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Chapter Outline 

 Clocks and time 
 Global state 
 Mutual exclusion 
 Election algorithms 
 Distributed transactions 

 Tanenbaum, van Steen: Ch 5 
 CoDoKi: Ch 10-12 (3rd ed.) 
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Time and Clocks 

NOTE: Time is monotonous 

Real time Universal time 

(Network time) 

Interval length Computer clock 

Order of events Network time 

(Universal time) 

What we need?  How to solve? 
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Measuring Time 

 Traditionally time measured astronomically 
 Transit of the sun (highest point in the sky) 

 Solar day and solar second 

 Problem: Earth’s rotation is slowing down 
 Days get longer and longer 

 300 million years ago there were 400 days in the year ;-) 

 Modern way to measure time is atomic clock 
 Based on transitions in Cesium-133 atom 

 Still need to correct for Earth’s rotation 

 Result: Universal Coordinated Time (UTC) 
 UTC available via radio signal, telephone line, satellite 

(GPS) 
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Hardware/Software Clocks 

 Physical clocks in computers are realized as crystal 
oscillation counters at the hardware level 

 Correspond to counter register H(t) 

 Used to generate interrupts 

 Usually scaled to approximate physical time t, yielding 
software clock C(t), C(t) = αH(t) + β   

 C(t) measures time relative to some reference event, e.g., 64 

bit counter for # of nanoseconds since last boot  

 Simplification: C(t) carries an approximation of real time 

  Ideally, C(t) = t (never 100% achieved) 

 Note: Values given by two consecutive clock queries will 

differ only if clock resolution is sufficiently smaller than 

processor cycle time 
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Problems with Hardware/Software Clocks 

 Skew: Disagreement in the reading of two clocks 
 Drift: Difference in the rate at which two clocks count the 

time 
 Due to physical differences in crystals, plus heat, humidity, 

voltage, etc. 

 Accumulated drift can lead to significant skew 

 Clock drift rate: Difference in precision between a prefect 
reference clock and a physical clock, 

 Usually, 10-6 sec/sec, 10-7 to 10-8 for high precision clocks 
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Skew between computer clocks in a 
distributed system 

Network

Figure 10.1 
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Clock Synchronization 

    When each machine has its own clock, an event that occurred after another 

event may nevertheless be assigned an earlier time. 
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Clock Synchronization Problem 

    The relation between clock time and UTC when clocks tick at different rates. 

drift rate: 10-6  

1 ms  ~ 17 min 

1 s ~ 11.6 days 

UTC: coordinated 
universal time 
accuracy:        
radio   0.1 – 10 ms,        
GPS    1 us 
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Synchronizing Clocks 
 External synchronization 

 Synchronize process’s clock with an authoritative external 

reference clock S(t) by limiting skew to a delay bound D > 0 

-  |S(t) - Ci(t) | < D for all t 

 For example, synchronization with a UTC source 

  Internal synchronization 
 Synchronize the local clocks within a distributed system to 

disagree by not more than a delay bound D > 0, without 

necessarily achieving external synchronization 

-  |Ci(t) - Cj(t)| < D for all i, j, t 

 Obviously:  
 For a system with external synchronization bound of D, the 

internal synchronization is bounded by 2D 
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Clock Correctness 

  When is a clock correct? 
1.  If drift rate falls within a bound r > 0, then for any t and t’ 

with t’ > t the following error bound in measuring t and t’ 
holds: 
  (1-r)(t’-t) ≤ H(t’) - H(t) ≤ (1+r)(t’-t) 

  Consequence: No jumps in hardware clocks allowed 

2.  Sometimes monotonically increasing clock is enough: 
  t’ > t ⇒ C(t’) > C(t) 

3.  Frequently used condition: 
  Monotonically increasing 

  Drift rate bounded between synchronization points 

  Clock may jump ahead at synchronization points 
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Synchronization of Clocks: Software-Based 
Solutions 

 Techniques:  
  time stamps of real-time clocks  

 message passing  

  round-trip time (local measurement) 

 Cristian’s algorithm 
 Berkeley algorithm 
 Network time protocol (Internet) 
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Christian’s Algorithm 

 Observations 
 Round trip times between processes are often reasonably 

short in practice, yet theoretically unbounded 
 Practical estimate possible if round-trip times are sufficiently 

short in comparison to required accuracy 
 Principle 

 Use UTC-synchronized time server S 
 Process P sends requests to S 
 Measures round-trip time Tround  

-  In LAN, Tround should be around 1-10 ms 
-  During this time, a clock with a 10-6 sec/sec drift rate 

varies by at most 10-8 sec 
-  Hence the estimate of Tround is reasonably accurate 

 Naive estimate: Set clock to t + ½Tround 
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Cristian's Algorithm 

Current time from a time server: UTC from radio/satellite etc 
Problems:  

 - time must never run backward 
 - variable delays in message passing / delivery 
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Christian’s Algorithm: Analysis 

 Accuracy of estimate? 
 Assumptions:  

  requests and replies via same net 

 min delay is either known or can be estimated conservatively 

 Calculation: 
 Earliest time that S can have sent reply: t0 + min 

 Latest time that S can have sent reply: t0 + Tround – min 

 Total time range for answer: Tround - 2 * min 

 Accuracy is ± (½Tround - min) 

 Discussion 
 Really only suitable for LAN environment or Intranet 

 Problem of failure of S 
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Alternative Algorithm 

 Berkeley algorithm (Gusella&Zatti ‘89) 
 No external synchronization, but one master server 

 Master polls slaves periodically about their clock readings 

 Estimate of local clock times using round trip estimation 

 Averages the values obtained from a group of processes  

-  Cancels out individual clock’s tendencies to run fast 

 Tells slave processes by which amount of time to adjust 

local clock 

 Master failure: Master election algorithm (see later) 

 Experiment 
 15 computers, local drift rate < 2x10-5, max round-trip 10 ms 

 Clocks were synchronized to within 20-25 ms 

 Note: Neither algorithm is really suitable for Internet 
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The Berkeley Algorithm 

a)  The time daemon asks all the other machines for their clock values 
b)  The machines answer 
c)  The time daemon tells everyone how to adjust their clock 
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Clock Synchronization: NTP 

 Goals 
 ability to externally synchronize clients via Internet to UTC 

 provide reliable service tolerating lengthy losses of 

connectivity 

 enable clients to resynchronize sufficiently frequently to 

offset typical HW drift rates 

 provide protection against interference 

 Synchronization subnets 

Kangasharju: Distributed Systems 

UTCstrata 1

strata 2

strata 3
(user workstations)

1 

2 

3 

2 

3 3 
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NTP Basic Idea 

 Layered client-server architecture, based on UDP 
message passing 

 Synchronization at clients with higher strata number less 
accurate due to increased latency to strata 1 time server 

 Failure robustness: if a strata 1 server fails, it may 
become a strata 2 server that is being synchronized 
though another strata 1 server 

Kangasharju: Distributed Systems 
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NTP Modes 

 Multicast:  
 One computer periodically multicasts time info to all other 

computers on network 

 These adjust clock assuming a very small transmission delay 

 Only suitable for high speed LANs; yields low but usually 

acceptable sync. 

 Procedure-call: similar to Christian’s protocol 
 Server accepts requests from clients 

 Applicable where higher accuracy is needed, or where multicast is 

not supported by the network’s hard- and software 

 Symmetric:  
 Used where high accuracy is needed 

Kangasharju: Distributed Systems 
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Procedure-Call and Symmetric Modes 

  All messages carry timing history information 

  local timestamps of send and receive of the previous NTP message 

  local timestamp of send of this message 

 For each pair i of messages (m, m’) exchanged between two servers 

the following values are being computed 

(based on 3 values carried w/ msg and 4th value obtained via local timestamp): 

-  offset oi: estimate for the actual offset between two clocks 

-  delay di: true total transmission time for the pair of messages 

<Ti-3, Ti-2, Ti-1, m’ > 

i 

i - T i 

T i-1 T -2 

T 3 

Server B 

Server A 

Time 
m m' 

Time 
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NTP: Delay and Offset 

 Let o the true offset of B’s clock relative to A’s clock, and  let t and t’ 
the true transmission times of m and m’ (Ti, Ti-1 ... are not true time) 

 Delay 
Ti-2 = Ti-3 + t + o   (1)  and Ti = Ti-1 + t’ – o   (2) which leads to  

di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 (clock errors zeroed out  true d) 

 Offset 
oi = ½ (Ti-2 – Ti-3 + Ti-1 – Ti) (only an estimate) 

i 

i - T i 

T i-1 T -2 

T 3 

Server B 

Server A 

Time 
m m' 

Time 
τ 

τ+o 
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NTP Implementation 

 Statistical algorithms based on 8 most recent <oi, di> 
pairs:  determine quality of estimates 

 The value of oi that corresponds to the minimum di is 
chosen as an estimate for o 

 Time server communicates with multiple peers, eliminates 
peers with unreliable data, favors peers with higher strata 
number (e.g., for primary synchronization partner 
selection) 

 NTP phase lock loop model: modify local clock in 
accordance with observed drift rate 

 Experiments achieve synchronization accuracies of  
10 msecs over Internet, and 1 msec on LAN using NTP 

Kangasharju: Distributed Systems 
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Clocks and Synchronization 

Requirements: 
  ”causality”: real-time order ~ timestamp order  (”behavioral 

correctness” – seen by the user) 

 groups / replicates: all members see the events in the same 

order  

  ”multiple-copy-updates”: order of updates, consistency 

conflicts? 

 serializability of transactions: bases on a common 

understanding of transaction order 

A perfect physical clock is sufficient! 
A perfect physical clock is impossible to implement! 
Above requirements met with much lighter solutions! 
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Happened-Before Relation  ”a -> b” 

  if a, b are events in the same process, and a occurs before b, then a -> b 

a           b 

a          

                  b 

•   if a is the event of a message being sent, and  
    b is the event of the message being received,  
    then a -> b  

•   a || b if neither a -> b nor b -> a ( a and b are concurrent ) 

Note: if a -> b  and  b -> c  then  a -> c 
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Logical Clocks: Lamport Timestamps 

process pi , event e , clock Li , timestamp Li(e) 
  at pi : before each event Li = Li + 1  
  when pi sends a message m to pj 

1.  pi:  ( Li = Li + 1 );  t = Li ;  message = (m, t) ; 

2.  pj:  Lj = max(Lj, t);  Lj = Lj + 1;  

3.  Lj(receive event) = Lj ; 
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Lamport Clocks: Problems 

1.  Timestamps do not specify the order of events 

  e -> e’  =>  L(e) < L(e’)  

BUT 

  L(e) < L(e’) does not imply that e -> e’ 
2.  Total ordering 

  problem: define order of e, e’  when  L(e) = L(e’) 

  solution: extended timestamp (Ti, i),  where Ti is Li(e)  

  definition:     (Ti, i) < (Tj, j)   

   if and only if 

                                either  Ti < Tj  

                                or Ti = Tj  and i < j 



28 Kangasharju: Distributed Systems 

Example: Totally-Ordered Multicasting (1) 

     Updating a replicated database and leaving it in an inconsistent state. 
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Example: Totally-Ordered Multicasting (2) 

Total ordering:  
all receivers (applications) see all messages in the same order 
(which is not necessarily the original sending order) 
Example: multicast operations, group-update operations 
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Example: Totally-Ordered Multicasting (3) 

Guaranteed delivery order 
-  new message => HBQ 

-  when all predecessors have  
   arrived:  message  =>  DQ 

-  when at the head of DQ: 
   message => application   
   (application: receive …) 

Application 

hold-back queue 

delivery queue 

delivery 

Message passing system 
Algorithms:  
see. Defago et al ACM CS, Dec. 2004 
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30.2 

30.2 

Example: Totally-Ordered Multicasting (4) 

P1 
TS  

Multicast: 
-  everybody receives the message (incl. the sender!) 
-  messages from one sender are received in the sending order 
-  no messages are lost 

P3 
TS  

P2 
TS  

27.3 
26.3 31.3 

20.1 

20.1 
30.2 

20.1 

31.2 

31.1 HBQ HBQ 

30.2 

30.2 

Original timestamps 
P1   19 
P2   29 
P3   25 

The key idea 
- the same order in all queues 
- at the head of HBQ:  
  when all ack’s have arrived 
  nobody can pass you 
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Various Orderings 

 Total ordering 
 Causal ordering 
 FIFO (First In First Out) 
    (wrt an individual communication channel) 

   Total and causal ordering are independent: 
neither induces the other;  

   Causal ordering induces FIFO 
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Total, FIFO and Causal Ordering of Multicast Messages 

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent 
ordering of totally 
ordered messages T1 
and T2, 
 the FIFO-related 
messages F1 and F2 
and the causally 
related messages C1 
and C3 
 – and the otherwise 
arbitrary delivery 
ordering of messages. 

Figure 11.12 
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Vector Timestamps 
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Order of Vector Timestamps 

Order of timestamps 
  V = V’   iff  V[ j ] = V’ [ j ]         for all j 

  V ≤ V’   iff  V[ j ] ≤  V’ [ j ]        for all j 

  V < V’   iff  V ≤ V’ and V ≠ V’  

Order of events (causal order) 

  e -> e’          =>   V(e) < V(e’) 

  V(e) < V(e’)  =>   e -> e’  

  concurrency:   

         e || e’     if     not V(e) ≤ V(e’)   
                      and  not V(e’) ≤ V(e)  
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Causal Ordering of Multicasts (1) 

Event:  
message sent 

m1 

m2 

m3 

0 
0 
0 

0 
0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 

1 
1 
0 

1 
0 
1 

1 
1 
0 

1 
1 
1 

1 
1 
1 

1 
1 
1 

Timestamp [i,j,k] : 
i   messages sent from P   
j   messages sent form Q 
k  messages sent from R 

0 
0 
0 

2 
1 
1 

2 
1 
1 

2 
2 
1 

m4 

m5 

P 

Q 

R 

R:  m1 [100]     m4 [211] 
      m2 [110]     m5 [221] 
      m3 [101] 
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Causal Ordering of Multicasts (2) 

Kangasharju: Distributed Systems 
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Causal Ordering of a Bulletin Board (1) 

User  BB (“local events”) 
  read: bb <= BBi (any BB) 
 write: to a BBj that   

contains all causal 
predecessors of all bb 
messages 

BBi => BBj  (“messages”) 

 BBj must contain all 
nonlocal predecessors of 
all BBi messages 

Assumption:  
reliable, order-preserving 
BB-to-BB transport  
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Causal Ordering of a Bulletin Board (2) 

Lazy propagation of messages betw. 
          bulletin boards 
             1)  user => Pi 

             2)  Pi   Pj  

vector clocks: counters 

   messages from    
                   users to node i 

    messages originally   
                   received by node j 

P1 2 1 2 

 1       2         3       

P3 2 1 2 

 1       2         3       

P2 1 3 0 

 1       2         3       N 
  i 

N 
  j 

timestamps 
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Causal Ordering of a Bulletin Board (3) 

    nodes 
    clocks (value: visible user messages) 
    bulletin boards (timestamps shown) 

          user: read and reply 

            - read stamp:  
          
            - reply can be  
              delivered to:   

300 

1, 2, 3 

023 

1, 2, 3 

010 
020 

001 
002 
003 

020 003 

P1 P2 P3 

100 
200 
300 

300 

100 
200 
300 

320 023 

024 

024 

010 
020 

010 
020 

100 
200 
300 

023 025 
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Causal Ordering of a Bulletin Board (4) 
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Global State (1) 

 Needs: checkpointing, garbage collection, deadlock detection, 
termination, testing 

mngr ?

•   How to observe the state 
•   states of processes 
•   messages in transfer 

A state:  application-dependent specification 
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Detecting Global Properties 
p 2 p 1 

message 
garbage object 

object 
reference 

a. Garbage collection 

p 2 p 1 wait-for 

wait-for b. Deadlock 

p 2 p 1 
activate 

passive passive c. Termination 

Figure 10.8 
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Distributed Snapshot 

 Each node: history of important events 
 Observer: at each node i 

  time:  the local (logical) clock  ” Ti ”  

 state Si     (history: {event, timestamp}) 

=> system state { Si }  

 A cut: the system state { Si } ”at time T” 
 Requirement:  

  {Si} might have existed  consistent with respect to 

some criterion  

 one possibility: consistent wrt  ” happened-before 

relation ”  
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Ad-hoc State Snaphots 

500e 200e 

450e 250e 

account A account B 

450e 200e 
50 => B => 

channel 

state changes: money transfers A  B 
invariant: A+B = 700 

cut 2 

(inconsistent or) 
 weakly  consistent 

cut 1 

strongly consistent 
 inconsistent 

cut 3 
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Consistent and Inconsistent Cuts 

P1 

P2 

P3 

m1 

m2 
m3 

P1 

P2 

P3 

m1 

m2 

m3 
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m1 m2

p1

p2
Physical 

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

 Cuts and Vector Timestamps  

x1 and x2 change locally 
requirement: |x1- x2|<50  
a ”large” change  (”>9”) =>  
send the new value to the other process 

{Si} system state history: all events  
Cut: all events before the ”cut time” 

event: a change of  the local x 
=> increase the vector clock 

A cut is consistent if, for each event, 
it also contains all the events that 
”happened-before”. 
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Chandy Lamport (1) 

The snapshot algorithm of Chandy and Lamport 
a)  Organization of a process and channels for a distributed snapshot 
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Chandy Lamport (2) 

b)  Process Q receives a marker for the first time and records its local state 
c)  Q records all incoming messages 
d)  Q receives a marker for its incoming channel and finishes recording the state of 

this incoming channel 
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Chandy and Lamport’s ‘Snapshot’ Algorithm 

Marker receiving rule for process pi 
On pi’s receipt of a marker message over channel c:
if (pi has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else 
 pi records the state of c as the set of messages it has received over c 
since it saved its state.

end if
Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:
 pi sends one marker message over c  
(before it sends any other message over c).

Figure 11.10 
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Implementation of Snapshot 

point-to-point, order-preserving connections 

Chandy, Lamport 
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Coordination and Agreement 

Coordination of functionality 

  reservation of resources (distributed mutual exclusion) 

  elections (coordinator, initiator) 

  multicasting 

  distributed transactions 

Pi 

Pi 

Pi Pi 

Pi 
Pi 

X 
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Decision Making 
  Centralized: one coordinator (decision maker) 

  algorithms are simple 
  no fault tolerance (if the coordinator fails) 

  Distributed decision making 
  algorithms tend to become complex  
  may be extremely fault tolerant 
  behaviour, correctness ? 
  assumptions about failure behaviour of the platform ! 

  Centralized role, changing “population of the role” 
  easy: one decision maker at a time 
  challenge: management of the “role population” 
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Mutual Exclusion:  
A Centralized Algorithm (1) 

a)  Process 1 asks the coordinator for permission to enter a critical region.  
Permission is granted 

b)  Process 2 then asks permission to enter the same critical region.  The 
coordinator does not reply. 

c)  When process 1 exits the critical region, it tells the coordinator, which 
then replies to 2 

message passing 
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Mutual Exclusion:  
A Centralized Algorithm (2) 

  Examples of usage 
  a stateless server (e.g., Network File Server) 

  a separate lock server 

  General requirements for mutual exclusion  
1.  safety: at most one process may execute in the critical section at 

a time 

2.  liveness: requests (enter, exit) eventually succeed (no deadlock, no 

starvation) 

3.  fairness (ordering): if the request A happens before the request B 

then A is honored before B 
–  Problems:  fault tolerance, performance 
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A Distributed Algorithm (1) 

  The general idea: 
  ask everybody  

  wait for permission from      everybody 

Pt 

Pi 
Pl 

Pj 

resource 
Ricart – Agrawala 

?

   The problem: 
 several simultaneous requests (e.g., Pi and Pj) 
 all members have to agree (everybody: “first Pi then Pj”) 
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On initialization
state := RELEASED; 

To enter the section
state := WANTED;
T := request’s timestamp;  request processing deferred here

      Multicast request to all processes;        
Wait until (number of replies received = (N-1) );
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then 
 queue request from pi without replying; 
else 
 reply immediately to pi;
end if;

To exit the critical section
state := RELEASED;
reply to all queued requests;

A Distributed Algorithm (2) 

Fig. 11.4   Ricart - Agrawala 



58 Kangasharju: Distributed Systems 

Multicast Synchronization 

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Fig. 11.5   Ricart - Agrawala 

Decision base: 
Lamport timestamp 

X 

X 
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A Token Ring Algorithm 

Algorithm:  
 - token passing: straightforward 
 - lost token:  1) detection?  2) recovery?  

An unordered group of processes on a network. 

A logical ring constructed in software.  
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Comparison 

A comparison of three mutual exclusion algorithms. 

Algorithm 
Messages per entry/

exit 

Delay before entry (in 

message times) 
Problems 

Centralized 3 2 Coordinator crash 

Distributed 2 ( n – 1 ) 2 ( n – 1 ) Crash of any process 

Token ring 1 to ∞ 0 to n – 1 
Lost token, process 

crash 
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Election Algorithms 

  Need:  
  computation: a group of concurrent actors 
  algorithms based on the activity of a special role (coordinator, initiator) 
  election of a coordinator:  initially / after some special event (e.g., the previous 

coordinator has disappeared) 
  Premises: 

  each member of the group {Pi} 
-  knows the identities of all other members 
-  does not know who is up and who is down 

  all electors use the same algorithm 
  election rule: the member with the highest Pi 

  Several algorithms exist  
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The Bully Algorithm (1) 

  Pi notices: coordinator lost 
1.  Pi to {all Pj st Pj>Pi}: ELECTION! 
2.  if no one responds  => Pi is the coordinator 
3.  some Pj responds => Pj takes over, Pi’s job is done 

  Pi gets an ELECTION! message:  
1.  reply OK to the sender 
2.  if Pi does not yet participate in an ongoing election: hold 

an election 
  The new coordinator Pk to everybody: “ Pk COORDINATOR” 
  Pi: ongoing election & no “Pk COORDINATOR”:       hold an 

election 
  Pj recovers: hold an election 



63 Kangasharju: Distributed Systems 

The Bully Algorithm (2) 

The bully election algorithm 
a)  Process 4 holds an election 
b)  Process 5 and 6 respond, telling 4 to stop 
c)  Now 5 and 6 each hold an election 
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The Bully Algorithm (3) 

d)  Process 6 tells 5 to stop 

e)  Process 6 wins and tells everyone 
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A Ring Algorithm (1) 

  Group {Pi} ”fully connected”; election: ring 
  Pi notices: coordinator lost 

  send  ELECTION(Pi)  to the next P  
  Pj receives  ELECTION(Pi) 

  send ELECTION(Pi, Pj)  to successor 
  . . . 
  Pi receives ELECTION(..., Pi, ...) 

  active_list  = {collect from the message} 
  NC = max {active_list} 
  send COORDINATOR(NC; active_list) to the next P 

  … 
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A Ring Algorithm (2) 

Election algorithm using a ring. 
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Database 

ser-
ver 

Distributed Transactions 

client 

Database 

ser-
ver 

atomic 

client 
ser-
ver 

isolated 
serializable 

Atomic 
Consistent 
Isolated 
Durable 

client 

ser-
ver 
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The Transaction Model (1) 

Updating a master tape is fault tolerant. 
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The Transaction Model (2) 

Examples of primitives for transactions. 

Primitive Description 

BEGIN_TRANSACTION Make the start of a transaction 

END_TRANSACTION Terminate the transaction and try to commit 

ABORT_TRANSACTION Kill the transaction and restore the old values 

READ Read data from a file, a table, or otherwise 

WRITE Write data to a file, a table, or otherwise 
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The Transaction Model (3) 

a)  Transaction to reserve three flights commits 
b)  Transaction aborts when third flight is unavailable 

BEGIN_TRANSACTION 

  reserve WP -> JFK; 

  reserve JFK -> Nairobi; 

  reserve Nairobi -> Malindi; 

END_TRANSACTION 

               (a) 

BEGIN_TRANSACTION 

  reserve WP -> JFK; 

  reserve JFK -> Nairobi; 

  reserve Nairobi -> Malindi full => 

ABORT_TRANSACTION 

                         (b) 

Note:  
•   a transaction must have a name 
•   the name must be attached to each operation,  
    which belongs to the transaction 
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Distributed Transactions 

a)  A nested transaction 

b)  A distributed transaction 
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Concurrent Transactions 

 Concurrent transactions proceed in parallel 
 Shared data (database) 

 Concurrency-related problems            
(if no further transaction control): 

  lost updates 
  inconsistent retrievals 
 dirty reads 
 etc. 
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Transaction   T   :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction  U   :
balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance =  b.getBalance(); $200
balance = b.getBalance(); $200
b.setBalance(balance*1.1);$220

b.setBalance(balance*1.1);$220
a.withdraw(balance/10)   $80

c.withdraw(balance/10) $280

The lost update problem 

Figure 12.5 Initial values   a: $100,  b: $200   c: $300 
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Transaction   V    :
a.withdraw(100)
b.deposit(100)

Transaction  W   :
aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100
total = total+b.getBalance() $300
total = total+c.getBalance()

b.deposit(100) $300

The inconsistent retrievals problem 

Figure 12.6 Initial values   a: $200,  b: $200 
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A serially equivalent interleaving of T and U 

Transaction   T    :
balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction   U    :
balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance =  b.getBalance() $200
b.setBalance(balance*1.1) $220

balance = b.getBalance() $220
b.setBalance(balance*1.1) $242

a.withdraw(balance/10)   $80
c.withdraw(balance/10) $278

Figure 12.7 The result corresponds the sequential execution  T, U 
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Transaction T:
a.getBalance()
a.setBalance(balance + 10)

Transaction U:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10)$110

balance = a.getBalance() $110

a.setBalance(balance + 20)$130
commit transaction

abort transaction

A dirty read when transaction T aborts 

Figure 12.11 
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Methods for ACID 

 Atomic    
 private workspace, 
 writeahead log 

 Consistent   
  concurrency control => serialization 

-  locks 

-  timestamp-based control 

-  optimistic concurrency control  

  Isolated (see: atomic, consistent)    
 Durable (see:  Fault tolerance) 
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Private Workspace 

a)  The file index and disk blocks for a three-block file 
b)  The situation after a transaction has modified block 0 and 

appended block 3 
c)  After committing 
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Writeahead Log 

  a) A transaction 
  b) – d) The log before each statement is executed 

x = 0; 

y = 0; 

BEGIN_TRANSACTION; 

  x = x + 1; 

  y = y + 2 

  x = y * y; 

END_TRANSACTION; 

              (a)  

Log 

[x = 0 / 1] 

  (b) 

Log 

[x = 0 / 1] 

[y = 0/2] 

   (c)    

Log 

[x = 0 / 1] 

[y = 0/2] 

[x = 1/4] 

    (d) 
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Concurrency Control (1) 

General organization of managers for handling transactions. 
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Concurrency Control (2) 

  General organization of managers 

for handling distributed 

transactions. 
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Serializability 

a)  – c) Three transactions T1, T2, and T3;  d) Possible schedules 
Legal: there exists a serial execution leading to the same result. 

BEGIN_TRANSACTION 

  x = 0; 

  x = x + 1; 

END_TRANSACTION 

              (a) 

BEGIN_TRANSACTION 

  x = 0; 

  x = x + 2; 

END_TRANSACTION 

              (b) 

BEGIN_TRANSACTION 

  x = 0; 

  x = x + 3; 

END_TRANSACTION 

              (c) 

Schedule 1 x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3 Legal 

Schedule 2 x = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3; Legal 

Schedule 3 x = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3; Illegal 

(d) 
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Implementation of Serializability 

Decision making: the transaction scheduler  
  Locks 

  data item ~ lock 
  request for operation  

-  a corresponding lock (read/write) is granted OR 
-  the operation is delayed until the lock is released 

  Pessimistic timestamp ordering 

  transaction <= timestamp;  data item <= R-, W-stamps 

  each request for operation:  

-  check serializability 

-  continue, wait, abort 

  Optimistic timestamp ordering 

  serializability check: at END_OF_TRANSACTION, only 
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Transactions T and U with Exclusive Locks 
Transaction   T   :
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction   U    :
balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks
openTransaction
bal =  b.getBalance() lock B
b.setBalance(bal*1.1) openTransaction
a.withdraw(bal/10) lock  A bal =  b.getBalance() waits for  T  ’s

lock on  B
closeTransaction unlock  A  ,   B

lock  B
b.setBalance(bal*1.1)
c.withdraw(bal/10) lock  C
closeTransaction unlock  B  ,   C

Figure 12.14 
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Two-Phase Locking (1) 

Two-phase locking (2PL). Problem: dirty reads? 
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Two-Phase Locking (2) 

Strict two-phase locking. Centralized or  distributed. 
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Pessimistic Timestamp Ordering 

  Transaction timestamp ts(T) 

  given at BEGIN_TRANSACTION (must be unique!) 

  attached to each operation 
  Data object timestamps tsRD(x), tsWR(x) 

  tsRD(x) = ts(T) of the last T which read x 

  tswr(x) = ts(T) of the last T which changed x 
  Required serial equivalence: ts(T) order of T’s 
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Pessimistic Timestamp Ordering 

  The rules: 
  you are not allowed to change             what 

later transactions already have seen (or changed!) 
  you are not allowed to read            what 

later transactions already have changed 
  Conflicting operations 

  process the older transaction first 
  violation of rules: the transaction is aborted            (i.e, 

the older one:  it is too late!) 
  if tentative versions are used, the final decision is made at 

END_TRANSACTION 
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Write Operations and Timestamps 
(a)  write  write

(c)  T3 write
object produced 
by transaction Ti

 (with write timestamp Ti)

(b)  T3  T3

 write(d)  T3

T1<T2<T3<T4

Time

Before

After

T2

T2 T3
Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4
Time

Transaction
abortsBefore

After

T4

T4

Tentative

Committed
Ti

Ti

Key:

Figure 13.30 
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Optimistic Timestamp Ordering 

  Problems with locks 

  general overhead (must be done whether needed or not) 

  possibility of deadlock 

  duration of locking ( => end of the transaction) 

  Problems with pessimistic timestamps 

  overhead 

  Alternative 

  proceed to the end of the transaction 

  validate  

  applicable if the probability of conflicts is low 
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Validation of Transactions 

Earlier committed
transactions

Working Validation Update
T1

Tv
Transaction
being validated

T2
T3

Later active
transactions

active1
active2

Figure 12.28 
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Validation of Transactions 

Backward validation of transaction Tv
boolean valid = true;
for (int Ti  = startTn+1; Ti <= finishTn; Ti++){
 if (read set of Tv intersects write set of Ti) valid = false;
}

Forward validation of transaction Tv
boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){
 if (write set of Tv intersects read set of Tid) valid = false;
}

CoDoKi: Page 547-548 
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Chapter Summary 

 Synchronization 

 Clocks 

 Logical and vector clocks 

 Coordination, elections 

 Transactions 

Kangasharju: Distributed Systems 


