
Interprocess Communication

 Tanenbaum, van Steen: Ch4, Ch 10
 CoDoKi: Ch2, Ch3, Ch5

Fall 2010
Jussi Kangasharju

2 Kangasharju: Distributed Systems

Chapter Outline

 Overview of interprocess communication
 Remote invocations (RPC etc.)
 Message passing
 Streams
 Publish/subscribe
 Multicast

3 Kangasharju: Distributed Systems

Middleware Protocols

An adapted reference model for networked communication.

General purpose services
- Naming, “browsing”
- Security
- Atomicity
- Higher-level
communication

- RPC, RMI
- Message passing
- Reliable multicast

4 Kangasharju: Distributed Systems

Remote Procedure Calls

 Basic idea:
  “passive” routines

 Available for remote clients

 Executed by a local worker process, invoked by local infrastructure

 See examples in book

5 Kangasharju: Distributed Systems

RPC goals
 Achieve access transparent procedure call
 Cannot fully imitate

 naming, failures, performance

 global variables, context dependent variables, pointers

 Call-by-reference vs. call-by-value

 Call semantics
 Maybe, at-least-once, at-most-once

 Exception delivery

 Can be enhanced with other properties
 Asynchronous RPC

 Multicast, broadcast

 Location transparency, migration transparency, …

 Concurrent processing

6 Kangasharju: Distributed Systems

RPC: a Schematic View

FNCT(a,b)

c:={comp}

return c.

Thread P

…

Y=FNCT(X,Y)

…

X, Y, Z

System A System B

RPC
package

RPC
package

a:=X; b:=Y;

Y

Y=FNCT(X,Y)

7 Kangasharju: Distributed Systems

Implementation of RPC

 RPC components:
 RPC Service (two stubs)

-  interpretation of the service interface

-  packing of parameters for transportation

 Transportation service: node to node

-  responsible for message passing

-  part of the operating system

 Name service: look up, binding
 name of procedure, interface definition

8 Kangasharju: Distributed Systems

Passing Value Parameters

Steps involved in doing remote computation through RPC

9 Kangasharju: Distributed Systems

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

10 Kangasharju: Distributed Systems

Binding a Client to a Server

Client-to-server binding in DCE.

11 Kangasharju: Distributed Systems

Implementation of RPC

 Server: who will execute the procedure?
 One server process

  infinite loop, waiting in “receive”

 call arrives : the process starts to execute

 one call at a time, no mutual exclusion problems

 A process is created to execute the procedure
 parallelism possible

 overhead

 mutual exclusion problems to be solved

 One process, a set of thread skeletons:
 one thread allocated for each call

12 Kangasharju: Distributed Systems

Distributed Objects

 Remote Method Invocation ~ RPC
 A distributed interface

 binding: download the interface to the client => proxy

  “server stub” ~ skeleton

 The object
  resides on a single machine (possible distribution: hidden)

  if needed: “object look” through an adapter

 an object may be persistent or transient

 Object references:
  typically: system-wide

 binding: implicit or explicit resolving of an object reference

 Binding and invocation
 Examples: CORBA, DCOM (Ch. 10)

13 Kangasharju: Distributed Systems

Distributed Objects

Fig. 2-16. Common organization of a remote object with client-side proxy.

14 Kangasharju: Distributed Systems

Fig. 3-8.

 Organization of an object server

supporting different activation

policies.

Object Adapter

15 Kangasharju: Distributed Systems

Binding a Client to an Object

Fig. 2-17.
  (a) Example with implicit binding using only global references
  (b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

 (a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to …

 // … the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

 (b)

16 Kangasharju: Distributed Systems

Parameter Passing

Fig. 2-18.The situation when passing an object by reference or by value.

17 Kangasharju: Distributed Systems

Design Issues

 Language independent interface definition
 Exception handling
 Delivery guarantees

 RPC / RMI semantics

 maybe

 at-least-once

 at-most-once

  (un-achievable: exactly-once)

 Transparency (algorithmic vs. behavioral)

18 Kangasharju: Distributed Systems

RPC: Types of failures

  Client unable to locate server

  Request message lost

  retransmit a fixed number of times

  Server crashes after receiving a request or reply message lost

(cannot be told apart!)

  Client resubmits request, server chooses:

-  Re-execute procedure: service should be idempotent

-  Filter duplicates: server should hold on to results until

acknowledged

  Client crashes after sending a request

  Orphan detection: reincarnations, expirations

  Reporting failures breaks transparency

19 Kangasharju: Distributed Systems

Fault tolerance measures

at-most-
once

retransmit
reply

yes yes

at-least-
once

re-execute no yes

maybe N/A N/A no

invocation
semantics

Re-execute/
retransmit

Duplicate
filtering

Retransmit
request

20 Kangasharju: Distributed Systems

CORBA

Interface
Repository

IDL
Compiler

Implementation
Repository

Client OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

• CORBA shields applications from heterogeneous platform dependencies
• e.g., languages, operating systems, networking protocols, hardware

21 Kangasharju: Distributed Systems

XML RPC

22 Kangasharju: Distributed Systems

RPC: Different Systems

23 Kangasharju: Distributed Systems

Communication: Message Passing

…
X=f(..);
send X to B
...

…
receive X from A
Y=f(X);
...

X: 10 X: 5

Process A Process B

OS procedure send buffer
kernel procedure receive A<=>B

Node

xxxxx
xxxxx

xxxxx
xxxxx 10

Net

OS Data Communication OS
kernel Network kernel

24 Kangasharju: Distributed Systems

Binding (1)

 Structure of communication network
 one-to-one (two partners, one shared channel)

 many-to-one (client-server)

 one-to-many, many-to-many (client-service; group

communication)

 Types of message passing
 send, multicast, broadcast

 on any channel structure

25 Kangasharju: Distributed Systems

Binding (2)

 Time of binding

 static naming (at programming time)

 dynamic naming (at execution time)

-  explicit binding of channels

-  implicit binding through name service

26 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 General organization of a communication system in which hosts are connected through a network

27 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

 Persistent communication
  a submitted message is stored in the system until delivered

to the receiver

  (the receiver may start later, the sender may stop earlier)

 Transient communication
  a message is stored only as long as the sending and

receiving applications are executing

  (the sender and the receiver must be executing in parallel)

28 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

Persistent communication of letters back in the days of the Pony Express.

29 Kangasharju: Distributed Systems

Persistence and Synchronicity in
Communication

 Asynchronous communication
  the sender continues immediately after submission

 Synchronous communication
  the sender is blocked until

-  the message is stored at the receiving host (receipt-

based synchrony)

-  the message is delivered to the receiver (delivery based)

-  the response has arrived (response based)

30 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

a)  Persistent asynchronous communication

b)  Persistent synchronous communication

31 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

c)  Transient asynchronous communication
d)  Receipt-based transient synchronous communication

32 Kangasharju: Distributed Systems

Persistence and Synchronicity in Communication

e)  Delivery-based transient synchronous communication at message delivery
f)  Response-based transient synchronous communication

33 Kangasharju: Distributed Systems

The Message-Passing Interface (MPI)

 Traditional communication: sockets
 Platform of concern: high-performance multicomputers
  Issue: easy-to-use communication for applications
 Sockets? No: wrong level, non-suitable protocols
 a new message passing standard: MPI

 designed for parallel applications, transient communication

 no communication servers

 no failures (worth to be recovered from)

34 Kangasharju: Distributed Systems

The Message-Passing Interface (MPI)

Some of the most intuitive message-passing primitives of MPI.

Primitive Meaning

MPI_bsend Append outgoing message to a local send buffer

MPI_send Send a message and wait until copied to local or remote buffer

MPI_ssend Send a message and wait until receipt starts

MPI_sendrecv Send a message and wait for reply

MPI_isend Pass reference to outgoing message, and continue

MPI_issend Pass reference to outgoing message, and wait until receipt starts

MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block

35 Kangasharju: Distributed Systems

Message-Queuing Model (1)

Four combinations for loosely-coupled communications using queues.

2-26

36 Kangasharju: Distributed Systems

Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message

Poll Check a specified queue for messages, and remove the first. Never block.

Notify Install a handler to be called when a message is put into the specified queue.

37 Kangasharju: Distributed Systems

General Architecture of a Message-Queuing System

 The relationship between queue-level addressing and network-level

addressing.

38 Kangasharju: Distributed Systems

2-29. The general organization of a message-queuing system with routers.

General Architecture of a Message-Queuing System

39 Kangasharju: Distributed Systems

Message oriented middleware

  asynchronous messages
  reliable, fault-tolerant
  no loss, duplication, permutation, cluttering

  persistent subscriptions
  models supported

  message queue
  request-response
  multicast
  publish-subscribe

appl. A appl. B

appl. C

msg
queue
server

msg transfer
system

Q1

msg
queue
server

msg transfer
system

Q2

SSL tms

40 Kangasharju: Distributed Systems

MOM = message oriented middleware

 Basic model: pipe between client and server
 asynchronous messaging natural, synchronous

communication cumbersome

 message queues support reliability of message transport

 violates access transparency, no support for data

heterogeneity unless in programming language mapping, no

support for transactions

 suitable for event notifications, publish/subscribe-based

architectures

 persistent message queues support fault tolerance

41 Kangasharju: Distributed Systems

MOM Topics

 Topics for variation and development
 persistent/transient msgs

 FIFO/priority queues

  translations of msgs

 abstractions on msg ordering

 multithreading, automatic load balancing

 msg routing (source, cost, changes in topology etc)

 secure transfer of msgs (at least between msg servers)

42 Kangasharju: Distributed Systems

Message Brokers

The general organization of a message broker in a message-queuing system.

43 Kangasharju: Distributed Systems

CORBA Events & Notifications

  Event namespace (names and attributes)

  Typed events (header+body; fixed + other)

  Consumer event filtering, event batching, event priority, event expiration, logging,

internationalization, flow control mechanism

QoS properties

consumer1

consumerN

supplier1

supplierN

event channel

typed events

filter n constraints

... ...

44 Kangasharju: Distributed Systems

Publish-subscribe

 shared mailbox, everyone can send to it
 subscribers can select what filter to use
 guaranteed delivery of all relevant messages to all

subscribers
 models: header-based, topic-based
 problems

 scalability: comparing filters and messages

 ordering of messages

45 Kangasharju: Distributed Systems

Stream communication

  Setting up a stream between two processes across a network.

46 Kangasharju: Distributed Systems

Specifying QoS (1)

  A flow specification.

Characteristics of the Input Service Required

 maximum data unit size (bytes)

 Token bucket rate (bytes/sec)

 Toke bucket size (bytes)

 Maximum transmission rate (bytes/sec)

 Loss sensitivity (bytes)

 Loss interval (µsec)

 Burst loss sensitivity (data units)

 Minimum delay noticed (µsec)

 Maximum delay variation (µsec)

 Quality of guarantee

47 Kangasharju: Distributed Systems

Specifying QoS (2)

  The principle of a token bucket algorithm.

48 Kangasharju: Distributed Systems

Setting Up a Stream

  The basic organization of RSVP for resource reservation in a distributed
system.

49 Kangasharju: Distributed Systems

Synchronization Mechanisms (1)

  The principle of explicit synchronization on the level data units.

50 Kangasharju: Distributed Systems

Synchronization Mechanisms (2)

  The principle of synchronization as supported by high-level interfaces.

2-41

51 Kangasharju: Distributed Systems

Other forms of communication

 Multicast (application level)
 overlay network where relays not members of group (tree,

mesh)

 Gossip-based data dissemination
  infect other nodes with useful data by an epidemic algorithm

 periodically exchange information with a random node

 states: infected, susceptible, data removed

52 Kangasharju: Distributed Systems

Chapter Summary

 Overview of different interprocess communication
techniques and solutions

 Remote invocations (RPC etc.)
 Message passing
 Streams
 Publish/subscribe
 Multicast (more on this later)

