

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Chapter 1: Distributed Systems: What is a distributed system?

Fall 2010 Jussi Kangasharju

Course Goals and Content

- Distributed systems and their:
 - Basic concepts
 - Main issues, problems, and solutions
 - Structured and functionality
- Content:
 - Distributed systems (Tanenbaum, Ch. 1)
 - Architectures, goal, challenges
 - Where our solutions are applicable
 - Synchronization: Time, coordination, decision making (Ch. 5)
 - Replicas and consistency (Ch. 6)
 - Fault tolerance (Ch. 7)
- Chapters refer to Tanenbaum book

Course Material

Tanenbaum, van Steen: Distributed Systems, Principles and Paradigms; Prentice Hall 2007

2002 edition also ok

Coulouris, Dollimore, Kindberg: Distributed Systems, Concepts and Design; Addison-Wesley 2005

Lecture slides on course website

- NOT sufficient by themselves
- Help to see what parts in book are most relevant
- On some topics, slides cover more material than is in the book

Course Exams

- Normal way (recommended)
 - Exercises, home exercises, course exam

Grading:

- Exam 42 points
- Exercises 12 points (~ 20 exercises, scaled to 0—12)
- Home exercises 12 points (4 exercises)
- Grading based on 60 point maximum
- Need 30 points to pass with minimum 16 points in exam
- 50 points will give a 5

Possible to take as separate exam

Exercises

- Weekly exercises:
 - Smaller assignments
- Home exercises
 - 1 study diary, 3 design exercises
 - Due dates will be announced later
 - Study diary individual work
 - Design exercises can be done in groups of up to 3

People

- Jussi Kangasharju
 - Lectures: Mon 10-12 and Thu 10-12 in D122
 - Exercise group: Mon 14-16 in CK111
 - Office hour: Thu 13-14 or ask for appointment by email

Mikko Pervilä

- Exercise groups: Thu 16-18 in C222
- Home exercises
- Office hour: During exercises or ask appointment by email

Chapter Outline

- Defining distributed system
- Examples of distributed systems
- Why distribution?

Goals and challenges of distributed systems

- Where is the borderline between a computer and a distributed system?
- Examples of distributed architectures

Definition of a Distributed System

A distributed system is

a collection of independent computers that appears to its users as a single coherent system.

as a single system.

The Internet: net of nets global access to "everybody"

- (data, service, other
- actor; open ended)
- enormous size (open ended)
- no single authority
- communication types
 - interrogation,
 announcement,
 stream
 - data, audio, video

Figure 1.1 A typical portion of the Internet

Examples of Distributed Systems

Figure 1.2 A typical intranet

Examples of Distributed Systems

- wireless data communication
- multihop networking
- long, nondeterministic dc delays

Problems, e.g.:

- reliable multicast

- group management

- Hardware resources (reduce costs)
- Data resources (shared usage of information)
- Service resources
 - search engines
 - computer-supported
 - cooperative working
- Service vs. server (node or CoDoKi, F

process)

Figure 1.4 Web servers and web browsers

14

- partitioned or replicated data
- => increased performance, reliability, fault tolerance

Dependable systems, grid systems, enterprise systems

Facts of life: history, geography, organization

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Goals and challenges for distributed systems

Goals

- Making resources accessible
- Distribution transparency
- Openness
- Scalability
- Security
- System design requirements

Challenges for Making Resources Accessible

- Naming
- Access control
- Security
- Availability
- Performance
- Mutual exclusion of users, fairness
- Consistency in some cases

Challenges for Transparency

The fundamental idea: a collection of independent, autonomous actors

Transparency:

Concealment of distribution

=> user's point of view: a single unified system

Transparency	Description		
Access	Hide differences in data representation and how a resource is accessed		
Location	Hide where a resource is located (*)		
	Hide that a resource may move to another location (*)		
Migration	(the resource does not notice)		
Relocation	Hide that a resource may be moved to another location (*)		
	while in use (the others don't notice)		
Replication	Hide that a resource is replicated		
Concurrency	Hide that a resource may be shared by several competitive users		
Failure	Hide the failure and recovery of a resource		
Persistence	Hide whether a (software) resource is in memory or on disk		

(*) Notice the various meanings of "location" : network address (several layers) ; geographical address

October 31, 10

Challenges for Transparencies

- replications and migration cause need for ensuring consistency and distributed decision-making
- failure modes
- concurrency
- heterogeneity

Figure 2.10 Omission and arbitrary failures

Class of failure	Affects	Description
Fail-stop	Process	Process halts and remains halted. Other processes may
		detect this state.
Crash	Process	Process halts and remains halted. Other processes may
		not be able to detect this state.
Omission	Channel	A message inserted in an outgoing message buffer never
		arrives at the other end's incoming message buffer.
Send-omission	Process	A process completes <i>send</i> , but the message is not put
		in its outgoing message buffer.
Receive-	Process	A message is put in a process's incoming message
omission		buffer, but that process does not receive it.
Arbitrary	Process of	orProcess/channel exhibits arbitrary behaviour: it may
(Byzantine)	channel	send/transmit arbitrary messages at arbitrary times,
		commit omissions; a process may stop or take an
		incorrect step.

Class of Failure	Affects	Description
Clock	Process	Process's local clock exceeds the bounds on its rate of drift from real time.
Performance	Process	Process exceeds the bounds on the interval between two steps.
Performance	Channel	A message's transmission takes longer than the stated bound.

Failure Handling

- More components => increased fault rate
- Increased possibilities
 - more redundancy => more possibilities for fault tolerance
 - no centralized control => no fatal failure

Issues

- Detecting failures
- Masking failures
- Recovery from failures
- Tolerating failures
- Redundancy
- New: partial failures

Concurrency

- Concurrency:
 - Several simultaneous users => integrity of data
 - mutual exclusion
 - synchronization
 - ext: transaction processing in data bases
 - Replicated data: consistency of information?
 - Partitioned data: how to determine the state of the system?
 - Order of messages?
- There is no global clock!

Consistency Maintenance

Heterogeneity

- Heterogeneity of
 - networks
 - computer hardware
 - operating systems
 - programming languages
 - implementations of different developers
- Portability, interoperability
- Mobile code, adaptability (applets, agents)
- Middleware (CORBA etc)
- Degree of transparency? Latency? Location-based services?

Challenges for Openness

- Openness facilitates
 - interoperability, portability, extensibility, adaptivity
- Activities addresses
 - extensions: new components
 - re-implementations (by independent providers)
- Supported by
 - public interfaces
 - standardized communication protocols

Challenges for Scalability

Scalability:

- The system will remain effective when there is a significant increase in:
 - number of resources
 - number of users
- The architecture and the implementation must allow it
- The algorithms must be efficient under the circumstances to be expected
 - Example: the Internet

Challenges: Scalability (cont.)

- Controlling the cost of physical resources
- Controlling performance loss
- Preventing software resources running out
- Avoiding performance bottlenecks
- Mechanisms (implement functions) & Policies (how to use the mechanisms)
- Scaling solutions
 - asynchronous communication, decreased messaging
 - caching (all sorts of hierarchical memories: data is closer to the user → no wait / assumes rather stable data!)
 - distribution i.e. partitioning of tasks or information (domains) (e.g., DNS)

Security: confidentiality, integrity, availability

- Vulnerable components (Fig. 2.14)
 - channels (links <-> end-to-end paths)
 - processes (clients, servers, outsiders)

Threats

- information leakage
- integrity violation
- denial of service
- illegitimate usage

Figure 2.14 The enemy

The enemy

Communication channel

Copy of m

m

Current issues:

denial-of-service attacks, security of mobile code, information flow;

Process

р

open wireless ad-hoc environments

CoDoKi, Fig. 2.14

Process

Principal (user)

result

Network

Figure 2.13 Objects and principals October 31, 10

CoDoKi, Fig. 2.13

Server

Principal (server)

Defeating Security Threats

- Techniques
 - cryptography
 - authentication
 - access control techniques
 - intranet: firewalls
 - services, objects: access control lists, capabilities
- Policies
 - access control models
 - information flow models
- Leads to: secure channels, secure processes, controlled access, controlled flows

Environment challenges

- A distributed system:
 - HW / SW components in different nodes
 - components communicate (using messages)
 - components coordinate actions (using messages)
- Distances between nodes vary
 - in time: from msecs to weeks
 - in space: from mm's to Mm's
 - in dependability
- Autonomous independent actors (=> even independent failures!)

No global clock

Global state information not possible

Challenges: Design Requirements

- Performance issues
 - responsiveness
 - throughput
 - load sharing, load balancing
 - issue: algorithm vs. behavior
- Quality of service
 - correctness (in nondeterministic environments)
 - reliability, availability, fault tolerance
 - security
 - performance
 - adaptability

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Where is the borderline between a computer and distributed system?

Hardware Concepts

- Characteristics which affect the behavior of software systems
- The platform
 - the individual nodes ("computer", "processor")
 - communication between two nodes
 - organization of the system (network of nodes)
- ... and its characteristics
 - capacity of nodes
 - capacity (throughput, delay) of communication links
 - reliability of communication (and of the nodes)
- \rightarrow Which ways to distribute an application are feasible

Basic Organizations of a Node

1.6 Different basic organizations and memories in distributed computer systems

Essential characteristics for software design

- fast and reliable communication (shared memory)
 => cooperation at "instruction level" possible
- bottleneck: memory (especially the "hot spots")

Multiprocessors (2)

Memories

1.8 a) A crossbar switch

b) An omega switching network

A possible bottleneck: the switch

(b)

1-9 a) Grid

b) Hypercube

A new design aspect: locality at the network level

General Multicomputer Systems

- Hardware: see Ch1 (internet etc.)
- Loosely connected systems
 - nodes: autonomous
 - communication: slow and vulnerable
 - = > cooperation at "service level"
- Application architectures
 - multiprocessor systems: parallel computation
 - multicomputer systems: distributed systems
 - (how are parallel, concurrent, and distributed systems different?)

Software Concepts

System	Description	Main Goal
DOS	Tightly-coupled operating system for multiprocessors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middle- ware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

DOS: Distributed OS; NOS: Network OS

History of distributed systems

- RPC by Birel &Nelson -84
- network operating systems, distributed operating systems, distributed computing environments in mid-1990; middleware referred to relational databases
- Distributed operating systems "single computer"
 - Distributed process management
 - process lifecycle, inter-process communication, RPC, messaging
 - Distributed resource management
 - resource reservation and locking, deadlock detection
 - Distributed services
 - distributed file systems, distributed memory, hierarchical global naming

History of distributed systems

- late 1990's distribution middleware well-known
 - generic, with distributed services
 - supports standard transport protocols and provides standard
 API
 - available for multiple hardware, protocol stacks, operating systems
 - e.g., DCE, COM, CORBA
- present middlewares for
 - multimedia, realtime computing, telecom
 - ecommerce, adaptive / ubiquitous systems

Misconceptions tackled

- The network is reliable
- The network is secure
- The network is homogeneous
- The topology does not change
- Latency is zero
- Bandwith is infinite
- Transport cost is zero
- There is one administrator
- There is inherent, shared knowledge

Multicomputer Operating Systems (1)

1.14 General structure of a multicomputer operating system

Multicomputer Operating Systems (2)

1.15 Alternatives for blocking and buffering in message passing.

Distributed Shared Memory Systems (1)

- Pages of address space
 distributed among four
 machines
- b) Situation after CPU 1 references page 10
- c) Situation if page 10 is read only and replication is used

Distributed Shared Memory Systems (2)

1.18 False sharing of a page between two independent processes.

Network Operating System (1)

1-19 General structure of a network operating system.

1-20

Two clients and a server in a network operating system.

Network Operating System (3)

1.21 Different clients may mount the servers in different places.

Software Layers

- Platform: computer & operating system & ...
- Middleware:
 - mask heterogeneity of lower levels
 - (at least: provide a homogeneous "platform")
 - mask separation of platform components
 - implement communication
 - implement sharing of resources
- Applications: e-mail, www-browsers, ...

1-22 General structure of a distributed system as middleware.

Middleware

- Operations offered by middleware
 - RMI, group communication, notification, replication, ... (Sun
 - RPC, CORBA, Java RMI, Microsoft DCOM, ...)
- Services offered by middleware
 - naming, security, transactions, persistent storage, ...
- Limitations
 - ignorance of special application-level requirements

End-to-end argument:

Communication of application-level peers at both ends is required for reliability

Host 2

Middleware is a class of software technologies designed to help manage the complexity and heterogeneity inherent in distributed systems. It is defined as a layer of software above the operating system but below the application program that provides a common programming abstraction across a distributed system.

Bakken 2001: Encyclopedia entry

Middleware and Openness

1.23 In an open middleware-based distributed system, the protocols used by each middleware layer should be the same, as well as the interfaces they offer to applications.

Comparison between Systems

	Distributed OS			Middleware-based
Item	Multiproc. Multicomp.		Network OS	os
Degree of transparency	Very High	High	Low	High
Same OS on all nodes	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for communication	Shared memory	Messages	Files	Model specific
Resource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	Varies
Openness	Closed	Closed	Open	Open

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

More examples on distributed software architectures

Architectural Models

- Architectural models provide a high-level view of the distribution of functionality between system components and the interaction relationships between them
- Architectural models define
 - components (logical components deployed at physical nodes)
 - communication
- Criteria
 - performance
 - reliability
 - scalability, ..

- Client-server model: CoDoKi, Fig. 2.2
- Service provided by multiple

servers: Fig. 2.3

Needed:

- name service
- trading/broker service
- browsing service
- Proxy servers and caches, Fig. 2.4

Figure 2.2 Clients invoke individual servers CoDoKi, Fig. 2.2

An Example Client and Server (1)

/ / Definitions needed by clients and servers. #define TRUE 1 #define MAX PATH 255 /* maximum length of file name */ 1024 /* how much data to transfer at once */ #define BUF_SIZE /* file server's network address */ #define FILE_SERVER 243 /* Definitions of the allowed operations */ */ #define CREATE 1 /* create a new file -*/ 2 /* read data from a file and return it #define READ */ 3 /* write data to a file #define WRITE */ /* delete an existing file 4 #define DELETE /* Error codes. */ /* operation performed correctly */ #define OK 0 #define E_BAD_OPCODE -1 /* unknown operation requested */ */ -2 /* error in a parameter #define E_BAD_PARAM */ -3 /* disk error or other I/O error #define E_IO /* Definition of the message format. */ struct message { */ /* sender's identity long source; /* receiver's identity */ long dest; */ /* requested operation long opcode; */ /* number of bytes to transfer long count; */ /* position in file to start I/O long offset; */ /* result of the operation long result; */ /* name of file being operated on char name[MAX_PATH]; */ /* data to be read-or written char data[BUF_SIZE];

}; The *header.h* file used by the client and server.


```
#include <header.h>
void main(void) {
                                                /* incoming and outgoing messages
                                                                                                  */
     struct message ml, m2;
                                                                                                  */
                                                /* result code
    int r:
                                                /* server runs forever
                                                                                                  */
     while(TRUE) {
                                                                                                  */
         receive(FILE_SERVER, &ml); /* block waiting for a message
                                                                                                  */
                                                /* dispatch on type of request
         switch(ml.opcode) {
              case CREATE: r = do_create(&ml, &m2); break;
              case READ: r = do_read(&ml, &m2); break;
case WRITE: r = do_write(&ml, &m2); break;
case DELETE: r = do_delete(&ml, &m2); break;
              default: r = E_BAD_OPCODE;
                                                                                                  */
                                               /* return result to client
          m2.result = r;
                                                                                                  */
          send(ml.source, &m2);
                                                 /* send reply
   A sample server.
```

An Example Client and Server (3)

int cop s lo lo ir	de <header.h> py(char *src, char *dst){ truct message ml; ong position; ong client = 110; hitialize(); osition = 0;</header.h>	(a)	* procedure to copy file using the server ,* message buffer /* current file position /* client's address /* prepare for execution	*/ */ */
	o { ml.opcode = READ; ml.offset = position; ml.count = BUF_SIZE; strcpy(&ml.name, src); send(FILESERVER, &ml); receive(client, &ml);		 /* operation is a read /* current position in the file /* copy name of file to be read to message /* send the message to the file server /* block waiting for the reply 	*/ */ /* how many bytes to read*/ */ */
	<pre>/* Write the data just received t ml.opcode = WRITE; ml.offset = position; ml.count = ml.result; strcpy(&ml.name, dst); send(FILE_SERVER, &ml); receive(client, &ml); position += ml.result; while(ml.result > 0); eturn(ml.result >= 0 ? OK : ml result);</pre>	-	/* operation is a write /* current position in the file /* how many bytes to write /* copy name of file to be written to buf /* send the message to the file server /* block waiting for the reply /* ml.result is number of bytes written /* iterate until done	*/ */ */ */ */ */

A client using the server to copy a file.

1-28 The general organization of an Internet search engine into three different layers

Multitiered Architectures (1)

1-29 Alternative client-server organizations.

Client - server: generalizations

1-30 An example of a server acting as a client.

Mobile code

the service is provided using a procedure

executed by a process in the server

node

downloaded to the client and executed

locally Fig. 2.6

- push service: the initiator is the server
- Mobile agents
 - "a running program" (code & data)

travels

needed: an agent platform

a) client request results in the downloading of applet code

Variations on the Client-Server model (cont.)

Network computers

- "diskless workstations"
- needed code and data downloaded for execution

Thin clients

- "PC": user interface
- server: execution of computations (Fig. 2.7)
- example: Unix X-11 window system

Variations on the Client-Server model (cont.)

Figure 2.8 Spontaneous networking in a hotel

Modern Architectures

1-31 An example of horizontal distribution of a Web service.

Other Architectures

Chapter Summary

- Introduction into distributed systems
- Challenges and goals of distributing
- Examples of distributed systems