

R 3

. Chapter Outline

Overview of interprocess communication
Remote invocations (RPC etc.)
Message passing

Streams

Publish/subscribe

Multicast

Kangasharju: Distributed Systems

‘ Middleware Protocols

Application protocol
Application R L SR »

Middleware

Transport

Network

Data link

Physical

Network

An adapted reference model for networked communication.

Kangasharju: Distributed Systems

Remote Procedure Calls

Basic idea:

“passive” routines

Available for remote clients

Executed by a local worker process, invoked by local infrastructure
See examples in book

Kangasharju: Distributed Systems 4

RPC goals

Achieve access transparent procedure call
Cannot fully imitate
naming, failures, performance
global variables, context dependent variables, pointers
Call-by-reference vs. call-by-value
Call semantics
Maybe, at-least-once, at-most-once
Exception delivery
Can be enhanced with other properties
Asynchronous RPC
Multicast, broadcast

Location transparency, migration transparency, ...
Concurrent processing

Kangasharju: Distributed Systems

‘ RPC: a Schematic View

System A System B
XY Z
Thread P » FNCT(a,b)
c:={comp}
Y=FNCT(X,Y)* % return c.
a:=X; b:=Y;
RPC B | RPC
package | | package

Kangasharju: Distributed Systems

Implementation of RPC

RPC components:
RPC Service (two stubs)
interpretation of the service interface
packing of parameters for transportation
Transportation service: node to node
responsible for message passing
part of the operating system
Name service: look up, binding

name of procedure, interface definition

Kangasharju: Distributed Systems

R 3

- Passing Value Parameters

Client machine Server machine

Client process | Server process
1. Client call to ,
procedure Implementation 6. Stub makes
of add local call to "add"
_ Server stub _
— k=add(ij) — Client stub ~] 1 k=addij
« N n t/// \ « n
proc: "add proc: "add
int.__val() 2. Stub builds int:_vai(l >. Stub unpacks
int.__ val(j) message int._val(j) message
A
. proc: "add" 4. Server OS
Client OS it val() Server OS hands message
_ int: _val() W, to server stub

3. Message is sent
across the network

Steps involved in doing remote computation through RPC

Kangasharju: Distributed Systems

.

Writing a Client and a Server

Uuidgen]

Interface

definition file

v

IDL compiler

Client code

Client stub

Header

Server stub

#include

Client
object file

Client stub
object file

v

Linker

h 4

Client
binary

The steps in writing a client and a server in DCE RPC.

Runtime
library

Kangasharju: Distributed Systems

#include

Server code

;

[_—ch compitr

Server stub
object file

Runtime
library

Server
object file

\ 4

h 4

Server
binary

.

Directory machine

Binding a Client to a Server

Directory
server |y
3. Look up server
Client machine /

1 2. Do RPC

Client

——

4. Ask for endpoint

service

2. Register
\ Server machine

Server

I

V'Y
DCE
daemon

1. Register endpoint

T

W

. Endpoint

Client-to-server binding in DCE.

Kangasharju: Distributed Systems

table

10

Implementation of RPC

Server: who will execute the procedure?
One server process
infinite loop, waiting in “receive”
call arrives : the process starts to execute
one call at a time, no mutual exclusion problems
A process is created to execute the procedure
parallelism possible
overhead
mutual exclusion problems to be solved
One process, a set of thread skeletons:

one thread allocated for each call

Kangasharju: Distributed Systems

11

Distributed Objects

Remote Method Invocation ~ RPC
A distributed interface
binding: download the interface to the client => proxy
“server stub” ~ skeleton
The object
resides on a single machine (possible distribution: hidden)
if needed: “object look™ through an adapter
an object may be persistent or transient
Object references:
typically: system-wide
binding: implicit or explicit resolving of an object reference
Binding and invocation
Examples: CORBA, DCOM (Ch. 10)

Kangasharju: Distributed Systems 12

. Distributed Objects

Client machine Server machine
A Object
Client Server A
< State
Same
Client inter;acet < Method
invokes = as opjec
a method
A/ Skeleton ’,/__* L Interface
—__ invokes — [|
Proxy same method ‘ Skeleton
at object A
Client OS Server OS

N J

Network \

Marshalled invocation
Is passed across network

Fig. 2-16. Common organization of a remote object with client-side proxy.

Kangasharju: Distributed Systems 13

.

Object Adapter

Fig. 3-8.
Organization of an object server
supporting different activation

policies.

Kangasharju: Distributed Systems

Server with three objects

N

Server machine

L

Object's stub
(skeleton)

5

=

Obje

ct adapter

‘ Object adapter

L

A

Request
demultiplexer

Local OS T

|

14

Binding a Client to an Object

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = ..; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)
Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = ...; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to ...

// ... the local proxy

obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

Fig. 2-17.

(a) Example with implicit binding using only global references
(b) Example with explicit binding using global and local references

Kangasharju: Distributed Systems 15

R

Parameter Passing

Local
reference L1 |

Machine A
[Local object J
o1 Remote
\“ reference R1
.{ .\
\ N _ -

Client code with 4
RMI to server at C

(proxy)

Machine B

-

emote objectJ
02

LR

New local
reference -

L

Copy of O1

A

Copy of R1 to O2

Remote)

invocation with ﬁ ° e

L1 and R1 as v

parameters Server code
Machine C

Fig. 2-18.The situation when passing an object by reference or by value.

Kangasharju: Distributed Systems

(method implementation)

16

Design Issues

Language independent interface definition
Exception handling
Delivery guarantees

RPC / RMI semantics

maybe

at-least-once

at-most-once

(un-achievable: exactly-once)
Transparency (algorithmic vs. behavioral)

Kangasharju: Distributed Systems

17

RPC: Types of failures

Client unable to locate server
Request message lost
retransmit a fixed number of times
Server crashes after receiving a request or reply message lost
(cannot be told apart!)
Client resubmits request, server chooses:
Re-execute procedure: service should be idempotent
Filter duplicates: server should hold on to results until
acknowledged
Client crashes after sending a request
Orphan detection: reincarnations, expirations

Reporting failures breaks transparency

Kangasharju: Distributed Systems 18

Fault tolerance measures

Retransmit | Duplicate | Re-execute/ | invocation
request | filtering retransmit | semantics
no N/A N/A maybe
yes no re-execute at-least-
once
yes yes retransmit at-most-
reply once

Kangasharju: Distributed Systems

19

‘ CORBA

Interface IDL Implementation
Repository Compiler Repository

in args Object
operation()

out args +
return

SKEL

DIl IDL ORB
STUBS INTERFACE [Object Adapter

GIOP/IIOP/ESIOPS

*« CORBA shields applications from heterogeneous platform dependencies
*e.g., languages, operating systems, networking protocols, hardware

Kangasharju: Distributed Systems 20

‘ XML RPC

XML-RPC

Source: JY Stervinou

Kangasharju: Distributed Systems

RPC: Different Systems

Asynchronous RPC

A
HTTP

| NobleNet RPC |

| TIBCO TIB/Rendezvous |
| Talarian SmartSockets |
|Active ActiveWeb |

[NEON NEONet |

[IBM MQSeries |

[TIBCO TIB/ObjectBus |

| BEA MessageQ |

FPublish/subscribe

[Microsoft MSMQ |

| Momentum XIPC |

Scalability

| Visigenic VisiBroker

|lona Orbix |
|[BEA ObjectBroker |

IBI EDA/SQL

Message-oriented

|Oracle Connect |

middleware

| Intersolv DataDirect |

[BEA Tuxedo |
|IBM Encina
JDBC [NCR TOP END
[Microsoft MTS |
SQL-oriented onous RPI
— >
Recoverability

Kangasharju: Distributed Systems

22

‘Communication: Message Passing

X=£(.);

Process B

Net

receive X from A

send X to B Y=£(X);

X:10 X:5
s |l Data Communication || OS
kernel Network kernel

Kangasharju: Distributed Systems

23

Binding (1)

Structure of communication network
one-to-one (two partners, one shared channel)
many-to-one (client-server)
one-to-many, many-to-many (client-service; group
communication)

Types of message passing
send, multicast, broadcast

on any channel structure

Kangasharju: Distributed Systems

24

Binding (2)
Time of binding
static naming (at programming time)
dynamic naming (at execution time)

explicit binding of channels

implicit binding through name service

Kangasharju: Distributed Systems

25

e Persistence and Synchronicity in Communication

Messaging interface

Sending host Communication server Communication server Receiving host
Buffer independent
o Routing of communicating Routin o
Application orogram hosts prograr?ﬂ Application
X - —& _

&)| Toother (remote) ——
- = communication - — -
:J H H server \ L—J H ﬂ‘

S 0Ss N 0S \OS

710 T »\| - T
Local buffer Local network Internetwork , Local buffer
Incoming message

General organization of a communication system in which hosts are connected through a network

=

Kangasharju: Distributed Systems 26

Persistence and Synchronicity in Communication

Persistent communication
a submitted message is stored in the system until delivered
to the receiver
(the receiver may start later, the sender may stop earlier)
Transient communication
a message is stored only as long as the sending and
receiving applications are executing

(the sender and the receiver must be executing in parallel)

Kangasharju: Distributed Systems 27

‘ Persistence and Synchronicity in Communication

//1
. Post |~ .
Pony and rider office | »
A
Post Post
office office

Post

Mail stored and sorted, to office

be sent out depending on destination
and when pony and rider available

Persistent communication of letters back in the days of the Pony Express.

Kangasharju: Distributed Systems

28

Persistence and Synchronicity in
Communication

Asynchronous communication
the sender continues immediately after submission
Synchronous communication
the sender is blocked until
the message is stored at the receiving host (
synchrony)
the message is delivered to the receiver (

the response has arrived ()

Kangasharju: Distributed Systems

29

= Persistence and Synchronicity in Communication

A sends message A sends message A stobped
and continues ﬁ, anir?ped and waits until accepted runniﬁg
A A
Message is stored
at B's location for Accepted
later delivery \ Time
5 Bo---- O\—
| B starts and B is not B starts and
Bis not receives running receives
running message message

(@) (b)

Persistent asynchronous communication

Persistent synchronous communication

Kangasharju: Distributed Systems 30

Persistence and Synchronicity in Communication

A sends message
and continues

Message can be
sentonly if B is
running

Time
—Pp

B receives
message

©)

Send request and wait
until received

A

Request
Is received

B W—
Running, but doing Process
something else request

(d)

Transient asynchronous communication
Receipt-based transient synchronous communication

Kangasharju: Distributed Systems

31

e Persistence and Synchronicity in Communication

Send request and wait until Send request
accepted and wait for reply
A y - A
________________ A ——
Request Request Accepted
IS received N Is received N
ime ime
5 — —aY B N \ S S —>
—— ~t . _\h—_‘w ‘~—/ S—
Running, but doing Process Running, but doing Process
something else request something else request
(e) (f)

Delivery-based transient synchronous communication at message delivery
Response-based transient synchronous communication

Kangasharju: Distributed Systems 32

The Message-Passing Interface (MPI)

Traditional communication: sockets
Platform of concern: high-performance multicomputers
Issue: easy-to-use communication for applications
Sockets? No: wrong level, non-suitable protocols
a hew message passing standard: MPI
designed for parallel applications, transient communication
no communication servers

no failures (worth to be recovered from)

Kangasharju: Distributed Systems 33

“\The Message-Passing Interface (MPI)

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv

Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

Some of the most intuitive message-passing primitives of MPI.

Kangasharju: Distributed Systems

34

‘_*‘ Messadge-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

||| -
1111 -

———

Receiver Receiver Receiver Receiver
running passive running passive
(@) (b) () (d)

Four combinations for loosely-coupled communications using queues.

Kangasharju: Distributed Systems

Message-Queuing Model

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.

Basic interface to a queue in a message-queuing system.

Kangasharju: Distributed Systems

36

= General Architecture of a Message-Queuing System

Look-up
Sender | transport-level Receiver

address of queue
Queuing Queue-level ,-f”/’tEL‘ e
layer 4 address 1 layer

Local OS ™ Address look-up Local OS T\
database
Network

The relationship between queue-level addressing and network-level

addressing.

Kangasharju: Distributed Systems

J ‘ Transport-level

address

37

‘ General Architecture of a Message-Queuing System

Sender A
Application
PP Application
CReceive
queue
|11 €— R2] J
Message |11
I |l—\\ gg -
Send queue " / .
[T 11 [
. Application
| 1]
R1 - 1] J
= 111] :. 1]
/'W < > lﬁ Receiver B
Application
Router

2-29. The general organization of a message-queuing system with routers.

Kangasharju: Distributed Systems

38

Message oriented middleware

appl. A appl. B

asynchronous messages

reliable, fault-tolerant
no loss, duplication, permutation, cluttering ~ 1
: o msg > Q
persistent subscriptions
models supported queue msqg transfer
message queue server System
request-response
multicast SSL tms
publish-subscribe 1
msg msg transfer
QUEUE 11 ovstem
server
Q2 ~

appl. C

Kangashariju: Distributed Systems 39

MOM = message oriented middleware

Basic model: pipe between client and server
asynchronous messaging natural, synchronous
communication cumbersome
message queues support reliability of message transport
violates access transparency, no support for data
heterogeneity unless in programming language mapping, no
support for transactions
suitable for event notifications, publish/subscribe-based
architectures

persistent message queues support fault tolerance

Kangasharju: Distributed Systems 40

| . MOM Topics

Topics for variation and development
persistent/transient msgs
FIFO/priority queues
translations of msgs
abstractions on msg ordering
multithreading, automatic load balancing
msg routing (source, cost, changes in topology etc)
secure transfer of msgs (at least between msg servers)

Kangasharju: Distributed Systems 41

. Message Brokers

Database with

Source client Message broker conversion rules Destination client
\ \ /
h | < 'Z

Broker
program

R
0S % 0S
)

OS

]

The general organization of a message broker in a message-queuing system.

Kangasharju: Distributed Systems 42

‘ CORBA Events & Notifications

Event namespace (names and attributes)
Typed events (header+body; fixed + other)

Consumer event filtering, event batching, event priority, event expiration, logging,

internationalization, flow control mechanism

QoS properties
event channel

consumerl p CKsupplierl
| |

consumerN typed events ~supplierN

filter n constraints

Kangasharju: Distributed Systems 43

Publish-subscribe

shared mailbox, everyone can send to it
subscribers can select what filter to use
guaranteed delivery of all relevant messages to all
subscribers
models: header-based, topic-based
problems
scalability: comparing filters and messages
ordering of messages

Kangasharju: Distributed Systems 44

R 3

Stream communication

Sending process
Z

-

|

Program

OS

Setting up a stream between two processes across a network.

Stream

Receiving process

A

oS

Network

Kangasharju: Distributed Systems

(@)

T— r T

Specifying QoS (1)

Characteristics of the Input

Service Required

maximum data unit size (bytes)
Token bucket rate (bytes/sec)
Toke bucket size (bytes)

Maximum transmission rate (bytes/sec)

Loss sensitivity (bytes)

Loss interval (usec)

Burst loss sensitivity (data units)
Minimum delay noticed (usec)
Maximum delay variation (usec)

Quality of guarantee

A flow specification.

Kangasharju: Distributed Systems

46

.

Specifying QoS (2)

Application] —
/"‘d—v_ﬁ““‘-\
Irregular stream One token is added
of data units to the bucket every AT
e ee - e e
Regular stream
The principle of a token bucket algorithm.

Ka

ngasharju: Distributed Systems 47

‘ Setting Up a Stream

Sender process RSVP-enabled host

A
: — RSVP process
Application Policy |
control
Application | <> ?
data stream \\

RSVP

program
Local OS T .

\ 4 Reservation requests
Admission from other RSVP hosts

Data link layer
control
/W‘/_\ RN
Data link layer v
data stream Kt \k
.4

k Internetwork

—
Local network —
Setup information to ww

other RSVP hosts

The basic organization of RSVP for resource reservation in a distributed
system.

Kangasharju: Distributed Systems 48

Synchronization Mechanisms (1)

Receiver's machine

Procedure that reads
two audio data units for
each video data unit \

Incoming stream

Application

rL_J

OS

Network

The principle of explicit synchronization on the level data units.

Kangasharju: Distributed Systems

gl

‘ Synchronization Mechanisms (2)

Application tells
Receiver's machine middleware what

Multimedi trol / to do with incoming
ultimedia contro —

streams
is part of middleware Application)

53\ C
Middleware layer %

Incoming stream ? OS

_______ a J

The principle of synchronization as supported by high-level interfaces.

Kangasharju: Distributed Systems 50

Other forms of communication

Multicast (application level)
overlay network where relays not members of group (tree,
mesh)

Gossip-based data dissemination
infect other nodes with useful data by an epidemic algorithm
periodically exchange information with a random node

states: infected, susceptible, data removed

Kangasharju: Distributed Systems 51

Chapter Summary

Overview of different interprocess communication
technigues and solutions

Remote invocations (RPC etc.)

Message passing

Streams

Publish/subscribe

Multicast (more on this later)

Kangasharju: Distributed Systems

52

