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Chapter Outline 

 Replication 
 Consistency models 
 Distribution protocols 
 Consistency protocols 
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Reasons for Data Replication 

  Dependability requirements 
 availability 

-  at least some server somewhere 
-  wireless connections => a local cache 

  reliability (correctness of data) 
-  fault tolerance against data corruption 
-  fault tolerance against faulty operations 

  Performance  
  response time, throughput 
 scalability 

-  increasing workload  
-  geographic expansion 

 mobile workstations => a local cache 
  Price to be paid: consistency maintenance 

 performance vs. required level of consistency            
   (need not care  updates immediately visible)  
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Object Replication (1) 

    Organization of a distributed remote object shared by two different clients 

(consistency at the level of critical phases).  
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Object Replication (2) 

a)  A remote object capable of handling concurrent invocations on its own. 

b)  A remote object for which an object adapter is required to handle concurrent invocations 
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Object Replication (3) 

a)  A distributed system for replication-aware distributed objects. 
b)  A distributed system responsible for replica management 
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Services Provided for Process Groups 

Join


Group

address


expansion


Multicast

communication


Group

send


Fail
 Group membership

management


Leave


Process group


CoDoKi, Figure 14.2 



9 Kangasharju: Distributed Systems 

A Basic Architectural Model for the Management of 
Replicated Data 
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The Passive (primary-backup) Model for Fault 
Tolerance 
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Active Replication 
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Replication and Scalability 

 Requirement: ”tight” consistency             
(an operation at any copy => the same result) 

 Difficulties 
 atomic operations (performance, fault tolerance??) 
  timing: when exactly the update is to be performed? 

 Solution: consistency requirements vary 
 always consistent  => generally consistent  
    (when does it matter? depends on application)  
 => improved performance 

 Data-centric / client-centric consistency models 
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Data-Centric Consistency Models (1) 

    The general organization of a logical data store, physically distributed and 

replicated across multiple processes. 
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Data-Centric Consistency Models (2) 



15 Kangasharju: Distributed Systems 

Strict Consistency 
Any read on a data item x  
returns a value corresponding to the result of  
the most recent write on x. 

Behavior of two processes, operating on the same data item. 

a)  A strictly consistent store. 
b)  A store that is not strictly consistent. 

A problem: implementation requires absolute global time. 
Another problem: a solution may be physically impossible. 
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Sequential Consistency  

A sequentially consistent data store.        A data store that is not sequentially consistent. 

The result of any execution is the same as if  
the (read and write) operations by all processes on  the data store 
were executed in some sequential order and  
the operations of each individual process appear in this sequence  
in the order specified by its program. Note: nothing said about time! 

Note: a process sees all writes and own reads 
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Linearizability 

The result of any execution is the same as if  
the (read and write) operations by all processes on  the data store 
were executed in some sequential order and  
the operations of each individual process appear in this sequence  
in the order specified by its program. 

In addition,  
if  TSOP1(x) < TSOP2(y) ,  then  
operation OP1(x) should precede OP2(y)  in this sequence.  

Linearizability: primarily used to assist formal verification of concurrent  
algorithms. 

Sequential consistency: widely used, comparable to serializability of  
transactions (performance??) 
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Linearizability and Sequential Consistency (1) 

Execution sequences  

 - 720 possible execution sequences (several of which violate program order) 

 -   90 valid execution sequences 

Process P1 Process P2 Process P3 

x = 1; 

print ( y, z); 

y = 1; 

print (x, z); 

z = 1; 

print (x, y); 

Initial values: x = y = z = 0 

All statements are assumed to be indivisible. 

Three concurrently executing processes 
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Linearizability and Sequential Consistency (2) 

x = 1; 

print (y, z); 

y = 1; 

print (x, z); 

z = 1; 

print (x, y); 

Prints:  001011 

        (a) 

x = 1; 

y = 1; 

print (x,z); 

print(y, z); 

z = 1; 

print (x, y); 

Prints: 101011 

        (b) 

y = 1; 

z = 1; 

print (x, y); 

print (x, z); 

x = 1; 

print (y, z); 

Prints: 010111 

      (c) 

y = 1; 

x = 1; 

z = 1; 

print (x, z); 

print (y, z); 

print (x, y); 

Prints: 111111 

      (d) 
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Causal Consistency (1) 

Necessary condition: 

    Writes that are potentially causally related must be 
seen by all processes in the same order.   

    Concurrent writes may be seen in a different order on 
different machines. 
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Causal Consistency (2) 

    This sequence is allowed with a causally-consistent store,  
     but not with sequentially or strictly consistent store. 
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Causal Consistency (3) 

A correct  
sequence  
of events in a  
causally-consistent  
store. 

A violation of a  
causally-consistent  
store. 
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FIFO Consistency (1) 

Necessary Condition: 

Writes done by a single process  
are seen by all other processes  
in the order in which they were issued,  
but  
writes from different processes  
may be seen in a different order by different processes. 
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FIFO Consistency (2) 

A valid sequence of events of FIFO consistency 

Guarantee: 
•   writes from a single source must arrive in order 
•   no other guarantees. 

 Easy to implement! 
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FIFO Consistency (3) 

Statement execution as seen by the three processes from a previous 
slide.   

The statements in bold are the ones that generate the output shown. 

x = 1; 

print (y, z); 

y = 1; 

print(x, z); 

z = 1; 

print (x, y); 

Prints: 00 

  (P1) 

x = 1; 

y = 1; 

print(x, z); 

print ( y, z); 

z = 1; 

print (x, y); 

Prints: 10 

  (P2) 

y = 1; 

print (x, z); 

z = 1; 

print (x, y); 

x = 1; 

print (y, z); 

Prints:  01 

  (P3)) 
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FIFO Consistency (4) 

Process P1 Process P2 

x = 1; 

if (y == 0) kill (P2); 

y = 1; 

if (x == 0) kill (P1); 

Sequential consistency vs. FIFO consistency  
 both: the order of execution is nondeterministic 

 sequential:  the processes agree what it is 

 FIFO: the processes need not agree 

possible outcomes:  P1 or P2 or neither is killed 

FIFO: also possible that both are killed 

assume: initially x = y = 0 
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Less Restrictive Consistencies 
 Needs 

 FIFO too restrictive: sometimes no need to see all writes 
 example: updates within a critical section  (the variables are 

locked => replicas need not be updated  -- but the database 

does not know it) 

 Replicated data and consistency needs 
 single user: data-centric consistency needed at all?  

-  in a distributed (single-user) application: yes! 
-  but distributed single-user applications exploiting 

replicas are not very common … 
 shared data: mutual exclusion and consistency obligatory 

=> combine consistency maintenance with the     
     implementation of critical regions 
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Consistency of Shared Data (1) 

 Assumption: during a critical section the user has access to one 

replica only  

 Aspects of concern 
-  consistency maintenance timing, alternatives: 

- entry: update the active replica 
- exit: propagate modifications to other replicas 
- asynchronous: independent synchronization 

-  control of mutual exclusion:  
- automatic, independent 

-  data of concern:  
- all data, selected data 
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Consistency of Shared Data (2) 
 Weaker consistency requirements 

 Weak consistency 
 Release consistency 
 Entry consistency 

  Implementation method 
 control variable 

-  synchronization / locking 
 operation 

-  synchronize 
-  lock/unlock and synchronize 
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Weak Consistency (1) 

 Synchronization independent of “mutual exclusion” 
 All data is synchronized 

 Implementation 
-  synchronization variable S 
-  operation synchronize 
-  synchronize(S): 

-  all local writes by P are propagated to other copies 
-   writes by other processes are brought into P’s copy 
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Weak Consistency (2) 

An invalid sequence for weak consistency. 

A valid sequence of events for weak consistency. 
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P1 

P2 

P3 

Weak Consistency (4) 

•    Weak consistency enforces consistency of a group of     
   operations, not on individual reads and writes 

•   Sequential consistency is enforced 
   between groups of operations  

•   Compare with: distributed snapshot 
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Weak Consistency (3) 

Properties: 
1.  Accesses to synchronization variables associated with 

a data store are sequentially consistent (synchronizations 

are seen in the same order) 

2.  No operation on a synchronization variable is allowed 
to be performed until all previous writes have been 
completed everywhere 

3.  No read or write operation on data items are allowed to 
be performed until all previous operations to 
synchronization variables have been performed. 
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Release Consistency (1) 
 Consistency synchronized with “mutual exclusion” 
=> fewer consistency requirements needed 

-  enter: only local data must be up-to-date 
-  exit: writes need not be propagated until at exit 
-  only protected data is made consistent 

 Implementation 
-  “lock” variables associated with data items  
-  operations acquire(Lock) and release(Lock) 
-  implementation of acq/rel application dependent: 
   lock <=> data  associations are application specific         

(this functionality could be supported by middleware) 



35 Kangasharju: Distributed Systems 

Release Consistency (2) 

A valid event sequence  for release consistency. 

Synchronization: enter or exit a critical section  
•   enter => bring all local copies up to date  
    (but even previous local  changes can be sent later to others) 
•   exit   => propagate changes to others  
   (but changes in other copies can be imported later) 
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Release Consistency (3) 

Rules: 
  Synchronization (mutual ordering) of  

 acquire/release operations  
wrt.  
  read/write operations 
see: weak consistency 

  Accesses to synchronization variables are FIFO consistent 

(sequential consistency is not required). 

The lazy version 
   release: nothing is sent 
   acquire: get the most recent values 
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Entry Consistency (1) 
  Consistency combined with “mutual exclusion”  

  Each shared data item is associated with a            

synchronization variable S 
  S has a current owner (who has exclusive access to the  associated data, which is 

guaranteed up-to-date) 
  Process P enters a critical section: Acquire(S)  

  retrieve the ownership of S 

  the associated variables are made consistent 
  Propagation of updates: first at the next Acquire(S) by some other 

process 
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R(x)a    

Entry Consistency (2) 

A valid event sequence for entry consistency. 

R(y)NIL 

  Acq(Ly) W(y)b                Rel(Ly) 

P3:  

P1: Acq(Lx) W(x)a                          Rel(Lx)     

P2: 

Rel(Lx)     

Acq(Ly) R(y)b 
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Summary of Consistency Models (1) 

Consistency models not using synchronization operations. 

All processes see writes from each other in the order they 
were used.  Writes from different processes may not always be 
seen in that order. 

FIFO 

All processes see causally-related shared accesses in 
the same order. 

Causal 

All processes see all shared accesses in the same order.  
Accesses are not ordered in time Sequential 

All processes see all shared accesses in the same order.  
Accesses are furthermore ordered according    to a 
(nonunique) global timestamp 

Linearizability 

Absolute time ordering of all shared accesses matters. Strict 
Description Consistency 
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Summary of Consistency Models (2) 

Models with synchronization operations. 

Shared data associated with a synchronization variable 

are made consistent when a critical section is entered. 

Entry 

All shared data are made consistent after the exit out of the 

critical section 

Release 

Shared data can be counted on to be consistent only after a 

synchronization is done 

Weak 

Description Consistency 
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Client-Centric Models 

 Environment 
 most operations: “read” 

  “no” simultaneous updates 

 a relatively high degree of inconsistency tolerated  

    (examples: DNS, WWW pages)  

 Wanted 
 eventual consistency 

 consistency seen by one single client 
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Eventual Consistency 
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Monotonic Reads 
       If a process reads the value of of a data item x, any successive read operation 

on x by that process will always return that same value or a more recent value.  

(Example: e-mail ) 

A data store that does not  
provide monotonic reads. 

A monotonic-read consistent  
data store 

WS(xi): write set = sequence of operations on x at  node Li 
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Monotonic Writes 

       A data store that does not 
provide monotonic-write 
consistency. 

       A monotonic-write 
consistent data store. 

A write operation by a process on a data item x is completed  
before any successive write operation on x  
by the same process.    (Example: software updates) 
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Read Your Writes 

A data store that  
does not.       

      A data store that provides 
read-your-writes 
consistency. 

The effect of a write operation by a process on data item x will 
always be seen by a successive read operation on x by the same 
process.   (Example: edit www-page) 
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Writes Follow Reads 

Process P: a write operation (on x)  takes place on the same or a more 
recent value (of x)  that was read. (Example: bulletin board) 

A data store that does not 
provide writes-follow-reads 
consistency 

A writes-follow-reads 
consistent data store 
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Distribution Protocols 

 Replica placement 
 Update propagation 
 Epidemic protocols 
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Replica Placement (1) 

    The logical organization of different kinds of copies of a data 

store into three concentric rings. 
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Replica Placement (2) 

permanent replicas 

server-initiated replicas 

client-initiated replicas clients 
servers 

mirror 
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Permanent Replicas 

 Example: a WWW site 
 The initial set of replicas:  
    constitute a distributed data store 
 Organization 

 A replicated server  
    (within one LAN; transparent for the clients) 
 Mirror sites (geographically spread across the Internet;  
    clients choose an appropriate one) 
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Server-Initiated Replicas (1) 

 Created at the initiative of the data store  
    (e.g., for temporary needs) 
 Need: to enhance performance 
 Called as push caches 
 Example: www hosting services 

 a collection of servers 

 provide access to www files belonging to third parties 

  replicate files “close to demanding clients” 
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Server-Initiated Replicas (2) 

  Issues:  
  improve response time  

  reduce server load; reduce data communication load 

⇒  bring files to servers placed in the proximity of clients 
 Where and when should replicas be created/deleted? 

 determine two threshold values for each (server, file):          rep > del 
 #[req(S,F)] > rep   =>   create a new replicate 

 #[req(S,F)] < del   =>   delete the file (replicate)  

 otherwise: the replicate is allowed to be migrated 

 Consistency: responsibility of the data store 
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Client-Initiated Replicas 

 Called as client caches      
(local storage, temporary need of a copy) 

 Managing left entirely to the client 
 Placement 

  typically: the client machine 

 a machine shared by several clients  

 Consistency: responsibility of client 
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Example: Shared Cache in Mobile Ad Hoc Networks 

F 

F? F? F? 

F? F 

N1 
N2 N3 N4 

C1 
C2 C3 C4 

C5 

1.  C1 :  Read F  => N1 returns F 
2.  N3 :  several clients need F  => Cache F 

3.   C5 : Read F  => N3 returns F 

client 

server 

Source: Cao et al, Cooperative Cache-Based Data Access …; Computer, Febr. 2004 
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Update Propagation:   
State vs. Operations 

 Update route: client => copy => {other copies} 
 Responsibility: push or pull? 
  Issues:  

 consistency of copies 
 cost: traffic, maintenance of state data 

 What information is propagated? 
 notification of an update (invalidation protocols) 

  transfer of data (useful if high read-to-write ratio) 

 propagate the update operation (active replication) 
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Pull versus Push (1) 

 Push 
 a server sends updates to other replica servers 
  typically used between permanent and server-initiated replicas 

 Pull 
 client asks for update / validation confirmation 
  typically used by client caches  

-  client to server: {data X, timestamp ti, OK?} 
-  server to client: OK or {data X, timestamp ti+k} 
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Pull versus Push Protocols (2) 

     A comparison between push-based and pull-based protocols in the case of 

multiple client, single server systems. 

Issue Push-based Pull-based 

State of server List of client replicas and caches None 

Messages sent Update (and possibly fetch update later) Poll and update 

Response time at 

client 
Immediate (or fetch-update time) Fetch-update time 
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Pull vs. Push: Environmental Factors 
 Read-to-update ratio 

-  high => push (one transfer – many reads) 
-  low  => pull   (when needed – check) 

 Cost-QoS ratio  
-  factors:  

- update rate, number of replicas => maintenance 
workload 

- need of consistency (guaranteed vs. probably_ok)   
-  examples 

-  (popular) web pages  
- arriving flights at the airport 

 Failure prone data communication 
-  lost push messages => unsuspected use of stale data 
-  pull: failure of validation => known risk of usage 
-  high reqs => combine push (data) and pull 
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Leases 

  Combined push and pull 

  A “server promise”: push updates for a certain time 

  A lease expires  

    => the client  

-  polls the server for new updates or  
-  requests a new lease 

  Different types of leases 

 age based: {time to last modification} 

  renewal-frequency based: long-lasting leases to active users 

 state-space overhead: increasing utilization of  a server => lower 

expiration times for new leases 
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Propagation Methods 
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Gossiping (1) 

P starts a gossip round (with a fixed k) 
1.  P selects randomly {Q1,..,Qk}   
2.  P sends the update to {Qi} 
3.  P becomes “removed” 

Qi receives a gossip update 
      If Qi was susceptible, it starts  
      a gossip round  
      else Qi ignores the update  

The textbook variant (for an infective P) 
P: do until removed 

{select a random Qi ;  send the update to Qi ; 
  if Qi  was infected then remove P with probability 1/k } 
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Gossiping (2) 

 Coverage: depends on k (fanout)  
 a large fanout: good coverage, big overhead 

 a small fanout: the gossip (epidemic) dies out too soon 

 n: number of nodes, m: parameter (fixed value) 

    k = log(n)+m =>  

    P{every node receives} = e ** (- e **(-k)) 

    (esim:   k=2  =>  P=0.87;    k=5  =>  P=0.99) 

 Merits 
 scalability, decentralized operation  
  reliability, robustness, fault tolerance 
 no feedback  implosion, no need for routing tables 
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Epidemic Protocols: Removing Data  

The problem  
1.  server P deletes data D  =>  all information on D is destroyed  

        [server Q has not yet deleted D] 

2.  communication P Q => P receives D (as new data) 
A solution: deletion is a special update (death certificate) 

  allows normal update communication  

  a new problem: cleaning up of death certificates 

  solution: time-to-live for the certificate 

-  after TTL elapsed: a normal server deletes the certificate 
-  some special servers maintain the historical certificates 

forever (for what purpose?) 
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Consistency Protocols 

 Consistency protocol: implementation of a consistency model 
 The most widely applied models 

 sequential consistency 

 weak consistency with synchronization variables 

 atomic transactions 

 The main approaches 
 primary-based protocols (remote write, local write) 

  replicated-write protocols (active replication, quorum based) 

  (cache-coherence protocols) 
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Remote-Write Protocols (1) 

     Primary-based remote-write protocol with a fixed server to which all read and 
write operations are forwarded.    
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Remote-Write Protocols (2) 

The principle of primary-backup protocol. 

Sequential consistency 
Read Your Writes  
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Local-Write Protocols (1) 

     Primary-based local-write protocol in which a single copy is migrated 

between processes. 

Mobile workstations! 
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Local-Write Protocols (2) 

    Primary-backup protocol in which the primary migrates to the process 

wanting to perform an update. 

Example: Mobile PC <=  primary  
server for items to be needed  
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Active replication (1) 

 Each replica:  
    an associated process carries out update operations  

 Problems 
  replicated updates:  total order required 
  replicated invocations 

 Total order: 
 sequencer service 
 distributed algorithms 
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Active Replication (2) 

     The problem of 

replicated 

invocations. 
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Active Replication (3) 

Returning a reply to 
a replicated object. 

Forwarding an invocation   
request from a replicated  
object 
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Quorum-Based Protocols 

  Consistence-guaranteeing update of replicas:  

     an update is carried out as a transaction 

  Problems 

  Performance? 

  Sensitivity for availability (all or nothing) ? 

  Solution:  

  a subgroup of available replicas is allowed to update data 

  Problem in a partitioned network:  

  the groups cannot communicate => 

    each group must decide independently whether it is allowed    

    to carry out operations. 

  A quorum is a group which is large enough for the operation. 
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Quorum-Based Voting (Gifford) 

Three voting-case examples: 

a)  A correct choice of read and write set 

b)  A choice that may lead to write-write conflicts 

c)  A correct choice, known as ROWA (read one, 

write all) 

The constraints: 
1.  NR + NW > N 

2.  NW > N/2 
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CoDoKi, 
p. 600 

Quorum Consensus: Examples 

Example 1 Example 2 Example 3 

Latency 

(msec) 

Replica 1 75 75 75 

Replica 2 65 100 750 

Replica 3 65 750 750 

Voting configuration Replica 1 1 2 1 

Replica 2 0 1 1 

Replica 3 0 1 1 

Quorum sizes R 1 2 1 

W 1 3 3 

Derived performance of file suite: 

Read Latency 65 75 75 

Blocking probability 0.01 0.0002 0.000001 

Write Latency 75 100 750 

Blocking probability 0.01 0.0101 0.03 
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Quorum-Based Voting 

Read  
  Collect a read quorum 

  Read from any up-to-date replica (the newest timestamp)  

Write 
  Collect a write quorum  

  If there are insufficient up-to-date replicas, replace non-current 

replicas with current replicas (WHY?) 

  Update all replicas belonging to the write quorum. 

Notice: each replica may have a different number of votes assigned to it. 
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Quorum Methods Applied 

  Possibilities for various levels of “reliability” 

  Guaranteed up-to-date: collect a full quorum 

  Limited guarantee: insufficient quora allowed for reads 

  Best effort 

-  read without a quorum  

-  write without a quorum - if consistency checks available  

  Transactions involving replicated data  
  Collect a quorum of locks  

  Problem: a voting processes meets another ongoing voting 

-  alternative decisions:  

-  problem: a case of distributed decision making                 

(figure out a solution) 

abort wait continue without a vote 


