
Peer-to-Peer Networks

Chapter 3: Networks, Searching and
Distributed Hash Tables

Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

 Searching and addressing
 Structured and unstructured networks

 Distributed Hash Tables
 What they are?

 How they work?

 What are they good for?

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry

 Networks and graphs
 Graph theory meets networking

 Different types of graphs and their properties

Kangasharju: Peer-to-Peer Networks 3

Searching and Addressing

  Two basic ways to find objects:
1.  Search for them
2.  Address them using their unique name
  Both have pros and cons (see below)
  Most existing P2P networks built on searching, but some

networks are based on addressing objects
  Difference between searching and addressing is a very

fundamental difference
  Determines how network is constructed

  Determines how objects are placed

  “Determines” efficiency of object location

  Let’s compare searching and addressing

Kangasharju: Peer-to-Peer Networks 4

Addressing vs. Searching

Addressing

  Pros:

  Each object uniquely identifiable

  Object location can be made efficient

  Cons:

  Need to know unique name

  Need to maintain structure required

by addresses

Searching

  Pros:

  No need to know unique names

-  More user friendly

  Cons:

  Hard to make efficient

-  Can solve with money, see Google

  Need to compare actual objects to know

if they are same

•  “Addressing” networks find objects by addressing them with their unique name
(cf. URLs in Web)
•  “Searching” networks find objects by searching with keywords that match
objects’s description (cf. Google)

Kangasharju: Peer-to-Peer Networks 5

Addressing vs. Searching: Examples

Searching Addressing

Physical name
of object

Searching in P2P networks,

Searching in filesystem

(Desktop searches)

(Search components of URL with Google?)

URLs in Web

Logical name
of object

?

(Search components of URNs)

Object names in DHT,

URNs

Content or
metadata of

object

Searching in P2P networks,

Standard Google search

Desktop searches

N/A

Kangasharju: Peer-to-Peer Networks 6

Searching, Addressing, and P2P

 We can distinguish two main P2P network types
Unstructured networks/systems
 Based on searching
 Unstructured does NOT mean complete lack of structure

 Network has graph structure, e.g., scale-free
 Network has structure, but peers are free to join anywhere

and objects can be stored anywhere
 So far we have seen unstructured networks
Structured networks/systems
 Based on addressing
 Network structure determines where peers belong in the

network and where objects are stored
 How to build structured networks?

Kangasharju: Peer-to-Peer Networks 7

Another Classification of P2P Systems

 Sometimes P2P systems classified in generations
 No 100% consensus on what is in which generation
 1st generation

 Typically: Napster

 2nd generation
 Typically: Gnutella

 3rd generation
 Typically: Superpeer networks

 4th generation
 Typically: Distributed hash tables

 Note: For DHTs, no division into generations yet

Kangasharju: Peer-to-Peer Networks 8

Distributed Hash Tables

 What are they?
 How they work?
 What are they good for?
 Examples:

 Chord

 CAN

 Plaxton/Pastry/Tapestry

Kangasharju: Peer-to-Peer Networks 9

DHT: Motivation

 Why we need DHTs?
 Searching in P2P networks is not efficient

 Either centralized system with all its problems

 Or distributed system with all its problems

 Hybrid systems cannot guarantee discovery either

 Actual file transfer process in P2P network is scalable
 File transfers directly between peers

 Searching does not scale in same way
 Original motivation for DHTs: More efficient searching and

object location in P2P networks
 Put another way: Use addressing instead of searching

Kangasharju: Peer-to-Peer Networks 10

Recall: Hash Tables

 Hash tables are a well-known data structure
 Hash tables allow insertions, deletions, and finds in

constant (average) time
 Hash table is a fixed-size array

 Elements of array also called hash buckets

 Hash function maps keys to elements in the array
 Properties of good hash functions:

 Fast to compute

 Good distribution of keys into hash table

 Example: SHA-1 algorithm

Kangasharju: Peer-to-Peer Networks 11

Hash Tables: Example

 Hash function:
hash(x) = x mod 10

  Insert numbers 0, 1, 4, 9,
16, and 25

 Easy to find if a given key
is present in the table

0

1

2

6

4

8

3

7

9

5

0
1

4

25
16

9

Kangasharju: Peer-to-Peer Networks 12

Distributed Hash Table: Idea

 Hash tables are fast for
lookups

  Idea: Distribute hash
buckets to peers

 Result is Distributed Hash
Table (DHT)

 Need efficient mechanism
for finding which peer is
responsible for which
bucket and routing
between them

0

1

2

6

4

8

3

7

9

5

0
1

4
25
16

9

Kangasharju: Peer-to-Peer Networks 13

DHT: Principle

  In a DHT, each node is
responsible for one or more
hash buckets

 As nodes join and leave, the

responsibilities change

 Nodes communicate among
themselves to find the
responsible node

 Scalable communications

make DHTs efficient

 DHTs support all the normal
hash table operations

0

1

2

0
1

6

4

3

5

4
25
16

8

7

9 9

Kangasharju: Peer-to-Peer Networks 14

Summary of DHT Principles

 Hash buckets distributed over nodes
 Nodes form an overlay network

 Route messages in overlay to find responsible node

 Routing scheme in the overlay network is the difference
between different DHTs

 DHT behavior and usage:
 Node knows “object” name and wants to find it

-  Unique and known object names assumed

 Node routes a message in overlay to the responsible node

 Responsible node replies with “object”

-  Semantics of “object” are application defined

Kangasharju: Peer-to-Peer Networks 15

DHT Examples

  In the following look at some example DHTs
 Chord

 CAN

 Tapestry

 Several others exist too
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, …

 All DHTs provide the same abstraction:
 DHT stores key-value pairs

 When given a key, DHT can retrieve/store the value

 No semantics associated with key or value

 Difference is in overlay routing scheme

Kangasharju: Peer-to-Peer Networks 16

Chord

 Chord was developed at MIT
 Originally published in 2001 at Sigcomm conference

 Chord’s overlay routing principle quite easy to understand
 Paper has mathematical proofs of correctness and

performance

 Many projects at MIT around Chord
 CFS storage system

  Ivy storage system

 Plus many others…

Kangasharju: Peer-to-Peer Networks 17

Chord: Basics

 Chord uses SHA-1 hash function
 Results in a 160-bit object/node identifier

 Same hash function for objects and nodes

 Node ID hashed from IP address
 Object ID hashed from object name

 Object names somehow assumed to be known by everyone

 SHA-1 gives a 160-bit identifier space
 Organized in a ring which wraps around

 Nodes keep track of predecessor and successor

 Node responsible for objects between its predecessor and itself

 Overlay is often called “Chord ring” or “Chord circle”

Kangasharju: Peer-to-Peer Networks 18

Chord: Examples

 Below examples for:
 How to join the Chord ring

 How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 19

Joining: Step-By-Step Example

0

1

2

3

4

5

6

7

  Setup: Existing network with

nodes on 0, 1 and 4

  Note: Protocol messages simply

examples

  Many different ways to

implement Chord

  Here only conceptual example

  Covers all important aspects

Kangasharju: Peer-to-Peer Networks 20

Joining: Step-By-Step Example: Start

0

1

2

3

4

5

6

7

  New node wants to join

  Hash of the new node: 6

  Known node in network:

Node1

  Contact Node1

  Include own hash

Kangasharju: Peer-to-Peer Networks 21

Joining: Step-By-Step Example:
Situation Before Join

0

1

2

3

4

5

6

7

Data for]4;0]

Data for]0;1]

Data for]1;4]

No data

succ0

succ1 succ4

pred1 pred0

pred4

Kangasharju: Peer-to-Peer Networks 22

Joining: Step-By-Step Example:
Contact known node

0

1

2

3

4

5

6

7

JOIN 6

  Arrows indicate

open connections

  Example assumes

connections are kept

open, i.e., messages

processed recursively

  Iterative processing is

also possible

Kangasharju: Peer-to-Peer Networks 23

Joining: Step-By-Step Example:
Join gets routed along the network

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 24

Joining: Step-By-Step Example:
Successor of New Node Found

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 25

Joining: Step-By-Step Example:
Joining Successful + Transfer

0
1

2

3

4
5

6

7

TRANSFER
Data in range]4;6] Joining is successful

Old responsible node
transfers data that
should be in new
node

New node informs
Node4 about new
successor (not shown)

Note: Transferring can happen also later

Kangasharju: Peer-to-Peer Networks 26

Joining: Step-By-Step Example:
All Is Done

0

1

2

3

4

5

6

7 succ0

succ1 succ4

pred1 pred0

pred4 pred6

succ6

Data for]6;0]

Data for]0;1]

Data for]1;4]

Data for]4;6]

Kangasharju: Peer-to-Peer Networks 27

Storing a Value

 Node 6 wants to store
object with name “Foo”
and value 5

 hash(Foo) = 2
0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 28

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 29

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 30

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Value is now stored
in node 4.

Kangasharju: Peer-to-Peer Networks 31

Retrieving a Value

 Node 1 wants to get
object with name “Foo”

 hash(Foo) = 2
 Foo is stored on node 4

0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 32

Retrieving a Value

0

1

2

3

4

5

6

7

RETRIEVE 2

Kangasharju: Peer-to-Peer Networks 33

Retrieving a Value

0

1

2

3

4

5

6

7

RESULT 5

Kangasharju: Peer-to-Peer Networks 34

Chord: Scalable Routing

 Routing happens by passing message to successor
 What happens when there are 1 million nodes?

 On average, need to route 1/2-way across the ring

  In other words, 0.5 million hops! Complexity O(n)

 How to make routing scalable?
 Answer: Finger tables
 Basic Chord keeps track of predecessor and successor
 Finger tables keep track of more nodes

 Allow for faster routing by jumping long way across the ring

 Routing scales well, but need more state information

 Finger tables not needed for correctness, only
performance improvement

Kangasharju: Peer-to-Peer Networks 35

Chord: Finger Tables

  In m-bit identifier space, node has up to m fingers
 Fingers are stored in the finger table

 Row i in finger table at node n contains first node s that
succeeds n by at least 2i-1 on the ring

  In other words:
 finger[i] = successor(n + 2i-1)

 First finger is the successor
 Distance to finger[i] is at least 2i-1

Kangasharju: Peer-to-Peer Networks 36

Chord: Scalable Routing

  Finger intervals increase with distance

from node n

  If close, short hops and if far, long hops

Two key properties:

  Each node only stores information about

a small number of nodes

  Cannot in general determine the

successor of an arbitrary ID

  Example has three nodes at 0, 1, and 4

  3-bit ID space --> 3 rows of fingers

Start Int. Succ.

1 [1,2) 1

2 [2,4) 4

4 [4,0) 4

0

1

2

3

4

5

6

7

Start Int. Succ.

2 [2,3) 4

3 [3,5) 4

5 [5,1) 0

Start Int. Succ.

5 [5,6) 0

6 [6,0) 0

0 [0,4) 0

Kangasharju: Peer-to-Peer Networks 37

Chord: Performance

 Search performance of “pure” Chord O(n)
 Number of nodes is n

 With finger tables, need O(log n) hops to find the correct node
 Fingers separated by at least 2i-1

 With high probability, distance to target halves at each step

  In beginning, distance is at most 2m

 Hence, we need at most m hops

 For state information, “pure” Chord has only successor and
predecessor, O(1) state

 For finger tables, need m entries
 Actually, only O(log n) are distinct

 Proof is in the paper

Kangasharju: Peer-to-Peer Networks 38

CAN: Content Addressable Network

 CAN developed at UC Berkeley
 Originally published in 2001 at Sigcomm conference(!)

 CANs overlay routing easy to understand
 Paper concentrates more on performance evaluation

 Also discussion on how to improve performance by tweaking

 CAN project did not have much of a follow-up
 Only overlay was developed, no bigger follow-ups

Kangasharju: Peer-to-Peer Networks 39

CAN: Basics

 CAN based on N-dimensional Cartesian coordinate space
 Our examples: N = 2
 One hash function for each dimension

 Entire space is partitioned amongst all the nodes
 Each node owns a zone in the overall space

 Abstractions provided by CAN:
 Can store data at points in the space
 Can route from one point to another

 Point = Node that owns the zone in which the point
(coordinates) is located

 Order in which nodes join is important

Kangasharju: Peer-to-Peer Networks 40

CAN: Partitioning

1

Kangasharju: Peer-to-Peer Networks 41

CAN: Partitioning

1 2

Kangasharju: Peer-to-Peer Networks 42

CAN: Partitioning

1

2

3

Kangasharju: Peer-to-Peer Networks 43

CAN: Partitioning

1

2

3

4

Kangasharju: Peer-to-Peer Networks 44

CAN: Partitioning

  CAN forms a d-

dimensional

torus

Kangasharju: Peer-to-Peer Networks 45

CAN: Examples

 Below examples for:
 How to join the network

 How routing tables are managed

 How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 46

CAN: Node Insertion

I

New node

Discover some
node “I” already
in CAN

Kangasharju: Peer-to-Peer Networks 47

CAN: Node Insertion

pick random
point in space

I

(p,q)

New node

New node picks
its coordinates
in space

Kangasharju: Peer-to-Peer Networks 48

CAN: Node Insertion

(p,q)

I routes to
(p,q), and
discovers that
node J owns
(p,q)

I

J

new node

Kangasharju: Peer-to-Peer Networks 49

CAN: Node Insertion

New J

Split J’s zone
in half. New
owns one half

Kangasharju: Peer-to-Peer Networks 50

CAN: Routing Table

Kangasharju: Peer-to-Peer Networks 51

CAN: Routing

(a,b)

(x,y)

Kangasharju: Peer-to-Peer Networks 52

 a = hx(K)

CAN: Storing Values

x = a

node I::insert(K,V)

 I

y = b

 b = hy(K)

Kangasharju: Peer-to-Peer Networks 53

(1) a = hx(K)
 b = hy(K)

CAN: Storing Values

 (2) route(K,V) -> (a,b)

node I::insert(K,V)

 I

Kangasharju: Peer-to-Peer Networks 54

CAN: Storing Values

 (2) route(K,V) -> (a,b)

 (3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

 I (1) a = hx(K)
 b = hy(K)

Kangasharju: Peer-to-Peer Networks 55

CAN: Retrieving Values

 (2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
 b = hy(K)

node J::retrieve(K)

 J

Kangasharju: Peer-to-Peer Networks 56

CAN: Improvements

 Possible to increase number of dimensions d
 Small increase in routing table size

-  Shorter routing path, more neighbors for fault tolerance

 Multiple realities (= coordinate spaces)
 Use more hash functions

 Same properties as increased dimensions

 Routing weighted by round-trip times
 Take into account network topology

 Forward to the “best” neighbor

Kangasharju: Peer-to-Peer Networks 57

CAN: More Improvements

 Use well-known landmark servers (e.g., DNS roots)
 Nodes join CAN in different areas, depending on distance to

landmarks

-  Pick points “near” landmark

  Idea: Geographically close nodes see same landmarks

 Uniform partitioning
 New node splits the largest zone in the neighborhood

instead of the zone of the responsible node

Kangasharju: Peer-to-Peer Networks 58

CAN: Performance

 State information at node O(d)
 Number of dimensions is d

 Need two neighbors in all coordinate axis

  Independent of the number of nodes!

 Routing takes O(dn1/d) hops
 Network has n nodes

 Multiple dimensions and realities improve this

 For routing: multiple dimensions are better

 But: multiple realities improve availability and fault tolerance

Kangasharju: Peer-to-Peer Networks 59

Tapestry

 Tapestry developed at UC Berkeley(!)
 Different group from CAN developers

 Tapestry developed in 2000, but published in 2004
 Originally only as technical report, 2004 as journal article

 Many follow-up projects on Tapestry
 Example: OceanStore

 Tapestry based on work by Plaxton et al.
 Plaxton network has also been used by Pastry
 Pastry was developed at Microsoft Research and Rice

University
 Difference between Pastry and Tapestry minimal
 Tapestry and Pastry add dynamics and fault tolerance to

Plaxton network

Kangasharju: Peer-to-Peer Networks 60

Tapestry: Plaxton Network

 Plaxton network (or Plaxton mesh) based on prefix routing
(similar to IP address allocation)

 Prefix and postfix are functionally identical
 Tapestry originally postfix, now prefix?!?

 Node ID and object ID hashed with SHA-1
 Expressed as hexadecimal (base 16) numbers (40 digits)
 Base is very important, here we use base 16

 Each node has a neighbor map with multiple levels
 Each level represents a matching prefix up to digit position in ID
 A given level has number of entries equal to the base of ID
  ith entry in jth level is closest node which starts prefix(N,j-1)+”i”
 Example: 9th entry of 4th level for node 325AE is the closest node

with ID beginning with 3259

Kangasharju: Peer-to-Peer Networks 61

Tapestry: Routing Mesh

  (Partial) routing mesh for a single node 4227
 Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1 L1

L1
L4

L2

L2
L3

Kangasharju: Peer-to-Peer Networks 62

Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A

1 1D76 27AB 51E5 6F43

2 43C9 44AF

3 42A2

4 4228

•  There are actually 16 columns in the map (base 16)
•  Normally more (most?) entries would be filled
•  Tapestry has neighbor maps of size 40 x 16

Kangasharju: Peer-to-Peer Networks 63

Tapestry: Routing Example

42AD

  Route message from 5230 to 42AD
  Always route to node closer to target

  At nth hop, look at n+1th level in neighbor map --> “always” one digit more
  Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

Kangasharju: Peer-to-Peer Networks 64

Tapestry: Properties

 Node responsible for objects which have same ID
 Unlikely to find such node for every object
 Node responsible also for “nearby” objects (surrogate routing,

see below)
 Object publishing:

 Responsible nodes store only pointers
-  Multiple copies of object possible
-  Each copy must publish itself

 Pointers cached along the publish path
 Queries routed towards responsible node
 Queries “often” hit cached pointers

-  Queries for same object go (soon) to same nodes
 Note: Tapestry focuses on storing objects

 Chord and CAN focus on values, but in practice no difference

Kangasharju: Peer-to-Peer Networks 65

Tapestry: Publishing Example

  Two copies of object “DOC” with ID 4377 created at AA93 and 4228
  AA93 and 4228 publish object DOC, messages routed to 4377

  Publish messages create location pointers on the way
  Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path
Publish path

Location pointer

Kangasharju: Peer-to-Peer Networks 66

Tapestry: Querying Example

  Requests initially route towards 4377

  When they encounter the publish path, use location pointers to find object

  Often, no need to go to responsible node

  Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer

Kangasharju: Peer-to-Peer Networks 67

Tapestry: Making It Work

 Previous examples show a Plaxton network
 Requires global knowledge at creation time

 No fault tolerance, no dynamics

 Tapestry adds fault tolerance and dynamics
 Nodes join and leave the network

 Nodes may crash

 Global knowledge is impossible to achieve

 Tapestry picks closest nodes for neighbor table
 Closest in IP network sense (= shortest RTT)

 Network distance (usually) transitive

-  If A is close to B, then B is also close to A

  Idea: Gives best performance

Kangasharju: Peer-to-Peer Networks 68

Tapestry: Fault-Tolerant Routing

 Tapestry keeps mesh connected with keep-alives
 Both TCP timeouts and UDP “hello” messages

 Requires extra state information at each node

 Neighbor table has backup neighbors
 For each entry, Tapestry keeps 2 backup neighbors

  If primary fails, use secondary

-  Works well for uncorrelated failures

 When node notices a failed node, it marks it as invalid
 Most link/connection failures short-lived

 Second chance period (e.g., day) during which failed node

can come back and old route is valid again

  If node does not come back, one backup neighbor is

promoted and a new backup is chosen

Kangasharju: Peer-to-Peer Networks 69

Tapestry: Fault-Tolerant Location

 Responsible node is a single point of failure
 Solution: Assign multiple roots per object

 Add “salt” to object name and hash as usual

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

 Same idea as CAN’s multiple realities
 This process makes data more available, even if the

network is partitioned
 With s roots, availability is P ≈ 1 - (1/2)s

 Depends on partition

 These two mechanisms “guarantee” fault-tolerance
  In most cases :-)

 Problem: If the only out-going link fails…

Kangasharju: Peer-to-Peer Networks 70

Tapestry: Surrogate Routing

 Responsible node is node with same ID as object
 Such a node is unlikely to exist

 Solution: surrogate routing
 What happens when there is no matching entry in

neighbor map for forwarding a message?
 Node picks (deterministically) one entry in neighbor map

 Details are not explained in the paper :(

  Idea: If “missing links” are deterministically picked, any
message for that ID will end up at same node

 This node is the surrogate

  If new nodes join, surrogate may change
 New node is neighbor of surrogate

Kangasharju: Peer-to-Peer Networks 71

Tapestry: Performance

 Messages routed in O(logb N) hops
 At each step, we resolve one more digit in ID
 N is the size of the namespace (e.g, SHA-1 = 40 digits)
 Surrogate routing adds a bit to this, but not significantly

 State required at a node is O(b logb N)
 Tapestry has c backup links per neighbor, O(cb logb N)
 Additionally, same number of backpointers

Kangasharju: Peer-to-Peer Networks 72

DHT: Comparison

Chord CAN Tapestry

Type of network Ring N-dimensional Prefix routing

Routing O(log n) O(d·n1/d) O(logb N)

State O(log n) O(d) O(b·logb N)

Caching efficient + ++ ++

Robustness -/+ +++ ++

IP Topology-Aware N N/Y Y

Used for other

projects

+++ -- ++

Note: n is number of nodes, N is size of Tapestry’s namespace

Kangasharju: Peer-to-Peer Networks 73

Other DHTs

 Many other DHTs exist too
 Pastry, similar to Tapestry

 Kademlia, uses XOR metric

 Kelips, group nodes into k groups, similar to KaZaA

 Plus some others…

 Overnet P2P network (also eDonkey) uses Kademlia
 Wide-spread deployed DHT

 All DHTs provide same API
  In principle, DHT-layer is interchangeable

Kangasharju: Peer-to-Peer Networks 74

Networks and Graphs

 Refresher of graph theory
 Graph families and models

 Random graphs

 Small world graphs

 Scale-free graphs

 Graph theory and P2P
 How are the graph properties reflected in real systems?

Kangasharju: Peer-to-Peer Networks 75

What Is a Graph?

  Definition of a graph:
 Graph G = (V, E) consists of two finite sets, set V of vertices
(nodes) and set E of edges (arcs) for which the following
applies:
1.  If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e

2.  If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V

applies x ∈ e and y ∈ e, then {v, u} = {x, y}

1 2

3

4
e2

e1

e3

e5 e4 Example graph with
4 vertices and 5 edges

Kangasharju: Peer-to-Peer Networks 76

Properties of Graphs

 An edge e ∈ E is directed if the start and end vertices in
condition 2 above are identical: v = x and y = u

 An edge e ∈ E is undirected if v = x and y = u as well as v = y
and u = x are possible

 A graph G is directed (undirected) if the above property holds
for all edges

 A loop is an edge with identical endpoints
 Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and

E1 ⊆ E (such that conditions 1 and 2 are met)

Kangasharju: Peer-to-Peer Networks 77

Important Types of Graphs

 Vertices v, u ∈ V are connected if there is a path from v to
u: (v, v2), (v2, v3), …, (vk-1, u) ∈ E

 Graph G is connected if all v, u ∈ V are connected
 Undirected, connected, acyclic graph is called a tree

 Sidenote: Undirected, acyclic graph which is not connected

is called a forest

 Directed, connected, acyclic graph is also called DAG
 DAG = directed, acyclic graph (connected is “assumed”)

 An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and
with edges EC = {e = (i, j) | i, j ∈ VC}

 An induced graph is a component if it is connected

Kangasharju: Peer-to-Peer Networks 78

Vertex Degree

  In graph G = (V, E), the degree of vertex v ∈ V is the total
number of edges (v, u) ∈ E and (u, v) ∈ E

 Degree is the number of edges which touch a vertex

 For directed graph, we distinguish between in-degree and
out-degree

  In-degree is number of edges coming to a vertex

 Out-degree is number of edges going away from a vertex

 The degree of a vertex can be obtained as:
 Sum of the elements in its row in the incidence matrix

 Length of its vertex incidence list

Kangasharju: Peer-to-Peer Networks 79

Important Graph Metrics

 Distance: d(v, u) between vertices v and u is the length of
the shortest path between v and u

 Average path length: Sum of the distances over all pairs
of nodes divided by the number of pairs

 Diameter: d(G) of graph G is the maximum of d(v, u) for
all v, u ∈ V

Kangasharju: Peer-to-Peer Networks 80

Six Degrees of Separation

 Famous experiment from 1960’s (S. Milgram)
 Send a letter to random people in Kansas and Nebraska

and ask people to forward letter to a person in Boston
 Person identified by name, profession, and city

 Rule: Give letter only to people you know by first name
and ask them to pass it on according to same rule

 Some letters reached their goal
 Letter needed six steps on average to reach the person
 Graph theoretically: Social networks have dense local

structure, but (apparently) small diameter
 How to model such networks?

Kangasharju: Peer-to-Peer Networks 81

Random Graphs

 Random graphs are first widely studied graph family
 Many P2P networks choose neighbors more or less randomly

 Two different notations generally used:
 Erdös and Renyi

 Gilbert (we will use this)

 Gilbert’s definition: Graph Gn,p (with n nodes) is a graph
where the probability of an edge e = (v, w) is p

Construction algorithm:
 For each possible edge, draw a random number
  If the number is smaller than p, then the edge exists
 p can be function of n or constant

Kangasharju: Peer-to-Peer Networks 82

Basic Results for Random Graphs

Giant Connected Component:
 Let c > 0 be a constant and p = c/n. If c < 1 every
component of Gn,p has order O(log N) with high
probability. If c > 1 then there will be one component of
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All
other components have size O(log N)

  In plain English: Giant connected component emerges
with high probability when average degree is about 1

Node degree distribution
  If we take random node, how high is probability P(k) that

node has degree k?
 Node degree is Poisson distributed

Kangasharju: Peer-to-Peer Networks 83

More Basic Results

Diameter of a random graph
  If pn/log(n) → ∞ and log(n)/log(pn) → ∞ then the diameter

of Gn,p is asymptotic to log(n)/log(pn) with high probability
Clustering coefficient
 Clustering coefficient measures number of edges

between neighbors divided by maximum number of edges
between them (clique-like)

 Clustering coefficient C(i) is defined as
 E(N(i)) = number of edges between neighbors of i
 d(i) = degree of i

 Clustering coefficient of a random graph is asymptotically
equal to p with high probability

Kangasharju: Peer-to-Peer Networks 84

Random Graphs: Summary

  Before random graphs, regular graphs were popular
  Regular: Every node has same degree

  Random graphs have two advantages over regular graphs
1.  Many interesting properties analytically solvable
2.  Much better for applications, e.g., social networks
  Note: Does not mean social networks are random graphs;

just that the properties of social networks are well-described
by random graphs

  Question: How to model networks with local clusters and
small diameter?

  Answer: Small-world networks

Kangasharju: Peer-to-Peer Networks 85

Small-World Networks

 Developed/discovered by Watts and Strogatz (1998)
 Over 30 years after Milgram’s experiment!

 Watts and Strogatz looked at three networks
 Film collaboration between actors
 US power grid
 Neural network of worm C. elegans

 Results:
 Compared to a random graph with same number of nodes
 Diameters similar, slightly higher for real graph
 Clustering coefficient orders of magnitude higher

Definition of small-worlds network:
 Dense local clustering structure and small diameter

comparable to that of a same-sized random graph

Kangasharju: Peer-to-Peer Networks 86

Constructing Small-World Graphs

 Put all n nodes on a ring, number them consecutively
from 1 to n

 Connect each node with its k clockwise neighbors
 Traverse around ring in clockwise order
 For every edge:

 Draw random number r

  If r < p, then re-wire edge by selecting a random target node

from the set of all nodes (no duplicates)

 Otherwise keep old edge

 Different values of p give different graphs
  If p is close to 0, then original structure mostly preserved

  If p is close to 1, then new graph is random

  Interesting things happen when p is somewhere in-between

Kangasharju: Peer-to-Peer Networks 87

Regular, Small-World, Random

Regular Small-World Random

p = 0 p = 1

Kangasharju: Peer-to-Peer Networks 88

Problems with Small-World Graphs

Small-world graphs explain why:
 Highly clustered graphs can have short average path lengths
Small-world graphs do NOT explain why:
 This property emerges in real networks

 Real networks are practically never ring-like

Further problem with small-world graphs:
 Nearly all nodes have same degree
 Not true for random graphs (k edges ~ ck/k!)
  Is same true for real networks too?
 Let’s look at the Internet…

Kangasharju: Peer-to-Peer Networks 89

Internet

 Famous study by Faloutsos et al. (3 brothers! ;-) in 1999
 They examined Internet topology during 1998

 AS-level topology, during 1998 Internet grew 45%

Motivation for work:
 What does the Internet look like?
 Are there any topological properties that don’t change

over time?
 How can I generate Internet-like graphs for simulations?

Kangasharju: Peer-to-Peer Networks 90

Faloutsos Results

  4 key properties, each follows a power-law
  Sort nodes according to their (out)degree
1.  Outdegree of a node is proportional to its rank to the

power of a constant
2.  Number of nodes with same outdegree is proportional to

the outdegree to the power of a constant
3.  Eigenvalues of a graph are proportional to the order to

the power of a constant
4.  Total number of pairs of nodes within a distance d is

proportional to d to the power of a constant
•  Why would Internet obey such laws?

Kangasharju: Peer-to-Peer Networks 91

Answer: Power-Law Networks

  Also known as scale-free networks
  Barabasi-Albert-Model
1.  Network grows in time
2.  New node has preferences to whom it wants to connect
  Preferential connectivity modeled as

  Each new node wants to connect to m other nodes

  Probability that an existing node j gets one of the m

connections is proportional to its degree d(j)

  New nodes tend to connect to well-connected nodes
  Another way to express this is “rich get richer”

Kangasharju: Peer-to-Peer Networks 92

Applications to Peer-to-Peer

 Small-world model explains why short paths exist
 Why can we find these paths?

 Each node has only local information

 Milgram’s results showed first steps were the largest

 How to model this?
 Kleinberg’s Small-World Model

 Set of points in an n x n grid

 Distance is the number of “steps” separating points

-  d(i, j) = |xi - xj| + |yi - yj|

 Construct graph as follows:
 Every node i is connected to node j within distance q

 For every node i, additional q edges are added. Probability that

node j is selected is proportional to d(i, j)-r, for some constant r

Kangasharju: Peer-to-Peer Networks 93

Navigation in Kleinberg’s Model

 We want to send a message to another node
 Algorithm is decentralized if sending node only knows:

  Its local neighbors

 Position of the target node on the grid

 Locations and long-range contacts of all nodes who come in

contact of the message (not needed below, actually)

 Can be shown: Number of messages needed is
proportional to O(log n) (only one correct r per case)

 Practical algorithm: Forward message to contact who is
closest to target

 Note: Kleinberg’s model assumes some way of
associating nodes with points in grid

 Compare with CAN DHT in Chapter 3

Kangasharju: Peer-to-Peer Networks 94

Power Law Networks and P2P

 Robustness comparison of random and power-law graphs
 Take network of 10000 nodes (random and power-law) and

remove nodes randomly
 Random graph:

 Take out 5% of nodes: Biggest component 9000 nodes

 Take out 18% of nodes: No biggest component, all components

between 1 and 100 nodes

 Take out 45% of nodes: Only groups of 1 or 2 survive

 Power-law graph:
 Take out 5% of nodes: Only isolated nodes break off

 Take out 18% of nodes: Biggest component 8000 nodes

 Take out 45% of nodes: Large cluster persists, fragments small

 Recall Gnutella: Applies ONLY for random failures

Kangasharju: Peer-to-Peer Networks 95

Summary of Graphs

 Three kinds of graph models:
 Random graph

 Small-World

 Power-Law (Scale-Free)

 Small-world graphs explain why we can have high
clustering and short average paths

 Power-law graphs explain how graphs are built in many
real networks

Kangasharju: Peer-to-Peer Networks 96

Chapter Summary

 Searching and addressing
 Fundamental difference

 Unstructured vs. structured networks

 Distributed Hash Tables
 DHT provides a key to value mapping

 Three examples: Chord, CAN, Tapestry

 Different networks and graphs
 Random, small world, scale-free networks

