
 Fault Tolerance

Fall 2008
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Fault tolerance
 Process resilience
 Reliable group communication
 Distributed commit
 Recovery

3 Kangasharju: Distributed Systems

Basic Concepts

Dependability includes
 Availability
 Reliability
 Safety
 Maintainability

4 Kangasharju: Distributed Systems

Fault, error, failure

  Failure = toimintahäiriö

  Fault = vika

  Error = virhe(tila)

--
--
--

client

server

fault

error
failure

5 Kangasharju: Distributed Systems

Failure Model

 Challenge: independent failures
 Detection

 which component?

 what went wrong?

 Recovery
  failure dependent

  ignorance increases complexity

=> taxonomy of failures

6 Kangasharju: Distributed Systems

Fault Tolerance
 Detection
 Recovery

 mask the error OR
  fail predictably

 Designer
 possible failure types?
  recovery action (for the possible failure types)

 A fault classification:
  transient (disappear)
  intermittent (disappear and reappear)
 permanent

7 Kangasharju: Distributed Systems

Failure Models

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure

 Receive omission

 Send omission

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure

 Value failure

 State transition failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

Crash: fail-stop, fail-safe (detectable), fail-silent (seems to have crashed)

8 Kangasharju: Distributed Systems

Failure Masking (1)

Detection
  redundant information

-  error detecting codes (parity, checksums)
-  replicas

  redundant processing
-  groupwork and comparison

  control functions
-  timers
-  acknowledgements

9 Kangasharju: Distributed Systems

Failure Masking (2)

Recovery

  redundant information

-  error correcting codes

-  replicas

  redundant processing

-  time redundancy

-  retrial

-  recomputation (checkpoint, log)

-  physical redundancy

-  groupwork and voting

-  tightly synchronized groups

10 Kangasharju: Distributed Systems

Example: Physical Redundancy

Triple modular redundancy.

11 Kangasharju: Distributed Systems

Failure Masking (3)

  Failure models vs. implementation issues:

 the (sub-)system belongs to a class

 => certain failures do not occur

 => easier detection & recovery
  A point of view: forward vs. backward recovery
  Issues:

  process resilience

  reliable communication

12 Kangasharju: Distributed Systems

Process Resilience (1)
  Redundant processing: groups

  Tightly synchronized
-  flat group: voting

-  hierarchical group:

 a primary and a hot standby (execution-level synchrony)

  Loosely synchronized

-  hierarchical group:

a primary and a cold standby (checkpoint, log)

  Technical basis
  “group” – a single abstraction

  reliable message passing

13 Kangasharju: Distributed Systems

Flat and Hierarchical Groups (1)

Communication in a flat group. Communication in a simple
 hierarchical group

 Group management: a group server OR distributed management

14 Kangasharju: Distributed Systems

Flat and Hierarchical Groups (2)
  Flat groups

  symmetrical

  no single point of failure

  complicated decision making

  Hierarchical groups
  the opposite properties

  Group management issues

  join, leave;

  crash (no notification)

15 Kangasharju: Distributed Systems

Process Groups

  Communication vs management
  application communication: message passing
  group management: message passing
  synchronization requirement:
 each group communication operation in a stable group

  Failure masking

  k fault tolerant: tolerates k faulty members

-  fail silent: k + 1 components needed
-  Byzantine: 2k + 1 components needed

  a precondition: atomic multicast

  in practice: the probability of a failure must be “small enough”

16 Kangasharju: Distributed Systems

Agreement in Faulty Systems (1)

Alice -> Bob Let’s meet at noon in front of La Tryste …
Alice <- Bob OK!!
Alice: If Bob doesn’t know that I received his message, he will not come …
Alice -> Bob I received your message, so it’s OK.
Bob: If Alice doesn’t know that I received her message, she will not come …
…

Alice Bob

La Tryste

“e-mail”

on a rainy day …

Requirement:
-  an agreement
-  within a bounded time

Faulty data communication: no
agreement possible

17 Kangasharju: Distributed Systems

Agreement in Faulty Systems (2)

The Byzantine generals problem for 3 loyal generals and 1 traitor.
a)  The generals announce their troop strengths (in units of 1 kilosoldiers).
b)  The vectors that each general assembles based on (a)
c)  The vectors that each general receives in step 3.

Reliable data communication, unreliable nodes

18 Kangasharju: Distributed Systems

Agreement in Faulty Systems (3)

 The same as in previous slide, except now with 2 loyal generals
and one traitor.

19 Kangasharju: Distributed Systems

Agreement in Faulty Systems (4)

  An agreement can be achieved, when

  message delivery is reliable with a bounded delay

  processors are subject to Byzantine failures, but fewer than one third of them fail

  An agreement cannot be achieved, if

  messages can be dropped (even if none of the processors fail)

  message delivery is reliable but with unbounded delays, and even one processor can

fail

  Further theoretical results are presented in the literature

20 Kangasharju: Distributed Systems

Reliable Client-Server Communication

1.  Point-to-Point Communication (“reliable”)

•  masked: omission, value

•  not masked: crash, (timing)

2.  RPC semantics

•  the client unable to locate the server

•  the message is lost (request / reply)

•  the server crashes (before / during / after service)

•  the client crashes

21 Kangasharju: Distributed Systems

Server Crashes (1)

A server in client-server communication
a)  Normal case
b)  Crash after execution
c)  Crash before execution

22 Kangasharju: Distributed Systems

Server Crashes (2)

 Different combinations of client and server strategies in the presence
of server crashes (client’s continuation after server’s recovery: reissue
the request?)

 M: send the completion message
 P: print the text
 C: crash

Client Server

Strategy M -> P Strategy P -> M

Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)

Always DUP OK OK DUP DUP OK

Never OK ZERO ZERO OK OK ZERO

Only when ACKed DUP OK ZERO DUP OK ZERO

Only when not ACKed OK ZERO OK OK DUP OK

23 Kangasharju: Distributed Systems

Client Crashes

 Orphan: an active computation looking for a non-existing parent

 Solutions
 extermination: the client stub records all calls,

after crash recovery all orphans are killed

  reincarnation: time is divided into epochs, client reboot =>

broadcast “new epoch” => servers kill orphans

 gentle incarnation: “new epoch” => only “real orphans” are killed

 expiration: a “time-to-live” for each RPC (+ possibility to request for

a further time slice)

 New problems: grandorphans, reserved locks, entries in remote
queues, ….

24 Kangasharju: Distributed Systems

Reliable Group Communication

  Lower-level data communication support
  unreliable multicast (LAN)
  reliable point-to-point channels
  unreliable point-to-point channels

  Group communication
  individual point-to-point message passing
  implemented in middleware or in application

  Reliability
  acks: lost messages, lost members
  communication consistency ?

25 Kangasharju: Distributed Systems

Reliability of Group Communication?

  A sent message is received by all members

 (acks from all => ok)

  Problem: during a multicast operation
  an old member disappears from the group

  a new member joins the group
  Solution

  membership changes synchronize multicasting

=> during an MC operation no membership changes

 An additional problem: the sender disappears (remember: multicast ~ for (all

Pi in G) {send m to Pi })

26 Kangasharju: Distributed Systems

Basic Reliable-Multicasting Scheme

 A simple solution to reliable multicasting when all receivers are known and are

assumed not to fail

Reporting feedback

Message transmission

Scalability?

27 Kangasharju: Distributed Systems

Scalability: Feedback Suppression
1. Never acknowledge successful delivery.

2. Multicast negative acknowledgements – suppress redundant NACKs
 Problem: detection of lost messages and lost group members

28 Kangasharju: Distributed Systems

Hierarchical Feedback Control

The essence of hierarchical reliable multicasting.
a)  Each local coordinator forwards the message to its children.
b)  A local coordinator handles retransmission requests.

29 Kangasharju: Distributed Systems

Basic Multicast
Guarantee:

 the message will eventually be delivered to all
member of the group (during the multicast: a
fixed membership)

Group view: G = {pi}
 “delivery list”

Implementation of Basic_multicast(G, m) :
1.  for each pi in G: send(pi,m) (a reliable one-to-one send)
2.  on receive(m) at pi : deliver(m) at pi

30 Kangasharju: Distributed Systems

Message Delivery

Application

hold-back queue

delivery queue

delivery

Message passing system

31 Kangasharju: Distributed Systems

Reliable Multicast and Group Changes

32 Kangasharju: Distributed Systems

Virtually Synchronous Reliable MC (1)

Group change: Gi =Gi+1

33 Kangasharju: Distributed Systems

Virtually Synchronous Reliable MC (2)

The principle of virtual synchronous multicast:

-  a reliable multicast, and if the sender crashes

-  the message may be delivered to all or ignored by each

34 Kangasharju: Distributed Systems

Implementing Virtual Synchrony (1)

a)  Process 4 notices that process 7 has crashed, sends a view change
b)  Process 6 sends out all its unstable messages, followed by a flush

message
c)  Process 6 installs the new view when it has received a flush message

from everyone else

35 Kangasharju: Distributed Systems

Implementing Virtual Synchrony (2)

  Communication: reliable, order-preserving, point-to-point
  Requirement: all messages are delivered to all nonfaulty processes in

G
  Solution

 each pj in G keeps a message in the hold-back queue until it

knows that all pj in G have received it

 a message received by all is called stable
 only stable messages are allowed to be delivered

 view change Gi => Gi+1 :

-  multicast all unstable messages to all pj in Gi+1

-  multicast a flush message to all pj in Gi+1
-  after having received a flush message from all:

install the new view Gi+1

36 Kangasharju: Distributed Systems

Ordered Multicast
Need:
 all messages are delivered in the intended

order

37 Kangasharju: Distributed Systems

Reliable FIFO-Ordered Multicast

 Four processes in the same group with two different senders, and a possible
delivery order of messages under FIFO-ordered multicasting

Process P1 Process P2 Process P3 Process P4

sends m1 receives m1 receives m3 sends m3

sends m2 receives m3 receives m1 sends m4

receives m2 receives m2

receives m4 receives m4

38 Kangasharju: Distributed Systems

Virtually synchronous multicast Basic Message Ordering Total-ordered Delivery?

Reliable multicast None No

FIFO multicast FIFO-ordered delivery No

Causal multicast Causal-ordered delivery No

Atomic multicast None Yes

FIFO atomic multicast FIFO-ordered delivery Yes

Causal atomic multicast Causal-ordered delivery Yes

Virtually Synchronous Multicasting

39 Kangasharju: Distributed Systems

Database

ser-
ver

Distributed Transactions

client

Database

ser-
ver

atomic
isolated
serializable

Atomic
Consistent
Isolated
Durable

client

ser-
ver

40 Kangasharju: Distributed Systems

A distributed banking transaction

.
.

BranchZ

BranchX

participant

participant

C

D

Client

BranchY

B

A

participant
 join

 join

 join

T

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

openTransaction

 b.withdraw(T, 3);

closeTransaction

T =
openTransaction

 a.withdraw(4);

 c.deposit(4);

 b.withdraw(3);

 d.deposit(3);

 closeTransaction

 Note: the coordinator is in one of the servers, e.g. BranchX

Figure 13.3

41 Kangasharju: Distributed Systems

Concurrency Control

  General organization of managers

for handling distributed

transactions.

42 Kangasharju: Distributed Systems

Transaction Processing (1)

client
….
Open transaction
T_write F1,P1
T_write F2,P2
T_write F3,P3
Close transaction
….

S1

1223 y

27 P1

T_Id
flag: init

F1

S2 T_Id
flag: init

667 ab

27 P2

S3

join

coordinator

F2

F3

participant

2745

T_Id
flag: init

P3

participant

43 Kangasharju: Distributed Systems

Transaction Processing (2)

client
….
Open transaction
T_read F1,P1
T_write F2,P2
T_write F3,P3
Close transaction
….

P1 27

y 1223

T_Id
init

F1

T_Id
init

P2 27

ab 667

T_Id
init

P3 2745

coordinator Close

Yes

Yes

HaveCommitted

HaveCommitted

doCommit ! canCommit?
wait

ready

ready

committed

committed

committed done

44 Kangasharju: Distributed Systems

Operations for Two-Phase Commit Protocol

canCommit?(trans)-> Yes / No

Call from coordinator to participant to ask whether it can commit a
transaction. Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a
transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a
transaction.

haveCommitted(trans, participant) Call from participant to coordinator to confirm
that it has committed the transaction.

getDecision(trans) -> Yes / No

Call from participant to coordinator to ask for the decision on a transaction
after it has voted Yes but has still had no reply after some delay. Used to
recover from server crash or delayed messages.

Figure 13.4

45 Kangasharju: Distributed Systems

Communication in Two-phase Commit Protocol

canCommit?

Yes

doCommit

haveCommitted

Coordinator

1

3 committed

done

prepared to commit
(wait)

step

Participant

2

4

prepared to commit
(ready)

committed

status
step
status

Figure 13.6

tentative tentative

46 Kangasharju: Distributed Systems

The Two-Phase Commit protocol
Phase 1 (voting phase):

1.
The coordinator sends a canCommit? request to each of the participants in
the transaction.

2.
When a participant receives a canCommit? request it replies with its vote
(Yes or No) to the coordinator. Before voting Yes, it prepares to commit by
saving objects in permanent storage. If the vote is No the participant aborts
immediately.

Phase 2 (completion according to outcome of vote):

3.
The coordinator collects the votes (including its own).

(a)
If there are no failures and all the votes are Yes the coordinator
decides to commit the transaction and sends a doCommit request
to each of the participants.

(b)
Otherwise the coordinator decides to abort the transaction and
sends doAbort requests to all participants that voted Yes.

4. Participants that voted Yes are waiting for a doCommit or doAbort request
from the coordinator. When a participant receives one of these messages it
acts accordingly and in the case of commit, makes a haveCommitted call as
confirmation to the coordinator.

Figure 13.5

47 Kangasharju: Distributed Systems

Failures

  A message is lost

  Node crash and recovery (memory contents lost, disk contents preserved)

-  transaction data structures preserved (incl. the state)

-  process states are lost

  After a crash: transaction recovery
  tentative => abort
  aborted => abort
  wait (coordinator) => abort (resend canCommit ?)
  ready (participant) => ask for a decision
  committed => do it!

48 Kangasharju: Distributed Systems

Two-Phase Commit (1)

 Outline of the steps taken by the

coordinator in a two phase commit

protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes
COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

49 Kangasharju: Distributed Systems

Two-Phase Commit (2)

 Steps taken by
participant
process in 2PC.

actions by participant:

write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}

if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

50 Kangasharju: Distributed Systems

Two-Phase Commit (3)

Steps taken for handling incoming decision requests.

actions for handling decision requests: /* executed by separate thread */

while true {
 wait until any incoming DECISION_REQUEST is received; /* remain
blocked */
 read most recently recorded STATE from the local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting participant;
 else if STATE == INIT or STATE == GLOBAL_ABORT
 send GLOBAL_ABORT to requesting participant;
 else
 skip; /* participant remains blocked */

51 Kangasharju: Distributed Systems

Recovery

  Fault tolerance: recovery from an error (erroneous state => error-free

state)

  Two approaches

  backward recovery: back into a previous correct state

  forward recovery:

-  detect that the new state is erroneous

-  bring the system in a correct new state

challenge: the possible errors must be known in advance

  forward: continuous need for redundancy backward:

-  expensive when needed

-  recovery after a failure is not always possible

52 Kangasharju: Distributed Systems

Recovery Stable Storage

Stable Storage Crash after drive 1 Bad spot
 is updated

53 Kangasharju: Distributed Systems

Implementing Stable Storage
 Careful block operations (fault tolerance: transient faults)

 careful_read: {get_block, check_parity, error=> N retries}

 careful_write: {write_block, get_block, compare, error=> N retries}

  irrecoverable failure => report to the “client”

 Stable Storage operations (fault tolerance: data storage errors)
 stable_get:

{careful_read(replica_1), if failure then careful_read(replica_2)}

 stable_put: {careful_write(replica_1), careful_write(replica_2)}

 error/failure recovery: read both replicas and compare

-  both good and the same => ok

-  both good and different => replace replica_2 with replica_1

-  one good, one bad => replace the bad block with the good

block

54 Kangasharju: Distributed Systems

Checkpointing

A recovery line: the most recent distributed snapshot

Needed: a consistent global state
to be used as a recovery line

55 Kangasharju: Distributed Systems

Independent Checkpointing

Each process records its local state from time to time
⇒ difficult to find a recovery line

If the most recently saved states do not form a recovery line
⇒  rollback to a previous saved state (threat: the domino effect).

A solution: coordinated checkpointing

56 Kangasharju: Distributed Systems

Checking of Dependencies

m 1 m 2

p 1

p 2
Physical

time

Cut C 1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x 1 = 1 x 1 = 100 x 1 = 105

x 2 = 100 x 2 = 95 x 2 = 90

x 1 = 90

Cut C 2

Figure 10.14 Vector timestamps and variable values

57 Kangasharju: Distributed Systems

Coordinated Checkpointing (1)

  Nonblocking checkpointing
  see: distributed snapshot (Ch. 5.3)

  Blocking checkpointing
  coordinator: multicast CHECKPOINT_REQ
  partner:

-  take a local checkpoint
-  acknowledge the coordinator
-  wait (and queue any subsequent messages)

  coordinator:
-  wait for all acknowledgements
-  multicast CHECKPOINT_DONE

  coordinator, partner: continue

58 Kangasharju: Distributed Systems

Coordinated Checkpointing (2)

P1

P2

P3

checkpoint request
ack
checkpoint done

local checkpoint

message

59 Kangasharju: Distributed Systems

Message Logging

 Problem: Incorrect replay of messages after recovery may lead to orphan
processes.

Improving efficiency: checkpointing and message logging

Recovery: most recent checkpoint + replay of messages

