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Chapter Outline 

 Searching and addressing 
 Structured and unstructured networks 

 Distributed Hash Tables 
 What they are? 

 How they work? 

 What are they good for? 

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry 

 Networks and graphs 
 Graph theory meets networking 

 Different types of graphs and their properties 
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Searching and Addressing 

  Two basic ways to find objects: 
1.  Search for them 
2.  Address them using their unique name 
  Both have pros and cons (see below) 
  Most existing P2P networks built on searching, but some 

networks are based on addressing objects 
  Difference between searching and addressing is a very 

fundamental difference 
  Determines how network is constructed 

  Determines how objects are placed 

  “Determines” efficiency of object location 

  Let’s compare searching and addressing 
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Addressing vs. Searching 

Addressing 

  Pros: 

  Each object uniquely identifiable 

  Object location can be made efficient 

  Cons: 

  Need to know unique name 

  Need to maintain structure required 

by addresses 

Searching 

  Pros: 

  No need to know unique names 

-  More user friendly 

  Cons: 

  Hard to make efficient 

-  Can solve with money, see Google 

  Need to compare actual objects to know 

if they are same 

•   “Addressing” networks find objects by addressing them with their unique name 
(cf. URLs in Web) 
•   “Searching” networks find objects by searching with keywords that match 
objects’s description (cf. Google) 
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Addressing vs. Searching: Examples 

Searching Addressing 

Physical name 
of object

Searching in P2P networks, 

Searching in filesystem 

(Desktop searches) 

(Search components of URL with Google?) 

URLs in Web 

Logical name 
of object 

? 

(Search components of URNs) 

Object names in DHT, 

URNs 

Content or 
metadata of 

object 

Searching in P2P networks,  

Standard Google search 

Desktop searches 

N/A 



Kangasharju: Peer-to-Peer Networks 6 

Searching, Addressing, and P2P 

 We can distinguish two main P2P network types 
Unstructured networks/systems 
 Based on searching 
 Unstructured does NOT mean complete lack of structure 

 Network has graph structure, e.g., scale-free 
 Network has structure, but peers are free to join anywhere 

and objects can be stored anywhere 
 So far we have seen unstructured networks 
Structured networks/systems 
 Based on addressing 
 Network structure determines where peers belong in the 

network and where objects are stored 
 How to build structured networks? 
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Another Classification of P2P Systems 

 Sometimes P2P systems classified in generations 
 No 100% consensus on what is in which generation 
 1st generation 

 Typically: Napster 

 2nd generation 
 Typically: Gnutella 

 3rd generation 
 Typically: Superpeer networks 

 4th generation 
 Typically: Distributed hash tables 

 Note: For DHTs, no division into generations yet 
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Distributed Hash Tables 

 What are they? 
 How they work? 
 What are they good for? 
 Examples:  

 Chord 

 CAN 

 Plaxton/Pastry/Tapestry 
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DHT: Motivation 

 Why we need DHTs? 
 Searching in P2P networks is not efficient 

 Either centralized system with all its problems 

 Or distributed system with all its problems 

 Hybrid systems cannot guarantee discovery either 

 Actual file transfer process in P2P network is scalable 
 File transfers directly between peers 

 Searching does not scale in same way 
 Original motivation for DHTs: More efficient searching and 

object location in P2P networks 
 Put another way: Use addressing instead of searching 
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Recall: Hash Tables 

 Hash tables are a well-known data structure 
 Hash tables allow insertions, deletions, and finds in 

constant (average) time 
 Hash table is a fixed-size array 

 Elements of array also called hash buckets 

 Hash function maps keys to elements in the array 
 Properties of good hash functions: 

 Fast to compute 

 Good distribution of keys into hash table 

 Example: SHA-1 algorithm 
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Hash Tables: Example 

 Hash function: 
hash(x) = x mod 10 

  Insert numbers 0, 1, 4, 9, 
16, and 25 

 Easy to find if a given key 
is present in the table 

0 

1 

2 

6 

4 

8 

3 

7 

9 

5 

0 
1 

4 

25 
16 

9 
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Distributed Hash Table: Idea 

 Hash tables are fast for 
lookups 

  Idea: Distribute hash 
buckets to peers 

 Result is Distributed Hash 
Table (DHT) 

 Need efficient mechanism 
for finding which peer is 
responsible for which 
bucket and routing 
between them 

0 

1 

2 

6 

4 

8 

3 

7 

9 

5 

0 
1 

4 
25 
16 

9 
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DHT: Principle 

  In a DHT, each node is 
responsible for one or more 
hash buckets 

 As nodes join and leave, the 

responsibilities change 

 Nodes communicate among 
themselves to find the 
responsible node 

 Scalable communications 

make DHTs efficient 

 DHTs support all the normal 
hash table operations 

0 

1 

2 

0 
1 

6 

4 

3 

5 

4 
25 
16 

8 

7 

9 9 
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Summary of DHT Principles 

 Hash buckets distributed over nodes 
 Nodes form an overlay network 

 Route messages in overlay to find responsible node 

 Routing scheme in the overlay network is the difference 
between different DHTs 

 DHT behavior and usage: 
 Node knows “object” name and wants to find it 

-  Unique and known object names assumed 

 Node routes a message in overlay to the responsible node 

 Responsible node replies with “object” 

-  Semantics of “object” are application defined 
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DHT Examples 

  In the following look at some example DHTs 
 Chord 

 CAN 

 Tapestry  

 Several others exist too 
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, … 

 All DHTs provide the same abstraction: 
 DHT stores key-value pairs 

 When given a key, DHT can retrieve/store the value 

 No semantics associated with key or value 

 Difference is in overlay routing scheme 
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Chord 

 Chord was developed at MIT 
 Originally published in 2001 at Sigcomm conference 

 Chord’s overlay routing principle quite easy to understand 
 Paper has mathematical proofs of correctness and 

performance 

 Many projects at MIT around Chord 
 CFS storage system 

  Ivy storage system 

 Plus many others… 
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Chord: Basics 

 Chord uses SHA-1 hash function 
 Results in a 160-bit object/node identifier 

 Same hash function for objects and nodes 

 Node ID hashed from IP address 
 Object ID hashed from object name 

 Object names somehow assumed to be known by everyone  

 SHA-1 gives a 160-bit identifier space 
 Organized in a ring which wraps around 

 Nodes keep track of predecessor and successor 

 Node responsible for objects between its predecessor and itself 

 Overlay is often called “Chord ring” or “Chord circle” 
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Chord: Examples 

 Below examples for: 
 How to join the Chord ring 

 How to store and retrieve values 
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Joining: Step-By-Step Example 

0 

1 

2 

3 

4 

5 

6 

7 

  Setup: Existing network with 

nodes on 0, 1 and 4 

  Note: Protocol messages simply 

examples 

  Many different ways to 

implement Chord 

  Here only conceptual example 

  Covers all important aspects 
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Joining: Step-By-Step Example: Start 

0 

1 

2 

3 

4 

5 

6 

7 

  New node wants to join 

  Hash of the new node: 6 

  Known node in network: 

Node1 

  Contact Node1 

  Include own hash 
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Joining: Step-By-Step Example: 
Situation Before Join 

0 

1 

2 

3 

4 

5 

6 

7 

Data for ]4;0] 

Data for ]0;1] 

Data for ]1;4] 

No data 

succ0 

succ1 succ4 

pred1 pred0 

pred4 
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Joining: Step-By-Step Example: 
Contact known node 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 

  Arrows indicate 

open connections 

  Example assumes 

connections are kept 

open, i.e., messages 

processed recursively 

  Iterative processing is 

also possible 
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Joining: Step-By-Step Example: 
Join gets routed along the network 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 
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Joining: Step-By-Step Example: 
Successor of New Node Found 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 
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Joining: Step-By-Step Example: 
Joining Successful + Transfer 

0 
1 

2 

3 

4 
5 

6 

7 

TRANSFER 
Data in range ]4;6] Joining is successful 

Old responsible node 
transfers data that 
should be in new 
node 

New node informs 
Node4 about new 
successor (not shown) 

Note: Transferring can happen also later 
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Joining: Step-By-Step Example: 
All Is Done 

0 

1 

2 

3 

4 

5 

6 

7 succ0 

succ1 succ4 

pred1 pred0 

pred4 pred6 

succ6 

Data for ]6;0] 

Data for ]0;1] 

Data for ]1;4] 

Data for ]4;6] 
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Storing a Value 

 Node 6 wants to store 
object with name “Foo” 
and value 5 

 hash(Foo) = 2 
0 

1 

2 

3 

4 

5 

6 

7 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 

Value is now stored 
in node 4. 
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Retrieving a Value 

 Node 1 wants to get 
object with name “Foo” 

 hash(Foo) = 2 
 Foo is stored on node 4 

0 

1 

2 

3 

4 

5 

6 

7 
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Retrieving a Value 

0 

1 

2 

3 

4 

5 

6 

7 

RETRIEVE 2 
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Retrieving a Value 

0 

1 

2 

3 

4 

5 

6 

7 

RESULT 5 
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Chord: Scalable Routing 

 Routing happens by passing message to successor 
 What happens when there are 1 million nodes? 

 On average, need to route 1/2-way across the ring 

  In other words, 0.5 million hops! Complexity O(n)  

 How to make routing scalable? 
 Answer: Finger tables 
 Basic Chord keeps track of predecessor and successor 
 Finger tables keep track of more nodes 

 Allow for faster routing by jumping long way across the ring 

 Routing scales well, but need more state information 

 Finger tables not needed for correctness, only 
performance improvement 
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Chord: Finger Tables 

  In m-bit identifier space, node has up to m fingers 
 Fingers are stored in the finger table 

 Row i in finger table at node n contains first node s that 
succeeds n by at least 2i-1 on the ring 

  In other words: 
   finger[i] = successor(n + 2i-1) 

 First finger is the successor 
 Distance to finger[i] is at least 2i-1 
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Chord: Scalable Routing 

  Finger intervals increase with distance 

from node n 

  If close, short hops and if far, long hops 

Two key properties: 

  Each node only stores information about 

a small number of nodes 

  Cannot in general determine the 

successor of an arbitrary ID 

  Example has three nodes at 0, 1, and 4 

  3-bit ID space --> 3 rows of fingers 

Start Int. Succ. 

1 [1,2) 1 

2 [2,4) 4 

4 [4,0) 4 

0 

1 

2 

3 

4 

5 

6 

7 

Start Int. Succ. 

2 [2,3) 4 

3 [3,5) 4 

5 [5,1) 0 

Start Int. Succ. 

5 [5,6) 0 

6 [6,0) 0 

0 [0,4) 0 
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Chord: Performance 

 Search performance of “pure” Chord O(n) 
 Number of nodes is n 

 With finger tables, need O(log n) hops to find the correct node 
 Fingers separated by at least 2i-1 

 With high probability, distance to target halves at each step 

  In beginning, distance is at most 2m 

 Hence, we need at most m hops 

 For state information, “pure” Chord has only successor and 
predecessor, O(1) state 

 For finger tables, need m entries 
 Actually, only O(log n) are distinct 

 Proof is in the paper 
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CAN: Content Addressable Network 

 CAN developed at UC Berkeley 
 Originally published in 2001 at Sigcomm conference(!) 

 CANs overlay routing easy to understand 
 Paper concentrates more on performance evaluation 

 Also discussion on how to improve performance by tweaking 

 CAN project did not have much of a follow-up 
 Only overlay was developed, no bigger follow-ups 
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CAN: Basics 

 CAN based on N-dimensional Cartesian coordinate space 
 Our examples: N = 2 
 One hash function for each dimension 

 Entire space is partitioned amongst all the nodes 
 Each node owns a zone in the overall space 

 Abstractions provided by CAN: 
 Can store data at points in the space 
 Can route from one point to another 

 Point = Node that owns the zone in which the point 
(coordinates) is located 

 Order in which nodes join is important 
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CAN: Partitioning 

1 
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CAN: Partitioning 

1 2 
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CAN: Partitioning 

1 

2 

3 
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CAN: Partitioning 

1 

2 

3 

4 
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CAN: Partitioning 

  CAN forms a d-

dimensional 

torus 
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CAN: Examples 

 Below examples for: 
 How to join the network 

 How routing tables are managed 

 How to store and retrieve values 
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CAN: Node Insertion 

I 

New node 

Discover some 
node “I” already 
in CAN 
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CAN: Node Insertion 

pick random  
point in space 

I 

(p,q) 

New node 

New node picks 
its coordinates 
in space 
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CAN: Node Insertion 

(p,q) 

I routes to 
(p,q), and 
discovers that 
node J owns 
(p,q) 

I 

J 

new node 
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CAN: Node Insertion 

New J 

Split J’s zone 
in half. New 
owns one half 
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CAN: Routing Table 



Kangasharju: Peer-to-Peer Networks 51 

CAN: Routing 

(a,b) 

(x,y) 



Kangasharju: Peer-to-Peer Networks 52 

      a = hx(K) 

CAN: Storing Values 

x = a 

node I::insert(K,V) 

 I 

y = b 

      b = hy(K) 
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(1)  a = hx(K) 
      b = hy(K) 

CAN: Storing Values 

  (2)  route(K,V) ->  (a,b) 

node I::insert(K,V) 

 I 
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CAN: Storing Values 

  (2)  route(K,V) ->  (a,b) 

  (3)  (a,b) stores (K,V)   

(K,V) 

node I::insert(K,V) 

 I (1)  a = hx(K) 
      b = hy(K) 
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CAN: Retrieving Values 

 (2)  route “retrieve(K)” to (a,b)  (K,V) 

(1)  a = hx(K) 
      b = hy(K) 

node J::retrieve(K) 

 J 
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CAN: Improvements 

 Possible to increase number of dimensions d 
 Small increase in routing table size 

-  Shorter routing path, more neighbors for fault tolerance 

 Multiple realities (= coordinate spaces) 
 Use more hash functions 

 Same properties as increased dimensions 

 Routing weighted by round-trip times 
 Take into account network topology 

 Forward to the “best” neighbor 
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CAN: More Improvements 

 Use well-known landmark servers (e.g., DNS roots) 
 Nodes join CAN in different areas, depending on distance to 

landmarks 

-  Pick points “near” landmark 

  Idea: Geographically close nodes see same landmarks 

 Uniform partitioning 
 New node splits the largest zone in the neighborhood 

instead of the zone of the responsible node 
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CAN: Performance 

 State information at node O(d) 
 Number of dimensions is d 

 Need two neighbors in all coordinate axis 

  Independent of the number of nodes! 

 Routing takes O(dn1/d) hops 
 Network has n nodes 

 Multiple dimensions and realities improve this 

 For routing: multiple dimensions are better 

 But: multiple realities improve availability and fault tolerance 
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Tapestry 

 Tapestry developed at UC Berkeley(!) 
 Different group from CAN developers 

 Tapestry developed in 2000, but published in 2004 
 Originally only as technical report, 2004 as journal article 

 Many follow-up projects on Tapestry 
 Example: OceanStore 

 Tapestry based on work by Plaxton et al. 
 Plaxton network has also been used by Pastry  
 Pastry was developed at Microsoft Research and Rice 

University 
 Difference between Pastry and Tapestry minimal 
 Tapestry and Pastry add dynamics and fault tolerance to 

Plaxton network 
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Tapestry: Plaxton Network 

 Plaxton network (or Plaxton mesh) based on prefix routing 
(similar to IP address allocation) 

 Prefix and postfix are functionally identical 
 Tapestry originally postfix, now prefix?!? 

 Node ID and object ID hashed with SHA-1 
 Expressed as hexadecimal (base 16) numbers (40 digits) 
 Base is very important, here we use base 16 

 Each node has a neighbor map with multiple levels 
 Each level represents a matching prefix up to digit position in ID 
 A given level has number of entries equal to the base of ID 
  ith entry in jth level is closest node which starts prefix(N,j-1)+”i” 
 Example: 9th entry of 4th level for node 325AE is the closest node 

with ID beginning with 3259 
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Tapestry: Routing Mesh 

  (Partial) routing mesh for a single node 4227 
 Neighbors on higher levels match more digits 

4228 27AB 

6F43 

43C9 
51E5 4242 

1D76 

44AF 

4227 

L1 

L1 L1 

L1 
L4 

L2 

L2 
L3 



Kangasharju: Peer-to-Peer Networks 62 

Tapestry: Neighbor Map for 4227 

Level 1 2 3 4 5 6 8 A 

1 1D76 27AB 51E5 6F43 

2 43C9 44AF 

3 42A2 

4 4228 

•    There are actually 16 columns in the map (base 16)    
•    Normally more (most?) entries would be filled 
•    Tapestry has neighbor maps of size 40 x 16 
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Tapestry: Routing Example 

42AD 

  Route message from 5230 to 42AD 
  Always route to node closer to target 

  At nth hop, look at n+1th level in neighbor map --> “always” one digit more 
  Not all nodes and links are shown 

5230 
400F 

4227 4629 

42A2 

AC78 

42A7 

4112 

4211 

42E0 

42A9 
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Tapestry: Properties 

 Node responsible for objects  which have same ID 
 Unlikely to find such node for every object 
 Node responsible also for “nearby” objects (surrogate routing, 

see below) 
 Object publishing: 

 Responsible nodes store only pointers 
-  Multiple copies of object possible 
-  Each copy must publish itself 

 Pointers cached along the publish path 
 Queries routed towards responsible node 
 Queries “often” hit cached pointers 

-  Queries for same object go (soon) to same nodes 
 Note: Tapestry focuses on storing objects 

 Chord and CAN focus on values, but in practice no difference 
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Tapestry: Publishing Example 

  Two copies of object “DOC” with ID 4377 created at AA93 and 4228 
  AA93 and 4228 publish object DOC, messages routed to 4377 

  Publish messages create location pointers on the way 
  Any subsequent query can use location pointers 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 
Publish path 

Location pointer 
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Tapestry: Querying Example 

  Requests initially route towards 4377 

  When they encounter the publish path, use location pointers to find object 

  Often, no need to go to responsible node 

  Downside: Must keep location pointers up-to-date 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 

Location pointer 
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Tapestry: Making It Work 

 Previous examples show a Plaxton network 
 Requires global knowledge at creation time 

 No fault tolerance, no dynamics 

 Tapestry adds fault tolerance and dynamics 
 Nodes join and leave the network 

 Nodes may crash 

 Global knowledge is impossible to achieve 

 Tapestry picks closest nodes for neighbor table 
 Closest in IP network sense (= shortest RTT) 

 Network distance (usually) transitive 

-  If A is close to B, then B is also close to A 

  Idea: Gives best performance 



Kangasharju: Peer-to-Peer Networks 68 

Tapestry: Fault-Tolerant Routing 

 Tapestry keeps mesh connected with keep-alives 
 Both TCP timeouts and UDP “hello” messages 

 Requires extra state information at each node 

 Neighbor table has backup neighbors 
 For each entry, Tapestry keeps 2 backup neighbors 

  If primary fails, use secondary 

-  Works well for uncorrelated failures 

 When node notices a failed node, it marks it as invalid 
 Most link/connection failures short-lived 

 Second chance period (e.g., day) during which failed node 

can come back and old route is valid again 

  If node does not come back, one backup neighbor is 

promoted and a new backup is chosen 
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Tapestry: Fault-Tolerant Location 

 Responsible node is a single point of failure 
 Solution: Assign multiple roots per object 

 Add “salt” to object name and hash as usual 

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …) 

 Same idea as CAN’s multiple realities 
 This process makes data more available, even if the 

network is partitioned 
 With s roots, availability is P ≈ 1 - (1/2)s 

 Depends on partition 

 These two mechanisms “guarantee” fault-tolerance 
  In most cases :-) 

 Problem: If the only out-going link fails… 
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Tapestry: Surrogate Routing 

 Responsible node is node with same ID as object 
 Such a node is unlikely to exist 

 Solution: surrogate routing 
 What happens when there is no matching entry in 

neighbor map for forwarding a message? 
 Node picks (deterministically) one entry in neighbor map 

 Details are not explained in the paper :( 

  Idea: If “missing links” are deterministically picked, any 
message for that ID will end up at same node 

 This node is the surrogate 

  If new nodes join, surrogate may change 
 New node is neighbor of surrogate  
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Tapestry: Performance 

 Messages routed in O(logb N) hops 
 At each step, we resolve one more digit in ID 
 N is the size of the namespace (e.g, SHA-1 = 40 digits) 
 Surrogate routing adds a bit to this, but not significantly 

 State required at a node is O(b logb N) 
 Tapestry has c backup links per neighbor, O(cb logb N) 
 Additionally, same number of backpointers 



Kangasharju: Peer-to-Peer Networks 72 

DHT: Comparison 

Chord CAN Tapestry 

Type of network Ring N-dimensional Prefix routing 

Routing O(log n) O(d·n1/d) O(logb N) 

State O(log n) O(d) O(b·logb N) 

Caching efficient + ++ ++ 

Robustness -/+ +++ ++ 

IP Topology-Aware N N/Y Y 

Used for other 

projects 

+++ -- ++ 

Note: n is number of nodes, N is size of Tapestry’s namespace 
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Other DHTs 

 Many other DHTs exist too 
 Pastry, similar to Tapestry 

 Kademlia, uses XOR metric 

 Kelips, group nodes into k groups, similar to KaZaA 

 Plus some others… 

 Overnet P2P network (also eDonkey) uses Kademlia 
 Wide-spread deployed DHT 

 All DHTs provide same API 
  In principle, DHT-layer is interchangeable 
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Networks and Graphs 

 Refresher of graph theory 
 Graph families and models 

 Random graphs 

 Small world graphs 

 Scale-free graphs 

 Graph theory and P2P 
 How are the graph properties reflected in real systems? 
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What Is a Graph? 

  Definition of a graph: 
 Graph G = (V, E) consists of two finite sets, set V of vertices 
(nodes) and set E of edges (arcs) for which the following 
applies: 
1.  If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e 

2.  If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V 

applies x ∈ e and y ∈ e, then {v, u} = {x, y} 

1 2 

3 

4 
e2 

e1 

e3 

e5 e4 Example graph with 
4 vertices and 5 edges 
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Properties of Graphs 

 An edge e ∈ E is directed if the start and end vertices in 
condition 2 above are identical: v = x and y = u 

 An edge e ∈ E  is undirected if v = x and y = u as well as v = y 
and  u = x are possible 

 A graph G is directed (undirected) if the above property holds 
for all edges 

 A loop is an edge with identical endpoints 
 Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and 

E1 ⊆ E (such that conditions 1 and 2 are met) 
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Important Types of Graphs 

 Vertices v, u ∈ V are connected if there is a path from v to 
u: (v, v2), (v2, v3), …, (vk-1, u) ∈ E 

 Graph G is connected if all v, u ∈ V are connected 
 Undirected, connected, acyclic graph is called a tree 

 Sidenote: Undirected, acyclic graph which is not connected 

is called a forest 

 Directed, connected, acyclic graph is also called DAG 
 DAG = directed, acyclic graph (connected is “assumed”) 

 An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and 
with edges EC = {e = (i, j) | i, j ∈ VC} 

 An induced graph is a component if it is connected 
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Vertex Degree 

  In graph G = (V, E), the degree of vertex v ∈ V is the total 
number of edges (v, u) ∈ E and (u, v) ∈ E 

 Degree is the number of edges which touch a vertex 

 For directed graph, we distinguish between in-degree and 
out-degree 

  In-degree is number of edges coming to a vertex 

 Out-degree is number of edges going away from a vertex 

 The degree of a vertex can be obtained as:  
 Sum of the elements in its row in the incidence matrix  

 Length of its vertex incidence list 
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Important Graph Metrics 

 Distance: d(v, u) between vertices v and u is the length of 
the shortest path between v and u 

 Average path length: Sum of the distances over all pairs 
of nodes divided by the number of pairs 

 Diameter: d(G) of graph G is the maximum of d(v, u) for 
all v, u ∈ V 
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Six Degrees of Separation 

 Famous experiment from 1960’s (S. Milgram) 
 Send a letter to random people in Kansas and Nebraska 

and ask people to forward letter to a person in Boston 
 Person identified by name, profession, and city 

 Rule: Give letter only to people you know by first name 
and ask them to pass it on according to same rule 

 Some letters reached their goal 
 Letter needed six steps on average to reach the person 
 Graph theoretically: Social networks have dense local 

structure, but (apparently) small diameter 
 How to model such networks? 
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Random Graphs 

 Random graphs are first widely studied graph family 
 Many P2P networks choose neighbors more or less randomly 

 Two different notations generally used: 
 Erdös and Renyi 

 Gilbert (we will use this) 

 Gilbert’s definition: Graph Gn,p (with n nodes) is a graph 
where the probability of an edge e = (v, w) is p 

Construction algorithm: 
 For each possible edge, draw a random number 
  If the number is smaller than p, then the edge exists 
 p can be function of n or constant 
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Basic Results for Random Graphs 

Giant Connected Component: 
 Let c > 0 be a constant and p = c/n. If c < 1 every 
component of Gn,p has order O(log N) with high 
probability. If c > 1 then there will be one component of 
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All 
other components have size O(log N) 

  In plain English: Giant connected component emerges 
with high probability when average degree is about 1 

Node degree distribution 
  If we take random node, how high is probability P(k) that 

node has degree k? 
 Node degree is Poisson distributed  
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More Basic Results 

Diameter of a random graph 
  If pn/log(n) → ∞ and log(n)/log(pn) → ∞ then the diameter 

of Gn,p is asymptotic to log(n)/log(pn) with high probability 
Clustering coefficient 
 Clustering coefficient measures number of edges 

between neighbors divided by maximum number of edges 
between them (clique-like) 

 Clustering coefficient C(i) is defined as 
 E(N(i)) = number of edges between neighbors of i  
 d(i) = degree of i 

 Clustering coefficient of a random graph is asymptotically 
equal to p with high probability 
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Random Graphs: Summary 

  Before random graphs, regular graphs were popular 
  Regular: Every node has same degree 

  Random graphs have two advantages over regular graphs 
1.  Many interesting properties analytically solvable 
2.  Much better for applications, e.g., social networks 
  Note: Does not mean social networks are random graphs; 

just that the properties of social networks are well-described 
by random graphs 

  Question: How to model networks with local clusters and 
small diameter? 

  Answer: Small-world networks 
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Small-World Networks 

 Developed/discovered by Watts and Strogatz (1998) 
 Over 30 years after Milgram’s experiment! 

 Watts and Strogatz looked at three networks 
 Film collaboration between actors 
 US power grid 
 Neural network of worm C. elegans 

 Results:  
 Compared to a random graph with same number of nodes 
 Diameters similar, slightly higher for real graph 
 Clustering coefficient orders of magnitude higher 

Definition of small-worlds network: 
 Dense local clustering structure and small diameter 

comparable to that of a same-sized random graph 
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Constructing Small-World Graphs 

 Put all n nodes on a ring, number them consecutively 
from 1 to n 

 Connect each node with its k clockwise neighbors 
 Traverse around ring in clockwise order 
 For every edge: 

 Draw random number r 

  If r < p, then re-wire edge by selecting a random target node 

from the set of all nodes (no duplicates) 

 Otherwise keep old edge 

 Different values of p give different graphs 
  If p is close to 0, then original structure mostly preserved 

  If p is close to 1, then new graph is random 

  Interesting things happen when p is somewhere in-between 
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Regular, Small-World, Random 

Regular Small-World Random 

p = 0 p = 1 
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Problems with Small-World Graphs 

Small-world graphs explain why: 
 Highly clustered graphs can have short average path lengths 
Small-world graphs do NOT explain why: 
 This property emerges in real networks 

 Real networks are practically never ring-like 

Further problem with small-world graphs: 
 Nearly all nodes have same degree 
 Not true for random graphs (k edges ~ ck/k!) 
  Is same true for real networks too? 
 Let’s look at the Internet… 
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Internet 

 Famous study by Faloutsos et al. (3 brothers! ;-) in 1999 
 They examined Internet topology during 1998 

 AS-level topology, during 1998 Internet grew 45% 

Motivation for work: 
 What does the Internet look like? 
 Are there any topological properties that don’t change 

over time? 
 How can I generate Internet-like graphs for simulations? 
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Faloutsos Results 

  4 key properties, each follows a power-law 
  Sort nodes according to their (out)degree 
1.  Outdegree of a node is proportional to its rank to the 

power of a constant 
2.  Number of nodes with same outdegree is proportional to 

the outdegree to the power of a constant 
3.  Eigenvalues of a graph are proportional to the order to 

the power of a constant 
4.  Total number of pairs of nodes within a distance d is 

proportional to d to the power of a constant 
•  Why would Internet obey such laws? 
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Answer: Power-Law Networks 

  Also known as scale-free networks 
  Barabasi-Albert-Model 
1.  Network grows in time 
2.  New node has preferences to whom it wants to connect 
  Preferential connectivity modeled as 

  Each new node wants to connect to m other nodes 

  Probability that an existing node j gets one of the m 

connections is proportional to its degree d(j) 

  New nodes tend to connect to well-connected nodes 
  Another way to express this is “rich get richer” 
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Applications to Peer-to-Peer 

 Small-world model explains why short paths exist 
 Why can we find these paths? 

 Each node has only local information 

 Milgram’s results showed first steps were the largest 

 How to model this? 
 Kleinberg’s Small-World Model 

 Set of points in an n x n grid 

 Distance is the number of “steps” separating points 

-  d(i, j) = |xi - xj| + |yi - yj| 

 Construct graph as follows: 
 Every node i is connected to node j within distance q 

 For every node i, additional q edges are added. Probability that 

node j is selected is proportional to d(i, j)-r, for some constant r 
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Navigation in Kleinberg’s Model 

 We want to send a message to another node 
 Algorithm is decentralized if sending node only knows: 

  Its local neighbors 

 Position of the target node on the grid 

 Locations and long-range contacts of all nodes who come in 

contact of the message (not needed below, actually) 

 Can be shown: Number of messages needed is 
proportional to O(log n) (only one correct r per case) 

 Practical algorithm: Forward message to contact who is 
closest to target 

 Note: Kleinberg’s model assumes some way of 
associating nodes with points in grid 

 Compare with CAN DHT in Chapter 3 
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Power Law Networks and P2P 

 Robustness comparison of random and power-law graphs 
 Take network of 10000 nodes (random and power-law) and 

remove nodes randomly 
 Random graph: 

 Take out 5% of nodes: Biggest component 9000 nodes 

 Take out 18% of nodes: No biggest component, all components 

between 1 and 100 nodes 

 Take out 45% of nodes: Only groups of 1 or 2 survive 

 Power-law graph: 
 Take out 5% of nodes: Only isolated nodes break off 

 Take out 18% of nodes: Biggest component 8000 nodes 

 Take out 45% of nodes: Large cluster persists, fragments small 

 Recall Gnutella: Applies ONLY for random failures 
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Summary of Graphs 

 Three kinds of graph models: 
 Random graph 

 Small-World 

 Power-Law (Scale-Free) 

 Small-world graphs explain why we can have high 
clustering and short average paths 

 Power-law graphs explain how graphs are built in many 
real networks 
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Chapter Summary 

 Searching and addressing 
 Fundamental difference 

 Unstructured vs. structured networks 

 Distributed Hash Tables 
 DHT provides a key to value mapping 

 Three examples: Chord, CAN, Tapestry 

 Different networks and graphs 
 Random, small world, scale-free networks 


