
Peer-to-Peer Networks

Chapter 3: Networks, Searching and
Distributed Hash Tables

Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

 Searching and addressing
 Structured and unstructured networks

 Distributed Hash Tables
 What they are?

 How they work?

 What are they good for?

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry

 Networks and graphs
 Graph theory meets networking

 Different types of graphs and their properties

Kangasharju: Peer-to-Peer Networks 3

Searching and Addressing

  Two basic ways to find objects:
1.  Search for them
2.  Address them using their unique name
  Both have pros and cons (see below)
  Most existing P2P networks built on searching, but some

networks are based on addressing objects
  Difference between searching and addressing is a very

fundamental difference
  Determines how network is constructed

  Determines how objects are placed

  “Determines” efficiency of object location

  Let’s compare searching and addressing

Kangasharju: Peer-to-Peer Networks 4

Addressing vs. Searching

Addressing

  Pros:

  Each object uniquely identifiable

  Object location can be made efficient

  Cons:

  Need to know unique name

  Need to maintain structure required

by addresses

Searching

  Pros:

  No need to know unique names

-  More user friendly

  Cons:

  Hard to make efficient

-  Can solve with money, see Google

  Need to compare actual objects to know

if they are same

•  “Addressing” networks find objects by addressing them with their unique name
(cf. URLs in Web)
•  “Searching” networks find objects by searching with keywords that match
objects’s description (cf. Google)

Kangasharju: Peer-to-Peer Networks 5

Addressing vs. Searching: Examples

Searching Addressing

Physical name
of object

Searching in P2P networks,

Searching in filesystem

(Desktop searches)

(Search components of URL with Google?)

URLs in Web

Logical name
of object

?

(Search components of URNs)

Object names in DHT,

URNs

Content or
metadata of

object

Searching in P2P networks,

Standard Google search

Desktop searches

N/A

Kangasharju: Peer-to-Peer Networks 6

Searching, Addressing, and P2P

 We can distinguish two main P2P network types
Unstructured networks/systems
 Based on searching
 Unstructured does NOT mean complete lack of structure

 Network has graph structure, e.g., scale-free
 Network has structure, but peers are free to join anywhere

and objects can be stored anywhere
 So far we have seen unstructured networks
Structured networks/systems
 Based on addressing
 Network structure determines where peers belong in the

network and where objects are stored
 How to build structured networks?

Kangasharju: Peer-to-Peer Networks 7

Another Classification of P2P Systems

 Sometimes P2P systems classified in generations
 No 100% consensus on what is in which generation
 1st generation

 Typically: Napster

 2nd generation
 Typically: Gnutella

 3rd generation
 Typically: Superpeer networks

 4th generation
 Typically: Distributed hash tables

 Note: For DHTs, no division into generations yet

Kangasharju: Peer-to-Peer Networks 8

Distributed Hash Tables

 What are they?
 How they work?
 What are they good for?
 Examples:

 Chord

 CAN

 Plaxton/Pastry/Tapestry

Kangasharju: Peer-to-Peer Networks 9

DHT: Motivation

 Why we need DHTs?
 Searching in P2P networks is not efficient

 Either centralized system with all its problems

 Or distributed system with all its problems

 Hybrid systems cannot guarantee discovery either

 Actual file transfer process in P2P network is scalable
 File transfers directly between peers

 Searching does not scale in same way
 Original motivation for DHTs: More efficient searching and

object location in P2P networks
 Put another way: Use addressing instead of searching

Kangasharju: Peer-to-Peer Networks 10

Recall: Hash Tables

 Hash tables are a well-known data structure
 Hash tables allow insertions, deletions, and finds in

constant (average) time
 Hash table is a fixed-size array

 Elements of array also called hash buckets

 Hash function maps keys to elements in the array
 Properties of good hash functions:

 Fast to compute

 Good distribution of keys into hash table

 Example: SHA-1 algorithm

Kangasharju: Peer-to-Peer Networks 11

Hash Tables: Example

 Hash function:
hash(x) = x mod 10

  Insert numbers 0, 1, 4, 9,
16, and 25

 Easy to find if a given key
is present in the table

0

1

2

6

4

8

3

7

9

5

0
1

4

25
16

9

Kangasharju: Peer-to-Peer Networks 12

Distributed Hash Table: Idea

 Hash tables are fast for
lookups

  Idea: Distribute hash
buckets to peers

 Result is Distributed Hash
Table (DHT)

 Need efficient mechanism
for finding which peer is
responsible for which
bucket and routing
between them

0

1

2

6

4

8

3

7

9

5

0
1

4
25
16

9

Kangasharju: Peer-to-Peer Networks 13

DHT: Principle

  In a DHT, each node is
responsible for one or more
hash buckets

 As nodes join and leave, the

responsibilities change

 Nodes communicate among
themselves to find the
responsible node

 Scalable communications

make DHTs efficient

 DHTs support all the normal
hash table operations

0

1

2

0
1

6

4

3

5

4
25
16

8

7

9 9

Kangasharju: Peer-to-Peer Networks 14

Summary of DHT Principles

 Hash buckets distributed over nodes
 Nodes form an overlay network

 Route messages in overlay to find responsible node

 Routing scheme in the overlay network is the difference
between different DHTs

 DHT behavior and usage:
 Node knows “object” name and wants to find it

-  Unique and known object names assumed

 Node routes a message in overlay to the responsible node

 Responsible node replies with “object”

-  Semantics of “object” are application defined

Kangasharju: Peer-to-Peer Networks 15

DHT Examples

  In the following look at some example DHTs
 Chord

 CAN

 Tapestry

 Several others exist too
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, …

 All DHTs provide the same abstraction:
 DHT stores key-value pairs

 When given a key, DHT can retrieve/store the value

 No semantics associated with key or value

 Difference is in overlay routing scheme

Kangasharju: Peer-to-Peer Networks 16

Chord

 Chord was developed at MIT
 Originally published in 2001 at Sigcomm conference

 Chord’s overlay routing principle quite easy to understand
 Paper has mathematical proofs of correctness and

performance

 Many projects at MIT around Chord
 CFS storage system

  Ivy storage system

 Plus many others…

Kangasharju: Peer-to-Peer Networks 17

Chord: Basics

 Chord uses SHA-1 hash function
 Results in a 160-bit object/node identifier

 Same hash function for objects and nodes

 Node ID hashed from IP address
 Object ID hashed from object name

 Object names somehow assumed to be known by everyone

 SHA-1 gives a 160-bit identifier space
 Organized in a ring which wraps around

 Nodes keep track of predecessor and successor

 Node responsible for objects between its predecessor and itself

 Overlay is often called “Chord ring” or “Chord circle”

Kangasharju: Peer-to-Peer Networks 18

Chord: Examples

 Below examples for:
 How to join the Chord ring

 How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 19

Joining: Step-By-Step Example

0

1

2

3

4

5

6

7

  Setup: Existing network with

nodes on 0, 1 and 4

  Note: Protocol messages simply

examples

  Many different ways to

implement Chord

  Here only conceptual example

  Covers all important aspects

Kangasharju: Peer-to-Peer Networks 20

Joining: Step-By-Step Example: Start

0

1

2

3

4

5

6

7

  New node wants to join

  Hash of the new node: 6

  Known node in network:

Node1

  Contact Node1

  Include own hash

Kangasharju: Peer-to-Peer Networks 21

Joining: Step-By-Step Example:
Situation Before Join

0

1

2

3

4

5

6

7

Data for]4;0]

Data for]0;1]

Data for]1;4]

No data

succ0

succ1 succ4

pred1 pred0

pred4

Kangasharju: Peer-to-Peer Networks 22

Joining: Step-By-Step Example:
Contact known node

0

1

2

3

4

5

6

7

JOIN 6

  Arrows indicate

open connections

  Example assumes

connections are kept

open, i.e., messages

processed recursively

  Iterative processing is

also possible

Kangasharju: Peer-to-Peer Networks 23

Joining: Step-By-Step Example:
Join gets routed along the network

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 24

Joining: Step-By-Step Example:
Successor of New Node Found

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 25

Joining: Step-By-Step Example:
Joining Successful + Transfer

0
1

2

3

4
5

6

7

TRANSFER
Data in range]4;6] Joining is successful

Old responsible node
transfers data that
should be in new
node

New node informs
Node4 about new
successor (not shown)

Note: Transferring can happen also later

Kangasharju: Peer-to-Peer Networks 26

Joining: Step-By-Step Example:
All Is Done

0

1

2

3

4

5

6

7 succ0

succ1 succ4

pred1 pred0

pred4 pred6

succ6

Data for]6;0]

Data for]0;1]

Data for]1;4]

Data for]4;6]

Kangasharju: Peer-to-Peer Networks 27

Storing a Value

 Node 6 wants to store
object with name “Foo”
and value 5

 hash(Foo) = 2
0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 28

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 29

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 30

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Value is now stored
in node 4.

Kangasharju: Peer-to-Peer Networks 31

Retrieving a Value

 Node 1 wants to get
object with name “Foo”

 hash(Foo) = 2
 Foo is stored on node 4

0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 32

Retrieving a Value

0

1

2

3

4

5

6

7

RETRIEVE 2

Kangasharju: Peer-to-Peer Networks 33

Retrieving a Value

0

1

2

3

4

5

6

7

RESULT 5

Kangasharju: Peer-to-Peer Networks 34

Chord: Scalable Routing

 Routing happens by passing message to successor
 What happens when there are 1 million nodes?

 On average, need to route 1/2-way across the ring

  In other words, 0.5 million hops! Complexity O(n)

 How to make routing scalable?
 Answer: Finger tables
 Basic Chord keeps track of predecessor and successor
 Finger tables keep track of more nodes

 Allow for faster routing by jumping long way across the ring

 Routing scales well, but need more state information

 Finger tables not needed for correctness, only
performance improvement

Kangasharju: Peer-to-Peer Networks 35

Chord: Finger Tables

  In m-bit identifier space, node has up to m fingers
 Fingers are stored in the finger table

 Row i in finger table at node n contains first node s that
succeeds n by at least 2i-1 on the ring

  In other words:
 finger[i] = successor(n + 2i-1)

 First finger is the successor
 Distance to finger[i] is at least 2i-1

Kangasharju: Peer-to-Peer Networks 36

Chord: Scalable Routing

  Finger intervals increase with distance

from node n

  If close, short hops and if far, long hops

Two key properties:

  Each node only stores information about

a small number of nodes

  Cannot in general determine the

successor of an arbitrary ID

  Example has three nodes at 0, 1, and 4

  3-bit ID space --> 3 rows of fingers

Start Int. Succ.

1 [1,2) 1

2 [2,4) 4

4 [4,0) 4

0

1

2

3

4

5

6

7

Start Int. Succ.

2 [2,3) 4

3 [3,5) 4

5 [5,1) 0

Start Int. Succ.

5 [5,6) 0

6 [6,0) 0

0 [0,4) 0

Kangasharju: Peer-to-Peer Networks 37

Chord: Performance

 Search performance of “pure” Chord O(n)
 Number of nodes is n

 With finger tables, need O(log n) hops to find the correct node
 Fingers separated by at least 2i-1

 With high probability, distance to target halves at each step

  In beginning, distance is at most 2m

 Hence, we need at most m hops

 For state information, “pure” Chord has only successor and
predecessor, O(1) state

 For finger tables, need m entries
 Actually, only O(log n) are distinct

 Proof is in the paper

Kangasharju: Peer-to-Peer Networks 38

CAN: Content Addressable Network

 CAN developed at UC Berkeley
 Originally published in 2001 at Sigcomm conference(!)

 CANs overlay routing easy to understand
 Paper concentrates more on performance evaluation

 Also discussion on how to improve performance by tweaking

 CAN project did not have much of a follow-up
 Only overlay was developed, no bigger follow-ups

Kangasharju: Peer-to-Peer Networks 39

CAN: Basics

 CAN based on N-dimensional Cartesian coordinate space
 Our examples: N = 2
 One hash function for each dimension

 Entire space is partitioned amongst all the nodes
 Each node owns a zone in the overall space

 Abstractions provided by CAN:
 Can store data at points in the space
 Can route from one point to another

 Point = Node that owns the zone in which the point
(coordinates) is located

 Order in which nodes join is important

Kangasharju: Peer-to-Peer Networks 40

CAN: Partitioning

1

Kangasharju: Peer-to-Peer Networks 41

CAN: Partitioning

1 2

Kangasharju: Peer-to-Peer Networks 42

CAN: Partitioning

1

2

3

Kangasharju: Peer-to-Peer Networks 43

CAN: Partitioning

1

2

3

4

Kangasharju: Peer-to-Peer Networks 44

CAN: Partitioning

  CAN forms a d-

dimensional

torus

Kangasharju: Peer-to-Peer Networks 45

CAN: Examples

 Below examples for:
 How to join the network

 How routing tables are managed

 How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 46

CAN: Node Insertion

I

New node

Discover some
node “I” already
in CAN

Kangasharju: Peer-to-Peer Networks 47

CAN: Node Insertion

pick random
point in space

I

(p,q)

New node

New node picks
its coordinates
in space

Kangasharju: Peer-to-Peer Networks 48

CAN: Node Insertion

(p,q)

I routes to
(p,q), and
discovers that
node J owns
(p,q)

I

J

new node

Kangasharju: Peer-to-Peer Networks 49

CAN: Node Insertion

New J

Split J’s zone
in half. New
owns one half

Kangasharju: Peer-to-Peer Networks 50

CAN: Routing Table

Kangasharju: Peer-to-Peer Networks 51

CAN: Routing

(a,b)

(x,y)

Kangasharju: Peer-to-Peer Networks 52

 a = hx(K)

CAN: Storing Values

x = a

node I::insert(K,V)

 I

y = b

 b = hy(K)

Kangasharju: Peer-to-Peer Networks 53

(1) a = hx(K)
 b = hy(K)

CAN: Storing Values

 (2) route(K,V) -> (a,b)

node I::insert(K,V)

 I

Kangasharju: Peer-to-Peer Networks 54

CAN: Storing Values

 (2) route(K,V) -> (a,b)

 (3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

 I (1) a = hx(K)
 b = hy(K)

Kangasharju: Peer-to-Peer Networks 55

CAN: Retrieving Values

 (2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
 b = hy(K)

node J::retrieve(K)

 J

Kangasharju: Peer-to-Peer Networks 56

CAN: Improvements

 Possible to increase number of dimensions d
 Small increase in routing table size

-  Shorter routing path, more neighbors for fault tolerance

 Multiple realities (= coordinate spaces)
 Use more hash functions

 Same properties as increased dimensions

 Routing weighted by round-trip times
 Take into account network topology

 Forward to the “best” neighbor

Kangasharju: Peer-to-Peer Networks 57

CAN: More Improvements

 Use well-known landmark servers (e.g., DNS roots)
 Nodes join CAN in different areas, depending on distance to

landmarks

-  Pick points “near” landmark

  Idea: Geographically close nodes see same landmarks

 Uniform partitioning
 New node splits the largest zone in the neighborhood

instead of the zone of the responsible node

Kangasharju: Peer-to-Peer Networks 58

CAN: Performance

 State information at node O(d)
 Number of dimensions is d

 Need two neighbors in all coordinate axis

  Independent of the number of nodes!

 Routing takes O(dn1/d) hops
 Network has n nodes

 Multiple dimensions and realities improve this

 For routing: multiple dimensions are better

 But: multiple realities improve availability and fault tolerance

Kangasharju: Peer-to-Peer Networks 59

Tapestry

 Tapestry developed at UC Berkeley(!)
 Different group from CAN developers

 Tapestry developed in 2000, but published in 2004
 Originally only as technical report, 2004 as journal article

 Many follow-up projects on Tapestry
 Example: OceanStore

 Tapestry based on work by Plaxton et al.
 Plaxton network has also been used by Pastry
 Pastry was developed at Microsoft Research and Rice

University
 Difference between Pastry and Tapestry minimal
 Tapestry and Pastry add dynamics and fault tolerance to

Plaxton network

Kangasharju: Peer-to-Peer Networks 60

Tapestry: Plaxton Network

 Plaxton network (or Plaxton mesh) based on prefix routing
(similar to IP address allocation)

 Prefix and postfix are functionally identical
 Tapestry originally postfix, now prefix?!?

 Node ID and object ID hashed with SHA-1
 Expressed as hexadecimal (base 16) numbers (40 digits)
 Base is very important, here we use base 16

 Each node has a neighbor map with multiple levels
 Each level represents a matching prefix up to digit position in ID
 A given level has number of entries equal to the base of ID
  ith entry in jth level is closest node which starts prefix(N,j-1)+”i”
 Example: 9th entry of 4th level for node 325AE is the closest node

with ID beginning with 3259

Kangasharju: Peer-to-Peer Networks 61

Tapestry: Routing Mesh

  (Partial) routing mesh for a single node 4227
 Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1 L1

L1
L4

L2

L2
L3

Kangasharju: Peer-to-Peer Networks 62

Tapestry: Neighbor Map for 4227

Level 1 2 3 4 5 6 8 A

1 1D76 27AB 51E5 6F43

2 43C9 44AF

3 42A2

4 4228

•  There are actually 16 columns in the map (base 16)
•  Normally more (most?) entries would be filled
•  Tapestry has neighbor maps of size 40 x 16

Kangasharju: Peer-to-Peer Networks 63

Tapestry: Routing Example

42AD

  Route message from 5230 to 42AD
  Always route to node closer to target

  At nth hop, look at n+1th level in neighbor map --> “always” one digit more
  Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

Kangasharju: Peer-to-Peer Networks 64

Tapestry: Properties

 Node responsible for objects which have same ID
 Unlikely to find such node for every object
 Node responsible also for “nearby” objects (surrogate routing,

see below)
 Object publishing:

 Responsible nodes store only pointers
-  Multiple copies of object possible
-  Each copy must publish itself

 Pointers cached along the publish path
 Queries routed towards responsible node
 Queries “often” hit cached pointers

-  Queries for same object go (soon) to same nodes
 Note: Tapestry focuses on storing objects

 Chord and CAN focus on values, but in practice no difference

Kangasharju: Peer-to-Peer Networks 65

Tapestry: Publishing Example

  Two copies of object “DOC” with ID 4377 created at AA93 and 4228
  AA93 and 4228 publish object DOC, messages routed to 4377

  Publish messages create location pointers on the way
  Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path
Publish path

Location pointer

Kangasharju: Peer-to-Peer Networks 66

Tapestry: Querying Example

  Requests initially route towards 4377

  When they encounter the publish path, use location pointers to find object

  Often, no need to go to responsible node

  Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer

Kangasharju: Peer-to-Peer Networks 67

Tapestry: Making It Work

 Previous examples show a Plaxton network
 Requires global knowledge at creation time

 No fault tolerance, no dynamics

 Tapestry adds fault tolerance and dynamics
 Nodes join and leave the network

 Nodes may crash

 Global knowledge is impossible to achieve

 Tapestry picks closest nodes for neighbor table
 Closest in IP network sense (= shortest RTT)

 Network distance (usually) transitive

-  If A is close to B, then B is also close to A

  Idea: Gives best performance

Kangasharju: Peer-to-Peer Networks 68

Tapestry: Fault-Tolerant Routing

 Tapestry keeps mesh connected with keep-alives
 Both TCP timeouts and UDP “hello” messages

 Requires extra state information at each node

 Neighbor table has backup neighbors
 For each entry, Tapestry keeps 2 backup neighbors

  If primary fails, use secondary

-  Works well for uncorrelated failures

 When node notices a failed node, it marks it as invalid
 Most link/connection failures short-lived

 Second chance period (e.g., day) during which failed node

can come back and old route is valid again

  If node does not come back, one backup neighbor is

promoted and a new backup is chosen

Kangasharju: Peer-to-Peer Networks 69

Tapestry: Fault-Tolerant Location

 Responsible node is a single point of failure
 Solution: Assign multiple roots per object

 Add “salt” to object name and hash as usual

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

 Same idea as CAN’s multiple realities
 This process makes data more available, even if the

network is partitioned
 With s roots, availability is P ≈ 1 - (1/2)s

 Depends on partition

 These two mechanisms “guarantee” fault-tolerance
  In most cases :-)

 Problem: If the only out-going link fails…

Kangasharju: Peer-to-Peer Networks 70

Tapestry: Surrogate Routing

 Responsible node is node with same ID as object
 Such a node is unlikely to exist

 Solution: surrogate routing
 What happens when there is no matching entry in

neighbor map for forwarding a message?
 Node picks (deterministically) one entry in neighbor map

 Details are not explained in the paper :(

  Idea: If “missing links” are deterministically picked, any
message for that ID will end up at same node

 This node is the surrogate

  If new nodes join, surrogate may change
 New node is neighbor of surrogate

Kangasharju: Peer-to-Peer Networks 71

Tapestry: Performance

 Messages routed in O(logb N) hops
 At each step, we resolve one more digit in ID
 N is the size of the namespace (e.g, SHA-1 = 40 digits)
 Surrogate routing adds a bit to this, but not significantly

 State required at a node is O(b logb N)
 Tapestry has c backup links per neighbor, O(cb logb N)
 Additionally, same number of backpointers

Kangasharju: Peer-to-Peer Networks 72

DHT: Comparison

Chord CAN Tapestry

Type of network Ring N-dimensional Prefix routing

Routing O(log n) O(d·n1/d) O(logb N)

State O(log n) O(d) O(b·logb N)

Caching efficient + ++ ++

Robustness -/+ +++ ++

IP Topology-Aware N N/Y Y

Used for other

projects

+++ -- ++

Note: n is number of nodes, N is size of Tapestry’s namespace

Kangasharju: Peer-to-Peer Networks 73

Other DHTs

 Many other DHTs exist too
 Pastry, similar to Tapestry

 Kademlia, uses XOR metric

 Kelips, group nodes into k groups, similar to KaZaA

 Plus some others…

 Overnet P2P network (also eDonkey) uses Kademlia
 Wide-spread deployed DHT

 All DHTs provide same API
  In principle, DHT-layer is interchangeable

Kangasharju: Peer-to-Peer Networks 74

Networks and Graphs

 Refresher of graph theory
 Graph families and models

 Random graphs

 Small world graphs

 Scale-free graphs

 Graph theory and P2P
 How are the graph properties reflected in real systems?

Kangasharju: Peer-to-Peer Networks 75

What Is a Graph?

  Definition of a graph:
 Graph G = (V, E) consists of two finite sets, set V of vertices
(nodes) and set E of edges (arcs) for which the following
applies:
1.  If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e

2.  If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V

applies x ∈ e and y ∈ e, then {v, u} = {x, y}

1 2

3

4
e2

e1

e3

e5 e4 Example graph with
4 vertices and 5 edges

Kangasharju: Peer-to-Peer Networks 76

Properties of Graphs

 An edge e ∈ E is directed if the start and end vertices in
condition 2 above are identical: v = x and y = u

 An edge e ∈ E is undirected if v = x and y = u as well as v = y
and u = x are possible

 A graph G is directed (undirected) if the above property holds
for all edges

 A loop is an edge with identical endpoints
 Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and

E1 ⊆ E (such that conditions 1 and 2 are met)

Kangasharju: Peer-to-Peer Networks 77

Important Types of Graphs

 Vertices v, u ∈ V are connected if there is a path from v to
u: (v, v2), (v2, v3), …, (vk-1, u) ∈ E

 Graph G is connected if all v, u ∈ V are connected
 Undirected, connected, acyclic graph is called a tree

 Sidenote: Undirected, acyclic graph which is not connected

is called a forest

 Directed, connected, acyclic graph is also called DAG
 DAG = directed, acyclic graph (connected is “assumed”)

 An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and
with edges EC = {e = (i, j) | i, j ∈ VC}

 An induced graph is a component if it is connected

Kangasharju: Peer-to-Peer Networks 78

Vertex Degree

  In graph G = (V, E), the degree of vertex v ∈ V is the total
number of edges (v, u) ∈ E and (u, v) ∈ E

 Degree is the number of edges which touch a vertex

 For directed graph, we distinguish between in-degree and
out-degree

  In-degree is number of edges coming to a vertex

 Out-degree is number of edges going away from a vertex

 The degree of a vertex can be obtained as:
 Sum of the elements in its row in the incidence matrix

 Length of its vertex incidence list

Kangasharju: Peer-to-Peer Networks 79

Important Graph Metrics

 Distance: d(v, u) between vertices v and u is the length of
the shortest path between v and u

 Average path length: Sum of the distances over all pairs
of nodes divided by the number of pairs

 Diameter: d(G) of graph G is the maximum of d(v, u) for
all v, u ∈ V

Kangasharju: Peer-to-Peer Networks 80

Six Degrees of Separation

 Famous experiment from 1960’s (S. Milgram)
 Send a letter to random people in Kansas and Nebraska

and ask people to forward letter to a person in Boston
 Person identified by name, profession, and city

 Rule: Give letter only to people you know by first name
and ask them to pass it on according to same rule

 Some letters reached their goal
 Letter needed six steps on average to reach the person
 Graph theoretically: Social networks have dense local

structure, but (apparently) small diameter
 How to model such networks?

Kangasharju: Peer-to-Peer Networks 81

Random Graphs

 Random graphs are first widely studied graph family
 Many P2P networks choose neighbors more or less randomly

 Two different notations generally used:
 Erdös and Renyi

 Gilbert (we will use this)

 Gilbert’s definition: Graph Gn,p (with n nodes) is a graph
where the probability of an edge e = (v, w) is p

Construction algorithm:
 For each possible edge, draw a random number
  If the number is smaller than p, then the edge exists
 p can be function of n or constant

Kangasharju: Peer-to-Peer Networks 82

Basic Results for Random Graphs

Giant Connected Component:
 Let c > 0 be a constant and p = c/n. If c < 1 every
component of Gn,p has order O(log N) with high
probability. If c > 1 then there will be one component of
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All
other components have size O(log N)

  In plain English: Giant connected component emerges
with high probability when average degree is about 1

Node degree distribution
  If we take random node, how high is probability P(k) that

node has degree k?
 Node degree is Poisson distributed

Kangasharju: Peer-to-Peer Networks 83

More Basic Results

Diameter of a random graph
  If pn/log(n) → ∞ and log(n)/log(pn) → ∞ then the diameter

of Gn,p is asymptotic to log(n)/log(pn) with high probability
Clustering coefficient
 Clustering coefficient measures number of edges

between neighbors divided by maximum number of edges
between them (clique-like)

 Clustering coefficient C(i) is defined as
 E(N(i)) = number of edges between neighbors of i
 d(i) = degree of i

 Clustering coefficient of a random graph is asymptotically
equal to p with high probability

Kangasharju: Peer-to-Peer Networks 84

Random Graphs: Summary

  Before random graphs, regular graphs were popular
  Regular: Every node has same degree

  Random graphs have two advantages over regular graphs
1.  Many interesting properties analytically solvable
2.  Much better for applications, e.g., social networks
  Note: Does not mean social networks are random graphs;

just that the properties of social networks are well-described
by random graphs

  Question: How to model networks with local clusters and
small diameter?

  Answer: Small-world networks

Kangasharju: Peer-to-Peer Networks 85

Small-World Networks

 Developed/discovered by Watts and Strogatz (1998)
 Over 30 years after Milgram’s experiment!

 Watts and Strogatz looked at three networks
 Film collaboration between actors
 US power grid
 Neural network of worm C. elegans

 Results:
 Compared to a random graph with same number of nodes
 Diameters similar, slightly higher for real graph
 Clustering coefficient orders of magnitude higher

Definition of small-worlds network:
 Dense local clustering structure and small diameter

comparable to that of a same-sized random graph

Kangasharju: Peer-to-Peer Networks 86

Constructing Small-World Graphs

 Put all n nodes on a ring, number them consecutively
from 1 to n

 Connect each node with its k clockwise neighbors
 Traverse around ring in clockwise order
 For every edge:

 Draw random number r

  If r < p, then re-wire edge by selecting a random target node

from the set of all nodes (no duplicates)

 Otherwise keep old edge

 Different values of p give different graphs
  If p is close to 0, then original structure mostly preserved

  If p is close to 1, then new graph is random

  Interesting things happen when p is somewhere in-between

Kangasharju: Peer-to-Peer Networks 87

Regular, Small-World, Random

Regular Small-World Random

p = 0 p = 1

Kangasharju: Peer-to-Peer Networks 88

Problems with Small-World Graphs

Small-world graphs explain why:
 Highly clustered graphs can have short average path lengths
Small-world graphs do NOT explain why:
 This property emerges in real networks

 Real networks are practically never ring-like

Further problem with small-world graphs:
 Nearly all nodes have same degree
 Not true for random graphs (k edges ~ ck/k!)
  Is same true for real networks too?
 Let’s look at the Internet…

Kangasharju: Peer-to-Peer Networks 89

Internet

 Famous study by Faloutsos et al. (3 brothers! ;-) in 1999
 They examined Internet topology during 1998

 AS-level topology, during 1998 Internet grew 45%

Motivation for work:
 What does the Internet look like?
 Are there any topological properties that don’t change

over time?
 How can I generate Internet-like graphs for simulations?

Kangasharju: Peer-to-Peer Networks 90

Faloutsos Results

  4 key properties, each follows a power-law
  Sort nodes according to their (out)degree
1.  Outdegree of a node is proportional to its rank to the

power of a constant
2.  Number of nodes with same outdegree is proportional to

the outdegree to the power of a constant
3.  Eigenvalues of a graph are proportional to the order to

the power of a constant
4.  Total number of pairs of nodes within a distance d is

proportional to d to the power of a constant
•  Why would Internet obey such laws?

Kangasharju: Peer-to-Peer Networks 91

Answer: Power-Law Networks

  Also known as scale-free networks
  Barabasi-Albert-Model
1.  Network grows in time
2.  New node has preferences to whom it wants to connect
  Preferential connectivity modeled as

  Each new node wants to connect to m other nodes

  Probability that an existing node j gets one of the m

connections is proportional to its degree d(j)

  New nodes tend to connect to well-connected nodes
  Another way to express this is “rich get richer”

Kangasharju: Peer-to-Peer Networks 92

Applications to Peer-to-Peer

 Small-world model explains why short paths exist
 Why can we find these paths?

 Each node has only local information

 Milgram’s results showed first steps were the largest

 How to model this?
 Kleinberg’s Small-World Model

 Set of points in an n x n grid

 Distance is the number of “steps” separating points

-  d(i, j) = |xi - xj| + |yi - yj|

 Construct graph as follows:
 Every node i is connected to node j within distance q

 For every node i, additional q edges are added. Probability that

node j is selected is proportional to d(i, j)-r, for some constant r

Kangasharju: Peer-to-Peer Networks 93

Navigation in Kleinberg’s Model

 We want to send a message to another node
 Algorithm is decentralized if sending node only knows:

  Its local neighbors

 Position of the target node on the grid

 Locations and long-range contacts of all nodes who come in

contact of the message (not needed below, actually)

 Can be shown: Number of messages needed is
proportional to O(log n) (only one correct r per case)

 Practical algorithm: Forward message to contact who is
closest to target

 Note: Kleinberg’s model assumes some way of
associating nodes with points in grid

 Compare with CAN DHT in Chapter 3

Kangasharju: Peer-to-Peer Networks 94

Power Law Networks and P2P

 Robustness comparison of random and power-law graphs
 Take network of 10000 nodes (random and power-law) and

remove nodes randomly
 Random graph:

 Take out 5% of nodes: Biggest component 9000 nodes

 Take out 18% of nodes: No biggest component, all components

between 1 and 100 nodes

 Take out 45% of nodes: Only groups of 1 or 2 survive

 Power-law graph:
 Take out 5% of nodes: Only isolated nodes break off

 Take out 18% of nodes: Biggest component 8000 nodes

 Take out 45% of nodes: Large cluster persists, fragments small

 Recall Gnutella: Applies ONLY for random failures

Kangasharju: Peer-to-Peer Networks 95

Summary of Graphs

 Three kinds of graph models:
 Random graph

 Small-World

 Power-Law (Scale-Free)

 Small-world graphs explain why we can have high
clustering and short average paths

 Power-law graphs explain how graphs are built in many
real networks

Kangasharju: Peer-to-Peer Networks 96

Chapter Summary

 Searching and addressing
 Fundamental difference

 Unstructured vs. structured networks

 Distributed Hash Tables
 DHT provides a key to value mapping

 Three examples: Chord, CAN, Tapestry

 Different networks and graphs
 Random, small world, scale-free networks

