
Synchronization

Fall 2009
Jussi Kangasharju

2

Chapter Outline

 Clocks and time
 Global state
 Mutual exclusion
 Election algorithms
 Distributed transactions

 Tanenbaum, van Steen: Ch 5
 CoDoKi: Ch 10-12 (3rd ed.)

Kangasharju: Distributed Systems

3 Kangasharju: Distributed Systems

Time and Clocks

NOTE: Time is monotonous

Real time Universal time

(Network time)

Interval length Computer clock

Order of events Network time

(Universal time)

What we need? How to solve?

4 Kangasharju: Distributed Systems 4

Measuring Time

 Traditionally time measured astronomically
 Transit of the sun (highest point in the sky)

 Solar day and solar second

 Problem: Earth’s rotation is slowing down
 Days get longer and longer

 300 million years ago there were 400 days in the year ;-)

 Modern way to measure time is atomic clock
 Based on transitions in Cesium-133 atom

 Still need to correct for Earth’s rotation

 Result: Universal Coordinated Time (UTC)
 UTC available via radio signal, telephone line, satellite

(GPS)

5 Kangasharju: Distributed Systems 5

Hardware/Software Clocks

 Physical clocks in computers are realized as crystal
oscillation counters at the hardware level

 Correspond to counter register H(t)

 Used to generate interrupts

 Usually scaled to approximate physical time t, yielding
software clock C(t), C(t) = αH(t) + β

 C(t) measures time relative to some reference event, e.g., 64

bit counter for # of nanoseconds since last boot

 Simplification: C(t) carries an approximation of real time

  Ideally, C(t) = t (never 100% achieved)

 Note: Values given by two consecutive clock queries will

differ only if clock resolution is sufficiently smaller than

processor cycle time

6

Problems with Hardware/Software Clocks

 Skew: Disagreement in the reading of two clocks
 Drift: Difference in the rate at which two clocks count the

time
 Due to physical differences in crystals, plus heat, humidity,

voltage, etc.

 Accumulated drift can lead to significant skew

 Clock drift rate: Difference in precision between a prefect
reference clock and a physical clock,

 Usually, 10-6 sec/sec, 10-7 to 10-8 for high precision clocks

Kangasharju: Distributed Systems 6

7 Kangasharju: Distributed Systems

Skew between computer clocks in a
distributed system

Network

Figure 10.1

8 Kangasharju: Distributed Systems

Clock Synchronization

 When each machine has its own clock, an event that occurred after another

event may nevertheless be assigned an earlier time.

9 Kangasharju: Distributed Systems

Clock Synchronization Problem

 The relation between clock time and UTC when clocks tick at different rates.

drift rate: 10-6

1 ms ~ 17 min

1 s ~ 11.6 days

UTC: coordinated
universal time
accuracy:
radio 0.1 – 10 ms,
GPS 1 us

10 Kangasharju: Distributed Systems 10

Synchronizing Clocks
 External synchronization

 Synchronize process’s clock with an authoritative external

reference clock S(t) by limiting skew to a delay bound D > 0

-  |S(t) - Ci(t) | < D for all t

 For example, synchronization with a UTC source

  Internal synchronization
 Synchronize the local clocks within a distributed system to

disagree by not more than a delay bound D > 0, without

necessarily achieving external synchronization

-  |Ci(t) - Cj(t)| < D for all i, j, t

 Obviously:
 For a system with external synchronization bound of D, the

internal synchronization is bounded by 2D

11 Kangasharju: Distributed Systems 11

Clock Correctness

  When is a clock correct?
1.  If drift rate falls within a bound r > 0, then for any t and t’

with t’ > t the following error bound in measuring t and t’
holds:
  (1-r)(t’-t) ≤ H(t’) - H(t) ≤ (1+r)(t’-t)

  Consequence: No jumps in hardware clocks allowed

2.  Sometimes monotonically increasing clock is enough:
  t’ > t ⇒ C(t’) > C(t)

3.  Frequently used condition:
  Monotonically increasing

  Drift rate bounded between synchronization points

  Clock may jump ahead at synchronization points

12 Kangasharju: Distributed Systems

Synchronization of Clocks: Software-Based
Solutions

 Techniques:
  time stamps of real-time clocks

 message passing

  round-trip time (local measurement)

 Cristian’s algorithm
 Berkeley algorithm
 Network time protocol (Internet)

13 Kangasharju: Distributed Systems 13

Christian’s Algorithm

 Observations
 Round trip times between processes are often reasonably

short in practice, yet theoretically unbounded
 Practical estimate possible if round-trip times are sufficiently

short in comparison to required accuracy
 Principle

 Use UTC-synchronized time server S
 Process P sends requests to S
 Measures round-trip time Tround

-  In LAN, Tround should be around 1-10 ms
-  During this time, a clock with a 10-6 sec/sec drift rate

varies by at most 10-8 sec
-  Hence the estimate of Tround is reasonably accurate

 Naive estimate: Set clock to t + ½Tround

14 Kangasharju: Distributed Systems

Cristian's Algorithm

Current time from a time server: UTC from radio/satellite etc
Problems:

 - time must never run backward
 - variable delays in message passing / delivery

15 Kangasharju: Distributed Systems 15

Christian’s Algorithm: Analysis

 Accuracy of estimate?
 Assumptions:

  requests and replies via same net

 min delay is either known or can be estimated conservatively

 Calculation:
 Earliest time that S can have sent reply: t0 + min

 Latest time that S can have sent reply: t0 + Tround – min

 Total time range for answer: Tround - 2 * min

 Accuracy is ± (½Tround - min)

 Discussion
 Really only suitable for LAN environment or Intranet

 Problem of failure of S

16 Kangasharju: Distributed Systems 16

Alternative Algorithm

 Berkeley algorithm (Gusella&Zatti ‘89)
 No external synchronization, but one master server

 Master polls slaves periodically about their clock readings

 Estimate of local clock times using round trip estimation

 Averages the values obtained from a group of processes

-  Cancels out individual clock’s tendencies to run fast

 Tells slave processes by which amount of time to adjust

local clock

 Master failure: Master election algorithm (see later)

 Experiment
 15 computers, local drift rate < 2x10-5, max round-trip 10 ms

 Clocks were synchronized to within 20-25 ms

 Note: Neither algorithm is really suitable for Internet

17 Kangasharju: Distributed Systems

The Berkeley Algorithm

a)  The time daemon asks all the other machines for their clock values
b)  The machines answer
c)  The time daemon tells everyone how to adjust their clock

18

Clock Synchronization: NTP

 Goals
 ability to externally synchronize clients via Internet to UTC

 provide reliable service tolerating lengthy losses of

connectivity

 enable clients to resynchronize sufficiently frequently to

offset typical HW drift rates

 provide protection against interference

 Synchronization subnets

Kangasharju: Distributed Systems

UTCstrata 1

strata 2

strata 3
(user workstations)

1

2

3

2

3 3

19

NTP Basic Idea

 Layered client-server architecture, based on UDP
message passing

 Synchronization at clients with higher strata number less
accurate due to increased latency to strata 1 time server

 Failure robustness: if a strata 1 server fails, it may
become a strata 2 server that is being synchronized
though another strata 1 server

Kangasharju: Distributed Systems

20

NTP Modes

 Multicast:
 One computer periodically multicasts time info to all other

computers on network

 These adjust clock assuming a very small transmission delay

 Only suitable for high speed LANs; yields low but usually

acceptable sync.

 Procedure-call: similar to Christian’s protocol
 Server accepts requests from clients

 Applicable where higher accuracy is needed, or where multicast is

not supported by the network’s hard- and software

 Symmetric:
 Used where high accuracy is needed

Kangasharju: Distributed Systems

21

Procedure-Call and Symmetric Modes

  All messages carry timing history information

  local timestamps of send and receive of the previous NTP message

  local timestamp of send of this message

 For each pair i of messages (m, m’) exchanged between two servers

the following values are being computed

(based on 3 values carried w/ msg and 4th value obtained via local timestamp):

-  offset oi: estimate for the actual offset between two clocks

-  delay di: true total transmission time for the pair of messages

<Ti-3, Ti-2, Ti-1, m’ >

i

i - T i

T i-1 T -2

T 3

Server B

Server A

Time
m m'

Time

Kangasharju: Distributed Systems

22

NTP: Delay and Offset

 Let o the true offset of B’s clock relative to A’s clock, and let t and t’
the true transmission times of m and m’ (Ti, Ti-1 ... are not true time)

 Delay
Ti-2 = Ti-3 + t + o (1) and Ti = Ti-1 + t’ – o (2) which leads to

di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 (clock errors zeroed out true d)

 Offset
oi = ½ (Ti-2 – Ti-3 + Ti-1 – Ti) (only an estimate)

i

i - T i

T i-1 T -2

T 3

Server B

Server A

Time
m m'

Time
τ

τ+o

Kangasharju: Distributed Systems

23

NTP Implementation

 Statistical algorithms based on 8 most recent <oi, di>
pairs: determine quality of estimates

 The value of oi that corresponds to the minimum di is
chosen as an estimate for o

 Time server communicates with multiple peers, eliminates
peers with unreliable data, favors peers with higher strata
number (e.g., for primary synchronization partner
selection)

 NTP phase lock loop model: modify local clock in
accordance with observed drift rate

 Experiments achieve synchronization accuracies of
10 msecs over Internet, and 1 msec on LAN using NTP

Kangasharju: Distributed Systems

24 Kangasharju: Distributed Systems

Clocks and Synchronization

Requirements:
  ”causality”: real-time order ~ timestamp order (”behavioral

correctness” – seen by the user)

 groups / replicates: all members see the events in the same

order

  ”multiple-copy-updates”: order of updates, consistency

conflicts?

 serializability of transactions: bases on a common

understanding of transaction order

A perfect physical clock is sufficient!
A perfect physical clock is impossible to implement!
Above requirements met with much lighter solutions!

25 Kangasharju: Distributed Systems

Happened-Before Relation ”a -> b”

  if a, b are events in the same process, and a occurs before b, then a -> b

a b

a

 b

•  if a is the event of a message being sent, and
 b is the event of the message being received,
 then a -> b

•  a || b if neither a -> b nor b -> a (a and b are concurrent)

Note: if a -> b and b -> c then a -> c

26 Kangasharju: Distributed Systems

Logical Clocks: Lamport Timestamps

process pi , event e , clock Li , timestamp Li(e)
  at pi : before each event Li = Li + 1
  when pi sends a message m to pj

1.  pi: (Li = Li + 1); t = Li ; message = (m, t) ;

2.  pj: Lj = max(Lj, t); Lj = Lj + 1;

3.  Lj(receive event) = Lj ;

0 6 12 18 24 30 36 42 48 54 0

0

0

6

8

10

12

16

20

18

24

30

24

32

40

30

40

50

36

48

60

42

56

70

42

61

70

48

69

80

54

77

90

70

77

99

0 8 16 24 32 40 48 56 64 72 24  30

30 40

P1
P2

P3

27 Kangasharju: Distributed Systems

Lamport Clocks: Problems

1.  Timestamps do not specify the order of events

  e -> e’ => L(e) < L(e’)

BUT

  L(e) < L(e’) does not imply that e -> e’
2.  Total ordering

  problem: define order of e, e’ when L(e) = L(e’)

  solution: extended timestamp (Ti, i), where Ti is Li(e)

  definition: (Ti, i) < (Tj, j)

 if and only if

 either Ti < Tj

 or Ti = Tj and i < j

28 Kangasharju: Distributed Systems

Example: Totally-Ordered Multicasting (1)

 Updating a replicated database and leaving it in an inconsistent state.

29 Kangasharju: Distributed Systems

Example: Totally-Ordered Multicasting (2)

Total ordering:
all receivers (applications) see all messages in the same order
(which is not necessarily the original sending order)
Example: multicast operations, group-update operations

30 Kangasharju: Distributed Systems

Example: Totally-Ordered Multicasting (3)

Guaranteed delivery order
-  new message => HBQ

-  when all predecessors have
 arrived: message => DQ

-  when at the head of DQ:
 message => application
 (application: receive …)

Application

hold-back queue

delivery queue

delivery

Message passing system
Algorithms:
see. Defago et al ACM CS, Dec. 2004

31 Kangasharju: Distributed Systems

30.2

30.2

Example: Totally-Ordered Multicasting (4)

P1
TS

Multicast:
-  everybody receives the message (incl. the sender!)
-  messages from one sender are received in the sending order
-  no messages are lost

P3
TS

P2
TS

27.3
26.3 31.3

20.1

20.1
30.2

20.1

31.2

31.1 HBQ HBQ

30.2

30.2

Original timestamps
P1 19
P2 29
P3 25

The key idea
- the same order in all queues
- at the head of HBQ:
 when all ack’s have arrived
 nobody can pass you

32 Kangasharju: Distributed Systems

Various Orderings

 Total ordering
 Causal ordering
 FIFO (First In First Out)
 (wrt an individual communication channel)

 Total and causal ordering are independent:
neither induces the other;

 Causal ordering induces FIFO

33 Kangasharju: Distributed Systems

Total, FIFO and Causal Ordering of Multicast Messages

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent
ordering of totally
ordered messages T1
and T2,
 the FIFO-related
messages F1 and F2
and the causally
related messages C1
and C3
 – and the otherwise
arbitrary delivery
ordering of messages.

Figure 11.12

34 Kangasharju: Distributed Systems

Vector Timestamps

35 Kangasharju: Distributed Systems

Order of Vector Timestamps

Order of timestamps
  V = V’ iff V[j] = V’ [j] for all j

  V ≤ V’ iff V[j] ≤ V’ [j] for all j

  V < V’ iff V ≤ V’ and V ≠ V’

Order of events (causal order)

  e -> e’ => V(e) < V(e’)

  V(e) < V(e’) => e -> e’

  concurrency:

 e || e’ if not V(e) ≤ V(e’)
 and not V(e’) ≤ V(e)

36 Kangasharju: Distributed Systems

Causal Ordering of Multicasts (1)

Event:
message sent

m1

m2

m3

0
0
0

0
0
0

1
0
0

1
0
0

1
0
0

1
1
0

1
0
1

1
1
0

1
1
1

1
1
1

1
1
1

Timestamp [i,j,k] :
i messages sent from P
j messages sent form Q
k messages sent from R

0
0
0

2
1
1

2
1
1

2
2
1

m4

m5

P

Q

R

R: m1 [100] m4 [211]
 m2 [110] m5 [221]
 m3 [101]

37

Causal Ordering of Multicasts (2)

Kangasharju: Distributed Systems

38 Kangasharju: Distributed Systems

Causal Ordering of a Bulletin Board (1)

User BB (“local events”)
  read: bb <= BBi (any BB)
 write: to a BBj that

contains all causal
predecessors of all bb
messages

BBi => BBj (“messages”)

 BBj must contain all
nonlocal predecessors of
all BBi messages

Assumption:
reliable, order-preserving
BB-to-BB transport

39 Kangasharju: Distributed Systems

Causal Ordering of a Bulletin Board (2)

Lazy propagation of messages betw.
 bulletin boards
 1) user => Pi

 2) Pi Pj

vector clocks: counters

 messages from
 users to node i

 messages originally
 received by node j

P1 2 1 2

 1 2 3

P3 2 1 2

 1 2 3

P2 1 3 0

 1 2 3 N
 i

N
 j

timestamps

40 Kangasharju: Distributed Systems

Causal Ordering of a Bulletin Board (3)

 nodes
 clocks (value: visible user messages)
 bulletin boards (timestamps shown)

 user: read and reply

 - read stamp:

 - reply can be
 delivered to:

300

1, 2, 3

023

1, 2, 3

010
020

001
002
003

020 003

P1 P2 P3

100
200
300

300

100
200
300

320 023

024

024

010
020

010
020

100
200
300

023 025

41 Kangasharju: Distributed Systems

Causal Ordering of a Bulletin Board (4)

42 Kangasharju: Distributed Systems

Global State (1)

 Needs: checkpointing, garbage collection, deadlock detection,
termination, testing

mngr ?

•  How to observe the state
•  states of processes
•  messages in transfer

A state: application-dependent specification

43 Kangasharju: Distributed Systems

Detecting Global Properties
p 2 p 1

message
garbage object

object
reference

a. Garbage collection

p 2 p 1 wait-for

wait-for b. Deadlock

p 2 p 1
activate

passive passive c. Termination

Figure 10.8

44 Kangasharju: Distributed Systems

Distributed Snapshot

 Each node: history of important events
 Observer: at each node i

  time: the local (logical) clock ” Ti ”

 state Si (history: {event, timestamp})

=> system state { Si }

 A cut: the system state { Si } ”at time T”
 Requirement:

  {Si} might have existed consistent with respect to

some criterion

 one possibility: consistent wrt ” happened-before

relation ”

45 Kangasharju: Distributed Systems

Ad-hoc State Snaphots

500e 200e

450e 250e

account A account B

450e 200e
50 => B =>

channel

state changes: money transfers A B
invariant: A+B = 700

cut 2

(inconsistent or)
 weakly consistent

cut 1

strongly consistent
 inconsistent

cut 3

46 Kangasharju: Distributed Systems

Consistent and Inconsistent Cuts

P1

P2

P3

m1

m2
m3

P1

P2

P3

m1

m2

m3

47 Kangasharju: Distributed Systems

m1 m2

p1

p2
Physical

time

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C2

 Cuts and Vector Timestamps

x1 and x2 change locally
requirement: |x1- x2|<50
a ”large” change (”>9”) =>
send the new value to the other process

{Si} system state history: all events
Cut: all events before the ”cut time”

event: a change of the local x
=> increase the vector clock

A cut is consistent if, for each event,
it also contains all the events that
”happened-before”.

48 Kangasharju: Distributed Systems

Chandy Lamport (1)

The snapshot algorithm of Chandy and Lamport
a)  Organization of a process and channels for a distributed snapshot

49 Kangasharju: Distributed Systems

Chandy Lamport (2)

b)  Process Q receives a marker for the first time and records its local state
c)  Q records all incoming messages
d)  Q receives a marker for its incoming channel and finishes recording the state of

this incoming channel

50 Kangasharju: Distributed Systems

Chandy and Lamport’s ‘Snapshot’ Algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:
if (pi has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
 pi records the state of c as the set of messages it has received over c
since it saved its state.

end if
Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:
 pi sends one marker message over c
(before it sends any other message over c).

Figure 11.10

51 Kangasharju: Distributed Systems

Implementation of Snapshot

point-to-point, order-preserving connections

Chandy, Lamport

52 Kangasharju: Distributed Systems

Coordination and Agreement

Coordination of functionality

  reservation of resources (distributed mutual exclusion)

  elections (coordinator, initiator)

  multicasting

  distributed transactions

Pi

Pi

Pi Pi

Pi
Pi

X

53 Kangasharju: Distributed Systems

Decision Making
  Centralized: one coordinator (decision maker)

  algorithms are simple
  no fault tolerance (if the coordinator fails)

  Distributed decision making
  algorithms tend to become complex
  may be extremely fault tolerant
  behaviour, correctness ?
  assumptions about failure behaviour of the platform !

  Centralized role, changing “population of the role”
  easy: one decision maker at a time
  challenge: management of the “role population”

54 Kangasharju: Distributed Systems

Mutual Exclusion:
A Centralized Algorithm (1)

a)  Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b)  Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c)  When process 1 exits the critical region, it tells the coordinator, which
then replies to 2

message passing

55 Kangasharju: Distributed Systems

Mutual Exclusion:
A Centralized Algorithm (2)

  Examples of usage
  a stateless server (e.g., Network File Server)

  a separate lock server

  General requirements for mutual exclusion
1.  safety: at most one process may execute in the critical section at

a time

2.  liveness: requests (enter, exit) eventually succeed (no deadlock, no

starvation)

3.  fairness (ordering): if the request A happens before the request B

then A is honored before B
–  Problems: fault tolerance, performance

56 Kangasharju: Distributed Systems

A Distributed Algorithm (1)

  The general idea:
  ask everybody

  wait for permission from everybody

Pt

Pi
Pl

Pj

resource
Ricart – Agrawala

?

 The problem:
 several simultaneous requests (e.g., Pi and Pj)
 all members have to agree (everybody: “first Pi then Pj”)

57 Kangasharju: Distributed Systems

On initialization
state := RELEASED;

To enter the section
state := WANTED;
T := request’s timestamp; request processing deferred here

 Multicast request to all processes;
Wait until (number of replies received = (N-1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then
 queue request from pi without replying;
else
 reply immediately to pi;
end if;

To exit the critical section
state := RELEASED;
reply to all queued requests;

A Distributed Algorithm (2)

Fig. 11.4 Ricart - Agrawala

58 Kangasharju: Distributed Systems

Multicast Synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Fig. 11.5 Ricart - Agrawala

Decision base:
Lamport timestamp

X

X

59 Kangasharju: Distributed Systems

A Token Ring Algorithm

Algorithm:
 - token passing: straightforward
 - lost token: 1) detection? 2) recovery?

An unordered group of processes on a network.

A logical ring constructed in software.

60 Kangasharju: Distributed Systems

Comparison

A comparison of three mutual exclusion algorithms.

Algorithm
Messages per entry/

exit

Delay before entry (in

message times)
Problems

Centralized 3 2 Coordinator crash

Distributed 2 (n – 1) 2 (n – 1) Crash of any process

Token ring 1 to ∞ 0 to n – 1
Lost token, process

crash

61 Kangasharju: Distributed Systems

Election Algorithms

  Need:
  computation: a group of concurrent actors
  algorithms based on the activity of a special role (coordinator, initiator)
  election of a coordinator: initially / after some special event (e.g., the previous

coordinator has disappeared)
  Premises:

  each member of the group {Pi}
-  knows the identities of all other members
-  does not know who is up and who is down

  all electors use the same algorithm
  election rule: the member with the highest Pi

  Several algorithms exist

62 Kangasharju: Distributed Systems

The Bully Algorithm (1)

  Pi notices: coordinator lost
1.  Pi to {all Pj st Pj>Pi}: ELECTION!
2.  if no one responds => Pi is the coordinator
3.  some Pj responds => Pj takes over, Pi’s job is done

  Pi gets an ELECTION! message:
1.  reply OK to the sender
2.  if Pi does not yet participate in an ongoing election: hold

an election
  The new coordinator Pk to everybody: “ Pk COORDINATOR”
  Pi: ongoing election & no “Pk COORDINATOR”: hold an

election
  Pj recovers: hold an election

63 Kangasharju: Distributed Systems

The Bully Algorithm (2)

The bully election algorithm
a)  Process 4 holds an election
b)  Process 5 and 6 respond, telling 4 to stop
c)  Now 5 and 6 each hold an election

64 Kangasharju: Distributed Systems

The Bully Algorithm (3)

d)  Process 6 tells 5 to stop

e)  Process 6 wins and tells everyone

65 Kangasharju: Distributed Systems

A Ring Algorithm (1)

  Group {Pi} ”fully connected”; election: ring
  Pi notices: coordinator lost

  send ELECTION(Pi) to the next P
  Pj receives ELECTION(Pi)

  send ELECTION(Pi, Pj) to successor
  . . .
  Pi receives ELECTION(..., Pi, ...)

  active_list = {collect from the message}
  NC = max {active_list}
  send COORDINATOR(NC; active_list) to the next P

  …

66 Kangasharju: Distributed Systems

A Ring Algorithm (2)

Election algorithm using a ring.

67 Kangasharju: Distributed Systems

Database

ser-
ver

Distributed Transactions

client

Database

ser-
ver

atomic

client
ser-
ver

isolated
serializable

Atomic
Consistent
Isolated
Durable

client

ser-
ver

68 Kangasharju: Distributed Systems

The Transaction Model (1)

Updating a master tape is fault tolerant.

69 Kangasharju: Distributed Systems

The Transaction Model (2)

Examples of primitives for transactions.

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise

70 Kangasharju: Distributed Systems

The Transaction Model (3)

a)  Transaction to reserve three flights commits
b)  Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION

 reserve WP -> JFK;

 reserve JFK -> Nairobi;

 reserve Nairobi -> Malindi;

END_TRANSACTION

 (a)

BEGIN_TRANSACTION

 reserve WP -> JFK;

 reserve JFK -> Nairobi;

 reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION

 (b)

Note:
•  a transaction must have a name
•  the name must be attached to each operation,
 which belongs to the transaction

71 Kangasharju: Distributed Systems

Distributed Transactions

a)  A nested transaction

b)  A distributed transaction

72 Kangasharju: Distributed Systems

Concurrent Transactions

 Concurrent transactions proceed in parallel
 Shared data (database)

 Concurrency-related problems
(if no further transaction control):

  lost updates
  inconsistent retrievals
 dirty reads
 etc.

73 Kangasharju: Distributed Systems

Transaction T :
balance = b.getBalance();
b.setBalance(balance*1.1);
a.withdraw(balance/10)

Transaction U :
balance = b.getBalance();
b.setBalance(balance*1.1);
c.withdraw(balance/10)

balance = b.getBalance(); $200
balance = b.getBalance(); $200
b.setBalance(balance*1.1);$220

b.setBalance(balance*1.1);$220
a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

The lost update problem

Figure 12.5 Initial values a: $100, b: $200 c: $300

74 Kangasharju: Distributed Systems

Transaction V :
a.withdraw(100)
b.deposit(100)

Transaction W :
aBranch.branchTotal()

a.withdraw(100); $100
total = a.getBalance() $100
total = total+b.getBalance() $300
total = total+c.getBalance()

b.deposit(100) $300

The inconsistent retrievals problem

Figure 12.6 Initial values a: $200, b: $200

75 Kangasharju: Distributed Systems

A serially equivalent interleaving of T and U

Transaction T :
balance = b.getBalance()
b.setBalance(balance*1.1)
a.withdraw(balance/10)

Transaction U :
balance = b.getBalance()
b.setBalance(balance*1.1)
c.withdraw(balance/10)

balance = b.getBalance() $200
b.setBalance(balance*1.1) $220

balance = b.getBalance() $220
b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80
c.withdraw(balance/10) $278

Figure 12.7 The result corresponds the sequential execution T, U

76 Kangasharju: Distributed Systems

Transaction T:
a.getBalance()
a.setBalance(balance + 10)

Transaction U:
a.getBalance()
a.setBalance(balance + 20)

balance = a.getBalance() $100
a.setBalance(balance + 10)$110

balance = a.getBalance() $110

a.setBalance(balance + 20)$130
commit transaction

abort transaction

A dirty read when transaction T aborts

Figure 12.11

77 Kangasharju: Distributed Systems

Methods for ACID

 Atomic
 private workspace,
 writeahead log

 Consistent
 concurrency control => serialization

-  locks

-  timestamp-based control

-  optimistic concurrency control

  Isolated (see: atomic, consistent)
 Durable (see: Fault tolerance)

78 Kangasharju: Distributed Systems

Private Workspace

a)  The file index and disk blocks for a three-block file
b)  The situation after a transaction has modified block 0 and

appended block 3
c)  After committing

79 Kangasharju: Distributed Systems

Writeahead Log

  a) A transaction
  b) – d) The log before each statement is executed

x = 0;

y = 0;

BEGIN_TRANSACTION;

 x = x + 1;

 y = y + 2

 x = y * y;

END_TRANSACTION;

 (a)

Log

[x = 0 / 1]

 (b)

Log

[x = 0 / 1]

[y = 0/2]

 (c)

Log

[x = 0 / 1]

[y = 0/2]

[x = 1/4]

 (d)

80 Kangasharju: Distributed Systems

Concurrency Control (1)

General organization of managers for handling transactions.

81 Kangasharju: Distributed Systems

Concurrency Control (2)

  General organization of managers

for handling distributed

transactions.

82 Kangasharju: Distributed Systems

Serializability

a)  – c) Three transactions T1, T2, and T3; d) Possible schedules
Legal: there exists a serial execution leading to the same result.

BEGIN_TRANSACTION

 x = 0;

 x = x + 1;

END_TRANSACTION

 (a)

BEGIN_TRANSACTION

 x = 0;

 x = x + 2;

END_TRANSACTION

 (b)

BEGIN_TRANSACTION

 x = 0;

 x = x + 3;

END_TRANSACTION

 (c)

Schedule 1 x = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3 Legal

Schedule 2 x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3; Legal

Schedule 3 x = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3; Illegal

(d)

83 Kangasharju: Distributed Systems

Implementation of Serializability

Decision making: the transaction scheduler
  Locks

  data item ~ lock
  request for operation

-  a corresponding lock (read/write) is granted OR
-  the operation is delayed until the lock is released

  Pessimistic timestamp ordering

  transaction <= timestamp; data item <= R-, W-stamps

  each request for operation:

-  check serializability

-  continue, wait, abort

  Optimistic timestamp ordering

  serializability check: at END_OF_TRANSACTION, only

84 Kangasharju: Distributed Systems

Transactions T and U with Exclusive Locks
Transaction T :
balance = b.getBalance()
b.setBalance(bal*1.1)
a.withdraw(bal/10)

Transaction U :
balance = b.getBalance()
b.setBalance(bal*1.1)
c.withdraw(bal/10)

Operations Locks Operations Locks
openTransaction
bal = b.getBalance() lock B
b.setBalance(bal*1.1) openTransaction
a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s

lock on B
closeTransaction unlock A , B

lock B
b.setBalance(bal*1.1)
c.withdraw(bal/10) lock C
closeTransaction unlock B , C

Figure 12.14

85 Kangasharju: Distributed Systems

Two-Phase Locking (1)

Two-phase locking (2PL). Problem: dirty reads?

86 Kangasharju: Distributed Systems

Two-Phase Locking (2)

Strict two-phase locking. Centralized or distributed.

87 Kangasharju: Distributed Systems

Pessimistic Timestamp Ordering

  Transaction timestamp ts(T)

  given at BEGIN_TRANSACTION (must be unique!)

  attached to each operation
  Data object timestamps tsRD(x), tsWR(x)

  tsRD(x) = ts(T) of the last T which read x

  tswr(x) = ts(T) of the last T which changed x
  Required serial equivalence: ts(T) order of T’s

88 Kangasharju: Distributed Systems

Pessimistic Timestamp Ordering

  The rules:
  you are not allowed to change what

later transactions already have seen (or changed!)
  you are not allowed to read what

later transactions already have changed
  Conflicting operations

  process the older transaction first
  violation of rules: the transaction is aborted (i.e,

the older one: it is too late!)
  if tentative versions are used, the final decision is made at

END_TRANSACTION

89 Kangasharju: Distributed Systems

Write Operations and Timestamps
(a) write write

(c) T3 write
object produced
by transaction Ti

 (with write timestamp Ti)

(b) T3 T3

 write(d) T3

T1<T2<T3<T4

Time

Before

After

T2

T2 T3
Time

Before

After

T2

T2 T3

T1

T1

Time

Before

After

T1

T1

T4

T3 T4
Time

Transaction
abortsBefore

After

T4

T4

Tentative

Committed
Ti

Ti

Key:

Figure 13.30

90 Kangasharju: Distributed Systems

Optimistic Timestamp Ordering

  Problems with locks

  general overhead (must be done whether needed or not)

  possibility of deadlock

  duration of locking (=> end of the transaction)

  Problems with pessimistic timestamps

  overhead

  Alternative

  proceed to the end of the transaction

  validate

  applicable if the probability of conflicts is low

91 Kangasharju: Distributed Systems

Validation of Transactions

Earlier committed
transactions

Working Validation Update
T1

Tv
Transaction
being validated

T2
T3

Later active
transactions

active1
active2

Figure 12.28

92 Kangasharju: Distributed Systems

Validation of Transactions

Backward validation of transaction Tv
boolean valid = true;
for (int Ti = startTn+1; Ti <= finishTn; Ti++){
 if (read set of Tv intersects write set of Ti) valid = false;
}

Forward validation of transaction Tv
boolean valid = true;
for (int Tid = active1; Tid <= activeN; Tid++){
 if (write set of Tv intersects read set of Tid) valid = false;
}

CoDoKi: Page 547-548

93

Chapter Summary

 Synchronization

 Clocks

 Logical and vector clocks

 Coordination, elections

 Transactions

Kangasharju: Distributed Systems

