a synchronization variable is allowed
to be performed until all previous writes have been
completed everywhere

3.  No read or write operation on data items are allowed to
be performed until all previous operations to
synchronization variables have been performed.

34 Kangasharju: Distributed Systems

Release Consistency (1)
 Consistency synchronized with “mutual exclusion”
=> fewer consistency requirements needed

-  enter: only local data must be up-to-date
-  exit: writes need not be propagated until at exit
-  only protected data is made consistent

 Implementation
-  “lock” variables associated with data items
-  operations acquire(Lock) and release(Lock)
-  implementation of acq/rel application dependent:
 lock <=> data associations are application specific

(this functionality could be supported by middleware)

35 Kangasharju: Distributed Systems

Release Consistency (2)

A valid event sequence for release consistency.

Synchronization: enter or exit a critical section
•  enter => bring all local copies up to date
 (but even previous local changes can be sent later to others)
•  exit => propagate changes to others
 (but changes in other copies can be imported later)

36 Kangasharju: Distributed Systems

Release Consistency (3)

Rules:
  Synchronization (mutual ordering) of

 acquire/release operations
wrt.
  read/write operations
see: weak consistency

  Accesses to synchronization variables are FIFO consistent

(sequential consistency is not required).

The lazy version
  release: nothing is sent
  acquire: get the most recent values

37 Kangasharju: Distributed Systems

Entry Consistency (1)
  Consistency combined with “mutual exclusion”

  Each shared data item is associated with a

synchronization variable S
  S has a current owner (who has exclusive access to the associated data, which is

guaranteed up-to-date)
  Process P enters a critical section: Acquire(S)

  retrieve the ownership of S

  the associated variables are made consistent
  Propagation of updates: first at the next Acquire(S) by some other

process

38 Kangasharju: Distributed Systems

R(x)a

Entry Consistency (2)

A valid event sequence for entry consistency.

R(y)NIL

 Acq(Ly) W(y)b Rel(Ly)

P3:

P1: Acq(Lx) W(x)a Rel(Lx)

P2:

Rel(Lx)

Acq(Ly) R(y)b

39 Kangasharju: Distributed Systems

Summary of Consistency Models (1)

Consistency models not using synchronization operations.

All processes see writes from each other in the order they
were used. Writes from different processes may not always be
seen in that order.

FIFO

All processes see causally-related shared accesses in
the same order.

Causal

All processes see all shared accesses in the same order.
Accesses are not ordered in time Sequential

All processes see all shared accesses in the same order.
Accesses are furthermore ordered according to a
(nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters. Strict
Description Consistency

40 Kangasharju: Distributed Systems

Summary of Consistency Models (2)

Models with synchronization operations.

Shared data associated with a synchronization variable

are made consistent when a critical section is entered.

Entry

All shared data are made consistent after the exit out of the

critical section

Release

Shared data can be counted on to be consistent only after a

synchronization is done

Weak

Description Consistency

41 Kangasharju: Distributed Systems

Client-Centric Models

 Environment
 most operations: “read”

  “no” simultaneous updates

 a relatively high degree of inconsistency tolerated

 (examples: DNS, WWW pages)

 Wanted
 eventual consistency

 consistency seen by one single client

42 Kangasharju: Distributed Systems

Eventual Consistency

43 Kangasharju: Distributed Systems

Monotonic Reads
 If a process reads the value of of a data item x, any successive read operation

on x by that process will always return that same value or a more recent value.

(Example: e-mail)

A data store that does not
provide monotonic reads.

A monotonic-read consistent
data store

WS(xi): write set = sequence of operations on x at node Li

44 Kangasharju: Distributed Systems

Monotonic Writes

 A data store that does not
provide monotonic-write
consistency.

 A monotonic-write
consistent data store.

A write operation by a process on a data item x is completed
before any successive write operation on x
by the same process. (Example: software updates)

45 Kangasharju: Distributed Systems

Read Your Writes

A data store that
does not.

 A data store that provides
read-your-writes
consistency.

The effect of a write operation by a process on data item x will
always be seen by a successive read operation on x by the same
process. (Example: edit www-page)

46 Kangasharju: Distributed Systems

Writes Follow Reads

Process P: a write operation (on x) takes place on the same or a more
recent value (of x) that was read. (Example: bulletin board)

A data store that does not
provide writes-follow-reads
consistency

A writes-follow-reads
consistent data store

47 Kangasharju: Distributed Systems

Distribution Protocols

 Replica placement
 Update propagation
 Epidemic protocols

48 Kangasharju: Distributed Systems

Replica Placement (1)

 The logical organization of different kinds of copies of a data

store into three concentric rings.

49 Kangasharju: Distributed Systems

Replica Placement (2)

permanent replicas

server-initiated replicas

client-initiated replicas clients
servers

mirror

50 Kangasharju: Distributed Systems

Permanent Replicas

 Example: a WWW site
 The initial set of replicas:
 constitute a distributed data store
 Organization

 A replicated server
 (within one LAN; transparent for the clients)
 Mirror sites (geographically spread across the Internet;
 clients choose an appropriate one)

51 Kangasharju: Distributed Systems

Server-Initiated Replicas (1)

 Created at the initiative of the data store
 (e.g., for temporary needs)
 Need: to enhance performance
 Called as push caches
 Example: www hosting services

 a collection of servers

 provide access to www files belonging to third parties

  replicate files “close to demanding clients”

52 Kangasharju: Distributed Systems

Server-Initiated Replicas (2)

  Issues:
  improve response time

  reduce server load; reduce data communication load

⇒  bring files to servers placed in the proximity of clients
 Where and when should replicas be created/deleted?

 determine two threshold values for each (server, file): rep > del
 #[req(S,F)] > rep => create a new replicate

 #[req(S,F)] < del => delete the file (replicate)

 otherwise: the replicate is allowed to be migrated

 Consistency: responsibility of the data store

53 Kangasharju: Distributed Systems

Client-Initiated Replicas

 Called as client caches
(local storage, temporary need of a copy)

 Managing left entirely to the client
 Placement

  typically: the client machine

 a machine shared by several clients

 Consistency: responsibility of client

54 Kangasharju: Distributed Systems

Example: Shared Cache in Mobile Ad Hoc Networks

F

F? F? F?

F? F

N1
N2 N3 N4

C1
C2 C3 C4

C5

1.  C1 : Read F => N1 returns F
2.  N3 : several clients need F => Cache F

3. C5 : Read F => N3 returns F

client

server

Source: Cao et al, Cooperative Cache-Based Data Access …; Computer, Febr. 2004

55 Kangasharju: Distributed Systems

Update Propagation:
State vs. Operations

 Update route: client => copy => {other copies}
 Responsibility: push or pull?
  Issues:

 consistency of copies
 cost: traffic, maintenance of state data

 What information is propagated?
 notification of an update (invalidation protocols)

  transfer of data (useful if high read-to-write ratio)

 propagate the update operation (active replication)

56 Kangasharju: Distributed Systems

Pull versus Push (1)

 Push
 a server sends updates to other replica servers
  typically used between permanent and server-initiated replicas

 Pull
 client asks for update / validation confirmation
  typically used by client caches

-  client to server: {data X, timestamp ti, OK?}
-  server to client: OK or {data X, timestamp ti+k}

57 Kangasharju: Distributed Systems

Pull versus Push Protocols (2)

 A comparison between push-based and pull-based protocols in the case of

multiple client, single server systems.

Issue Push-based Pull-based

State of server List of client replicas and caches None

Messages sent Update (and possibly fetch update later) Poll and update

Response time at

client
Immediate (or fetch-update time) Fetch-update time

58 Kangasharju: Distributed Systems

Pull vs. Push: Environmental Factors
 Read-to-update ratio

-  high => push (one transfer – many reads)
-  low => pull (when needed – check)

 Cost-QoS ratio
-  factors:

- update rate, number of replicas => maintenance
workload

- need of consistency (guaranteed vs. probably_ok)
-  examples

-  (popular) web pages
- arriving flights at the airport

 Failure prone data communication
-  lost push messages => unsuspected use of stale data
-  pull: failure of validation => known risk of usage
-  high reqs => combine push (data) and pull

59 Kangasharju: Distributed Systems

Leases

  Combined push and pull

  A “server promise”: push updates for a certain time

  A lease expires

 => the client

-  polls the server for new updates or
-  requests a new lease

  Different types of leases

 age based: {time to last modification}

  renewal-frequency based: long-lasting leases to active users

 state-space overhead: increasing utilization of a server => lower

expiration times for new leases

60 Kangasharju: Distributed Systems

Propagation Methods

61 Kangasharju: Distributed Systems

Gossiping (1)

P starts a gossip round (with a fixed k)
1.  P selects randomly {Q1,..,Qk}
2.  P sends the update to {Qi}
3.  P becomes “removed”

Qi receives a gossip update
 If Qi was susceptible, it starts
 a gossip round
 else Qi ignores the update

The textbook variant (for an infective P)
P: do until removed

{select a random Qi ; send the update to Qi ;
 if Qi was infected then remove P with probability 1/k }

62 Kangasharju: Distributed Systems

Gossiping (2)

 Coverage: depends on k (fanout)
 a large fanout: good coverage, big overhead

 a small fanout: the gossip (epidemic) dies out too soon

 n: number of nodes, m: parameter (fixed value)

 k = log(n)+m =>

 P{every node receives} = e ** (- e **(-k))

 (esim: k=2 => P=0.87; k=5 => P=0.99)

 Merits
 scalability, decentralized operation
  reliability, robustness, fault tolerance
 no feedback implosion, no need for routing tables

63 Kangasharju: Distributed Systems

Epidemic Protocols: Removing Data

The problem
1.  server P deletes data D => all information on D is destroyed

 [server Q has not yet deleted D]

2.  communication P Q => P receives D (as new data)
A solution: deletion is a special update (death certificate)

  allows normal update communication

  a new problem: cleaning up of death certificates

  solution: time-to-live for the certificate

-  after TTL elapsed: a normal server deletes the certificate
-  some special servers maintain the historical certificates

forever (for what purpose?)

64 Kangasharju: Distributed Systems

Consistency Protocols

 Consistency protocol: implementation of a consistency model
 The most widely applied models

 sequential consistency

 weak consistency with synchronization variables

 atomic transactions

 The main approaches
 primary-based protocols (remote write, local write)

  replicated-write protocols (active replication, quorum based)

  (cache-coherence protocols)

65 Kangasharju: Distributed Systems

Remote-Write Protocols (1)

 Primary-based remote-write protocol with a fixed server to which all read and
write operations are forwarded.

66 Kangasharju: Distributed Systems

Remote-Write Protocols (2)

The principle of primary-backup protocol.

Sequential consistency
Read Your Writes

67 Kangasharju: Distributed Systems

Local-Write Protocols (1)

 Primary-based local-write protocol in which a single copy is migrated

between processes.

Mobile workstations!

68 Kangasharju: Distributed Systems

Local-Write Protocols (2)

 Primary-backup protocol in which the primary migrates to the process

wanting to perform an update.

Example: Mobile PC <= primary
server for items to be needed

69 Kangasharju: Distributed Systems

Active replication (1)

 Each replica:
 an associated process carries out update operations

 Problems
  replicated updates: total order required
  replicated invocations

 Total order:
 sequencer service
 distributed algorithms

70 Kangasharju: Distributed Systems

Active Replication (2)

 The problem of

replicated

invocations.

71 Kangasharju: Distributed Systems

Active Replication (3)

Returning a reply to
a replicated object.

Forwarding an invocation
request from a replicated
object

72 Kangasharju: Distributed Systems

Quorum-Based Protocols

  Consistence-guaranteeing update of replicas:

 an update is carried out as a transaction

  Problems

  Performance?

  Sensitivity for availability (all or nothing) ?

  Solution:

  a subgroup of available replicas is allowed to update data

  Problem in a partitioned network:

  the groups cannot communicate =>

 each group must decide independently whether it is allowed

 to carry out operations.

  A quorum is a group which is large enough for the operation.

73 Kangasharju: Distributed Systems

Quorum-Based Voting (Gifford)

Three voting-case examples:

a)  A correct choice of read and write set

b)  A choice that may lead to write-write conflicts

c)  A correct choice, known as ROWA (read one,

write all)

The constraints:
1.  NR + NW > N

2.  NW > N/2

74 Kangasharju: Distributed Systems

CoDoKi,
p. 600

Quorum Consensus: Examples

Example 1 Example 2 Example 3

Latency

(msec)

Replica 1 75 75 75

Replica 2 65 100 750

Replica 3 65 750 750

Voting configuration Replica 1 1 2 1

Replica 2 0 1 1

Replica 3 0 1 1

Quorum sizes R 1 2 1

W 1 3 3

Derived performance of file suite:

Read Latency 65 75 75

Blocking probability 0.01 0.0002 0.000001

Write Latency 75 100 750

Blocking probability 0.01 0.0101 0.03

75 Kangasharju: Distributed Systems

Quorum-Based Voting

Read
  Collect a read quorum

  Read from any up-to-date replica (the newest timestamp)

Write
  Collect a write quorum

  If there are insufficient up-to-date replicas, replace non-current

replicas with current replicas (WHY?)

  Update all replicas belonging to the write quorum.

Notice: each replica may have a different number of votes assigned to it.

76 Kangasharju: Distributed Systems

Quorum Methods Applied

  Possibilities for various levels of “reliability”

  Guaranteed up-to-date: collect a full quorum

  Limited guarantee: insufficient quora allowed for reads

  Best effort

-  read without a quorum

-  write without a quorum - if consistency checks available

  Transactions involving replicated data
  Collect a quorum of locks

  Problem: a voting processes meets another ongoing voting

-  alternative decisions:

-  problem: a case of distributed decision making

(figure out a solution)

abort wait continue without a vote

