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Chapter Outline 

 Searching and addressing 
 Structured and unstructured networks 

 Distributed Hash Tables 
 What they are? 

 How they work? 

 What are they good for? 

 Examples: Chord, CAN, Plaxton/Pastry/Tapestry 

 Networks and graphs 
 Graph theory meets networking 

 Different types of graphs and their properties 
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Searching and Addressing 

  Two basic ways to find objects: 
1.  Search for them 
2.  Address them using their unique name 
  Both have pros and cons (see below) 
  Most existing P2P networks built on searching, but some 

networks are based on addressing objects 
  Difference between searching and addressing is a very 

fundamental difference 
  Determines how network is constructed 

  Determines how objects are placed 

  “Determines” efficiency of object location 

  Let’s compare searching and addressing 
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Addressing vs. Searching 

Addressing 

  Pros: 

  Each object uniquely identifiable 

  Object location can be made efficient 

  Cons: 

  Need to know unique name 

  Need to maintain structure required 

by addresses 

Searching 

  Pros: 

  No need to know unique names 

-  More user friendly 

  Cons: 

  Hard to make efficient 

-  Can solve with money, see Google 

  Need to compare actual objects to know 

if they are same 

•   “Addressing” networks find objects by addressing them with their unique name 
(cf. URLs in Web) 
•   “Searching” networks find objects by searching with keywords that match 
objects’s description (cf. Google) 
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Addressing vs. Searching: Examples 

Searching Addressing 

Physical name 
of object


Searching in P2P networks, 

Searching in filesystem 

(Desktop searches) 

(Search components of URL with Google?) 

URLs in Web 

Logical name 
of object 

? 

(Search components of URNs) 

Object names in DHT, 

URNs 

Content or 
metadata of 

object 

Searching in P2P networks,  

Standard Google search 

Desktop searches 

N/A 
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Searching, Addressing, and P2P 

 We can distinguish two main P2P network types 
Unstructured networks/systems 
 Based on searching 
 Unstructured does NOT mean complete lack of structure 

 Network has graph structure, e.g., scale-free 
 Network has structure, but peers are free to join anywhere 

and objects can be stored anywhere 
 So far we have seen unstructured networks 
Structured networks/systems 
 Based on addressing 
 Network structure determines where peers belong in the 

network and where objects are stored 
 How to build structured networks? 
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Another Classification of P2P Systems 

 Sometimes P2P systems classified in generations 
 No 100% consensus on what is in which generation 
 1st generation 

 Typically: Napster 

 2nd generation 
 Typically: Gnutella 

 3rd generation 
 Typically: Superpeer networks 

 4th generation 
 Typically: Distributed hash tables 

 Note: For DHTs, no division into generations yet 
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Distributed Hash Tables 

 What are they? 
 How they work? 
 What are they good for? 
 Examples:  

 Chord 

 CAN 

 Plaxton/Pastry/Tapestry 
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DHT: Motivation 

 Why we need DHTs? 
 Searching in P2P networks is not efficient 

 Either centralized system with all its problems 

 Or distributed system with all its problems 

 Hybrid systems cannot guarantee discovery either 

 Actual file transfer process in P2P network is scalable 
 File transfers directly between peers 

 Searching does not scale in same way 
 Original motivation for DHTs: More efficient searching and 

object location in P2P networks 
 Put another way: Use addressing instead of searching 
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Recall: Hash Tables 

 Hash tables are a well-known data structure 
 Hash tables allow insertions, deletions, and finds in 

constant (average) time 
 Hash table is a fixed-size array 

 Elements of array also called hash buckets 

 Hash function maps keys to elements in the array 
 Properties of good hash functions: 

 Fast to compute 

 Good distribution of keys into hash table 

 Example: SHA-1 algorithm 
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Hash Tables: Example 

 Hash function: 
hash(x) = x mod 10 

  Insert numbers 0, 1, 4, 9, 
16, and 25 

 Easy to find if a given key 
is present in the table 

0 

1 

2 

6 

4 

8 

3 

7 

9 

5 

0 
1 

4 

25 
16 

9 
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Distributed Hash Table: Idea 

 Hash tables are fast for 
lookups 

  Idea: Distribute hash 
buckets to peers 

 Result is Distributed Hash 
Table (DHT) 

 Need efficient mechanism 
for finding which peer is 
responsible for which 
bucket and routing 
between them 

0 

1 

2 

6 

4 

8 

3 

7 

9 

5 

0 
1 

4 
25 
16 

9 
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DHT: Principle 

  In a DHT, each node is 
responsible for one or more 
hash buckets 

 As nodes join and leave, the 

responsibilities change 

 Nodes communicate among 
themselves to find the 
responsible node 

 Scalable communications 

make DHTs efficient 

 DHTs support all the normal 
hash table operations 

0 

1 

2 

0 
1 

6 

4 

3 

5 

4 
25 
16 

8 

7 

9 9 
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Summary of DHT Principles 

 Hash buckets distributed over nodes 
 Nodes form an overlay network 

 Route messages in overlay to find responsible node 

 Routing scheme in the overlay network is the difference 
between different DHTs 

 DHT behavior and usage: 
 Node knows “object” name and wants to find it 

-  Unique and known object names assumed 

 Node routes a message in overlay to the responsible node 

 Responsible node replies with “object” 

-  Semantics of “object” are application defined 
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DHT Examples 

  In the following look at some example DHTs 
 Chord 

 CAN 

 Tapestry  

 Several others exist too 
 Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, … 

 All DHTs provide the same abstraction: 
 DHT stores key-value pairs 

 When given a key, DHT can retrieve/store the value 

 No semantics associated with key or value 

 Difference is in overlay routing scheme 
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Chord 

 Chord was developed at MIT 
 Originally published in 2001 at Sigcomm conference 

 Chord’s overlay routing principle quite easy to understand 
 Paper has mathematical proofs of correctness and 

performance 

 Many projects at MIT around Chord 
 CFS storage system 

  Ivy storage system 

 Plus many others… 
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Chord: Basics 

 Chord uses SHA-1 hash function 
 Results in a 160-bit object/node identifier 

 Same hash function for objects and nodes 

 Node ID hashed from IP address 
 Object ID hashed from object name 

 Object names somehow assumed to be known by everyone  

 SHA-1 gives a 160-bit identifier space 
 Organized in a ring which wraps around 

 Nodes keep track of predecessor and successor 

 Node responsible for objects between its predecessor and itself 

 Overlay is often called “Chord ring” or “Chord circle” 
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Chord: Examples 

 Below examples for: 
 How to join the Chord ring 

 How to store and retrieve values 
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Joining: Step-By-Step Example 

0 

1 

2 

3 

4 

5 

6 

7 

  Setup: Existing network with 

nodes on 0, 1 and 4 

  Note: Protocol messages simply 

examples 

  Many different ways to 

implement Chord 

  Here only conceptual example 

  Covers all important aspects 
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Joining: Step-By-Step Example: Start 

0 

1 

2 

3 

4 

5 

6 

7 

  New node wants to join 

  Hash of the new node: 6 

  Known node in network: 

Node1 

  Contact Node1 

  Include own hash 
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Joining: Step-By-Step Example: 
Situation Before Join 

0 

1 

2 

3 

4 

5 

6 

7 

Data for ]4;0] 

Data for ]0;1] 

Data for ]1;4] 

No data 

succ0 

succ1 succ4 

pred1 pred0 

pred4 
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Joining: Step-By-Step Example: 
Contact known node 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 

  Arrows indicate 

open connections 

  Example assumes 

connections are kept 

open, i.e., messages 

processed recursively 

  Iterative processing is 

also possible 
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Joining: Step-By-Step Example: 
Join gets routed along the network 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 
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Joining: Step-By-Step Example: 
Successor of New Node Found 

0 

1 

2 

3 

4 

5 

6 

7 

JOIN 6 
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Joining: Step-By-Step Example: 
Joining Successful + Transfer 

0 
1 

2 

3 

4 
5 

6 

7 

TRANSFER 
Data in range ]4;6] Joining is successful 

Old responsible node 
transfers data that 
should be in new 
node 

New node informs 
Node4 about new 
successor (not shown) 

Note: Transferring can happen also later 
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Joining: Step-By-Step Example: 
All Is Done 

0 

1 

2 

3 

4 

5 

6 

7 succ0 

succ1 succ4 

pred1 pred0 

pred4 pred6 

succ6 

Data for ]6;0] 

Data for ]0;1] 

Data for ]1;4] 

Data for ]4;6] 
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Storing a Value 

 Node 6 wants to store 
object with name “Foo” 
and value 5 

 hash(Foo) = 2 
0 

1 

2 

3 

4 

5 

6 

7 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 
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Storing a Value 

0 

1 

2 

3 

4 

5 

6 

7 

STORE 2 5 

Value is now stored 
in node 4. 
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Retrieving a Value 

 Node 1 wants to get 
object with name “Foo” 

 hash(Foo) = 2 
 Foo is stored on node 4 

0 

1 

2 

3 

4 

5 

6 

7 
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Retrieving a Value 

0 

1 

2 

3 

4 

5 

6 

7 

RETRIEVE 2 
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Retrieving a Value 

0 

1 

2 

3 

4 

5 

6 

7 

RESULT 5 
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Chord: Scalable Routing 

 Routing happens by passing message to successor 
 What happens when there are 1 million nodes? 

 On average, need to route 1/2-way across the ring 

  In other words, 0.5 million hops! Complexity O(n)  

 How to make routing scalable? 
 Answer: Finger tables 
 Basic Chord keeps track of predecessor and successor 
 Finger tables keep track of more nodes 

 Allow for faster routing by jumping long way across the ring 

 Routing scales well, but need more state information 

 Finger tables not needed for correctness, only 
performance improvement 
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Chord: Finger Tables 

  In m-bit identifier space, node has up to m fingers 
 Fingers are stored in the finger table 

 Row i in finger table at node n contains first node s that 
succeeds n by at least 2i-1 on the ring 

  In other words: 
   finger[i] = successor(n + 2i-1) 

 First finger is the successor 
 Distance to finger[i] is at least 2i-1 
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Chord: Scalable Routing 

  Finger intervals increase with distance 

from node n 

  If close, short hops and if far, long hops 

Two key properties: 

  Each node only stores information about 

a small number of nodes 

  Cannot in general determine the 

successor of an arbitrary ID 

  Example has three nodes at 0, 1, and 4 

  3-bit ID space --> 3 rows of fingers 

Start Int. Succ. 

1 [1,2) 1 

2 [2,4) 4 

4 [4,0) 4 

0 

1 

2 

3 

4 

5 

6 

7 

Start Int. Succ. 

2 [2,3) 4 

3 [3,5) 4 

5 [5,1) 0 

Start Int. Succ. 

5 [5,6) 0 

6 [6,0) 0 

0 [0,4) 0 
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Chord: Performance 

 Search performance of “pure” Chord O(n) 
 Number of nodes is n 

 With finger tables, need O(log n) hops to find the correct node 
 Fingers separated by at least 2i-1 

 With high probability, distance to target halves at each step 

  In beginning, distance is at most 2m 

 Hence, we need at most m hops 

 For state information, “pure” Chord has only successor and 
predecessor, O(1) state 

 For finger tables, need m entries 
 Actually, only O(log n) are distinct 

 Proof is in the paper 
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CAN: Content Addressable Network 

 CAN developed at UC Berkeley 
 Originally published in 2001 at Sigcomm conference(!) 

 CANs overlay routing easy to understand 
 Paper concentrates more on performance evaluation 

 Also discussion on how to improve performance by tweaking 

 CAN project did not have much of a follow-up 
 Only overlay was developed, no bigger follow-ups 
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CAN: Basics 

 CAN based on N-dimensional Cartesian coordinate space 
 Our examples: N = 2 
 One hash function for each dimension 

 Entire space is partitioned amongst all the nodes 
 Each node owns a zone in the overall space 

 Abstractions provided by CAN: 
 Can store data at points in the space 
 Can route from one point to another 

 Point = Node that owns the zone in which the point 
(coordinates) is located 

 Order in which nodes join is important 
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CAN: Partitioning 

1 
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CAN: Partitioning 

1 2 
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CAN: Partitioning 

1 

2 

3 
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CAN: Partitioning 

1 

2 

3 

4 
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CAN: Partitioning 

  CAN forms a d-

dimensional 

torus 
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CAN: Examples 

 Below examples for: 
 How to join the network 

 How routing tables are managed 

 How to store and retrieve values 
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CAN: Node Insertion 

I 

New node 

Discover some 
node “I” already 
in CAN 
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CAN: Node Insertion 

pick random  
point in space 

I 

(p,q) 

New node 

New node picks 
its coordinates 
in space 
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CAN: Node Insertion 

(p,q) 

I routes to 
(p,q), and 
discovers that 
node J owns 
(p,q) 

I 

J 

new node 
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CAN: Node Insertion 

New J 

Split J’s zone 
in half. New 
owns one half 
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CAN: Routing Table 
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CAN: Routing 

(a,b) 

(x,y) 
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      a = hx(K) 

CAN: Storing Values 

x = a 

node I::insert(K,V) 

 I 

y = b 

      b = hy(K) 
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(1)  a = hx(K) 
      b = hy(K) 

CAN: Storing Values 

  (2)  route(K,V) ->  (a,b) 

node I::insert(K,V) 

 I 
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CAN: Storing Values 

  (2)  route(K,V) ->  (a,b) 

  (3)  (a,b) stores (K,V)   

(K,V) 

node I::insert(K,V) 

 I (1)  a = hx(K) 
      b = hy(K) 
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CAN: Retrieving Values 

 (2)  route “retrieve(K)” to (a,b)  (K,V) 

(1)  a = hx(K) 
      b = hy(K) 

node J::retrieve(K) 

 J 
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CAN: Improvements 

 Possible to increase number of dimensions d 
 Small increase in routing table size 

-  Shorter routing path, more neighbors for fault tolerance 

 Multiple realities (= coordinate spaces) 
 Use more hash functions 

 Same properties as increased dimensions 

 Routing weighted by round-trip times 
 Take into account network topology 

 Forward to the “best” neighbor 
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CAN: More Improvements 

 Use well-known landmark servers (e.g., DNS roots) 
 Nodes join CAN in different areas, depending on distance to 

landmarks 

-  Pick points “near” landmark 

  Idea: Geographically close nodes see same landmarks 

 Uniform partitioning 
 New node splits the largest zone in the neighborhood 

instead of the zone of the responsible node 
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CAN: Performance 

 State information at node O(d) 
 Number of dimensions is d 

 Need two neighbors in all coordinate axis 

  Independent of the number of nodes! 

 Routing takes O(dn1/d) hops 
 Network has n nodes 

 Multiple dimensions and realities improve this 

 For routing: multiple dimensions are better 

 But: multiple realities improve availability and fault tolerance 
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Tapestry 

 Tapestry developed at UC Berkeley(!) 
 Different group from CAN developers 

 Tapestry developed in 2000, but published in 2004 
 Originally only as technical report, 2004 as journal article 

 Many follow-up projects on Tapestry 
 Example: OceanStore 

 Tapestry based on work by Plaxton et al. 
 Plaxton network has also been used by Pastry  
 Pastry was developed at Microsoft Research and Rice 

University 
 Difference between Pastry and Tapestry minimal 
 Tapestry and Pastry add dynamics and fault tolerance to 

Plaxton network 
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Tapestry: Plaxton Network 

 Plaxton network (or Plaxton mesh) based on prefix routing 
(similar to IP address allocation) 

 Prefix and postfix are functionally identical 
 Tapestry originally postfix, now prefix?!? 

 Node ID and object ID hashed with SHA-1 
 Expressed as hexadecimal (base 16) numbers (40 digits) 
 Base is very important, here we use base 16 

 Each node has a neighbor map with multiple levels 
 Each level represents a matching prefix up to digit position in ID 
 A given level has number of entries equal to the base of ID 
  ith entry in jth level is closest node which starts prefix(N,j-1)+”i” 
 Example: 9th entry of 4th level for node 325AE is the closest node 

with ID beginning with 3259 
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Tapestry: Routing Mesh 

  (Partial) routing mesh for a single node 4227 
 Neighbors on higher levels match more digits 

4228 27AB 

6F43 

43C9 
51E5 4242 

1D76 

44AF 

4227 

L1 

L1 L1 

L1 
L4 

L2 

L2 
L3 
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Tapestry: Neighbor Map for 4227 

Level 1 2 3 4 5 6 8 A 

1 1D76 27AB 51E5 6F43 

2 43C9 44AF 

3 42A2 

4 4228 

•    There are actually 16 columns in the map (base 16)    
•    Normally more (most?) entries would be filled 
•    Tapestry has neighbor maps of size 40 x 16 
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Tapestry: Routing Example 

42AD 

  Route message from 5230 to 42AD 
  Always route to node closer to target 

  At nth hop, look at n+1th level in neighbor map --> “always” one digit more 
  Not all nodes and links are shown 

5230 
400F 

4227 4629 

42A2 

AC78 

42A7 

4112 

4211 

42E0 

42A9 
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Tapestry: Properties 

 Node responsible for objects  which have same ID 
 Unlikely to find such node for every object 
 Node responsible also for “nearby” objects (surrogate routing, 

see below) 
 Object publishing: 

 Responsible nodes store only pointers 
-  Multiple copies of object possible 
-  Each copy must publish itself 

 Pointers cached along the publish path 
 Queries routed towards responsible node 
 Queries “often” hit cached pointers 

-  Queries for same object go (soon) to same nodes 
 Note: Tapestry focuses on storing objects 

 Chord and CAN focus on values, but in practice no difference 
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Tapestry: Publishing Example 

  Two copies of object “DOC” with ID 4377 created at AA93 and 4228 
  AA93 and 4228 publish object DOC, messages routed to 4377 

  Publish messages create location pointers on the way 
  Any subsequent query can use location pointers 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 
Publish path 

Location pointer 
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Tapestry: Querying Example 

  Requests initially route towards 4377 

  When they encounter the publish path, use location pointers to find object 

  Often, no need to go to responsible node 

  Downside: Must keep location pointers up-to-date 

4377 

AA93 

4228 

43FE 

437A 

4361 

4664 4B4F 

E791 

4A6D 

57EC 

DOC 

DOC 

Routing path 

Location pointer 
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Tapestry: Making It Work 

 Previous examples show a Plaxton network 
 Requires global knowledge at creation time 

 No fault tolerance, no dynamics 

 Tapestry adds fault tolerance and dynamics 
 Nodes join and leave the network 

 Nodes may crash 

 Global knowledge is impossible to achieve 

 Tapestry picks closest nodes for neighbor table 
 Closest in IP network sense (= shortest RTT) 

 Network distance (usually) transitive 

-  If A is close to B, then B is also close to A 

  Idea: Gives best performance 
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Tapestry: Fault-Tolerant Routing 

 Tapestry keeps mesh connected with keep-alives 
 Both TCP timeouts and UDP “hello” messages 

 Requires extra state information at each node 

 Neighbor table has backup neighbors 
 For each entry, Tapestry keeps 2 backup neighbors 

  If primary fails, use secondary 

-  Works well for uncorrelated failures 

 When node notices a failed node, it marks it as invalid 
 Most link/connection failures short-lived 

 Second chance period (e.g., day) during which failed node 

can come back and old route is valid again 

  If node does not come back, one backup neighbor is 

promoted and a new backup is chosen 
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Tapestry: Fault-Tolerant Location 

 Responsible node is a single point of failure 
 Solution: Assign multiple roots per object 

 Add “salt” to object name and hash as usual 

 Salt = globally constant sequence of values (e.g., 1, 2, 3, …) 

 Same idea as CAN’s multiple realities 
 This process makes data more available, even if the 

network is partitioned 
 With s roots, availability is P ≈ 1 - (1/2)s 

 Depends on partition 

 These two mechanisms “guarantee” fault-tolerance 
  In most cases :-) 

 Problem: If the only out-going link fails… 
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Tapestry: Surrogate Routing 

 Responsible node is node with same ID as object 
 Such a node is unlikely to exist 

 Solution: surrogate routing 
 What happens when there is no matching entry in 

neighbor map for forwarding a message? 
 Node picks (deterministically) one entry in neighbor map 

 Details are not explained in the paper :( 

  Idea: If “missing links” are deterministically picked, any 
message for that ID will end up at same node 

 This node is the surrogate 

  If new nodes join, surrogate may change 
 New node is neighbor of surrogate  
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Tapestry: Performance 

 Messages routed in O(logb N) hops 
 At each step, we resolve one more digit in ID 
 N is the size of the namespace (e.g, SHA-1 = 40 digits) 
 Surrogate routing adds a bit to this, but not significantly 

 State required at a node is O(b logb N) 
 Tapestry has c backup links per neighbor, O(cb logb N) 
 Additionally, same number of backpointers 
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DHT: Comparison 

Chord CAN Tapestry 

Type of network Ring N-dimensional Prefix routing 

Routing O(log n) O(d·n1/d) O(logb N) 

State O(log n) O(d) O(b·logb N) 

Caching efficient + ++ ++ 

Robustness -/+ +++ ++ 

IP Topology-Aware N N/Y Y 

Used for other 

projects 

+++ -- ++ 

Note: n is number of nodes, N is size of Tapestry’s namespace 
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Other DHTs 

 Many other DHTs exist too 
 Pastry, similar to Tapestry 

 Kademlia, uses XOR metric 

 Kelips, group nodes into k groups, similar to KaZaA 

 Plus some others… 

 Overnet P2P network (also eDonkey) uses Kademlia 
 Wide-spread deployed DHT 

 All DHTs provide same API 
  In principle, DHT-layer is interchangeable 
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Networks and Graphs 

 Refresher of graph theory 
 Graph families and models 

 Random graphs 

 Small world graphs 

 Scale-free graphs 

 Graph theory and P2P 
 How are the graph properties reflected in real systems? 
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What Is a Graph? 

  Definition of a graph: 
 Graph G = (V, E) consists of two finite sets, set V of vertices 
(nodes) and set E of edges (arcs) for which the following 
applies: 
1.  If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e 

2.  If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V 

applies x ∈ e and y ∈ e, then {v, u} = {x, y} 

1 2 

3 

4 
e2 

e1 

e3 

e5 e4 Example graph with 
4 vertices and 5 edges 
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Properties of Graphs 

 An edge e ∈ E is directed if the start and end vertices in 
condition 2 above are identical: v = x and y = u 

 An edge e ∈ E  is undirected if v = x and y = u as well as v = y 
and  u = x are possible 

 A graph G is directed (undirected) if the above property holds 
for all edges 

 A loop is an edge with identical endpoints 
 Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and 

E1 ⊆ E (such that conditions 1 and 2 are met) 
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Important Types of Graphs 

 Vertices v, u ∈ V are connected if there is a path from v to 
u: (v, v2), (v2, v3), …, (vk-1, u) ∈ E 

 Graph G is connected if all v, u ∈ V are connected 
 Undirected, connected, acyclic graph is called a tree 

 Sidenote: Undirected, acyclic graph which is not connected 

is called a forest 

 Directed, connected, acyclic graph is also called DAG 
 DAG = directed, acyclic graph (connected is “assumed”) 

 An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and 
with edges EC = {e = (i, j) | i, j ∈ VC} 

 An induced graph is a component if it is connected 



Kangasharju: Peer-to-Peer Networks 78 

Vertex Degree 

  In graph G = (V, E), the degree of vertex v ∈ V is the total 
number of edges (v, u) ∈ E and (u, v) ∈ E 

 Degree is the number of edges which touch a vertex 

 For directed graph, we distinguish between in-degree and 
out-degree 

  In-degree is number of edges coming to a vertex 

 Out-degree is number of edges going away from a vertex 

 The degree of a vertex can be obtained as:  
 Sum of the elements in its row in the incidence matrix  

 Length of its vertex incidence list 
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Important Graph Metrics 

 Distance: d(v, u) between vertices v and u is the length of 
the shortest path between v and u 

 Average path length: Sum of the distances over all pairs 
of nodes divided by the number of pairs 

 Diameter: d(G) of graph G is the maximum of d(v, u) for 
all v, u ∈ V 
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Six Degrees of Separation 

 Famous experiment from 1960’s (S. Milgram) 
 Send a letter to random people in Kansas and Nebraska 

and ask people to forward letter to a person in Boston 
 Person identified by name, profession, and city 

 Rule: Give letter only to people you know by first name 
and ask them to pass it on according to same rule 

 Some letters reached their goal 
 Letter needed six steps on average to reach the person 
 Graph theoretically: Social networks have dense local 

structure, but (apparently) small diameter 
 How to model such networks? 
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Random Graphs 

 Random graphs are first widely studied graph family 
 Many P2P networks choose neighbors more or less randomly 

 Two different notations generally used: 
 Erdös and Renyi 

 Gilbert (we will use this) 

 Gilbert’s definition: Graph Gn,p (with n nodes) is a graph 
where the probability of an edge e = (v, w) is p 

Construction algorithm: 
 For each possible edge, draw a random number 
  If the number is smaller than p, then the edge exists 
 p can be function of n or constant 
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Basic Results for Random Graphs 

Giant Connected Component: 
 Let c > 0 be a constant and p = c/n. If c < 1 every 
component of Gn,p has order O(log N) with high 
probability. If c > 1 then there will be one component of 
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All 
other components have size O(log N) 

  In plain English: Giant connected component emerges 
with high probability when average degree is about 1 

Node degree distribution 
  If we take random node, how high is probability P(k) that 

node has degree k? 
 Node degree is Poisson distributed  
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More Basic Results 

Diameter of a random graph 
  If pn/log(n) → ∞ and log(n)/log(pn) → ∞ then the diameter 

of Gn,p is asymptotic to log(n)/log(pn) with high probability 
Clustering coefficient 
 Clustering coefficient measures number of edges 

between neighbors divided by maximum number of edges 
between them (clique-like) 

 Clustering coefficient C(i) is defined as 
 E(N(i)) = number of edges between neighbors of i  
 d(i) = degree of i 

 Clustering coefficient of a random graph is asymptotically 
equal to p with high probability 



Kangasharju: Peer-to-Peer Networks 84 

Random Graphs: Summary 

  Before random graphs, regular graphs were popular 
  Regular: Every node has same degree 

  Random graphs have two advantages over regular graphs 
1.  Many interesting properties analytically solvable 
2.  Much better for applications, e.g., social networks 
  Note: Does not mean social networks are random graphs; 

just that the properties of social networks are well-described 
by random graphs 

  Question: How to model networks with local clusters and 
small diameter? 

  Answer: Small-world networks 
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Small-World Networks 

 Developed/discovered by Watts and Strogatz (1998) 
 Over 30 years after Milgram’s experiment! 

 Watts and Strogatz looked at three networks 
 Film collaboration between actors 
 US power grid 
 Neural network of worm C. elegans 

 Results:  
 Compared to a random graph with same number of nodes 
 Diameters similar, slightly higher for real graph 
 Clustering coefficient orders of magnitude higher 

Definition of small-worlds network: 
 Dense local clustering structure and small diameter 

comparable to that of a same-sized random graph 
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Constructing Small-World Graphs 

 Put all n nodes on a ring, number them consecutively 
from 1 to n 

 Connect each node with its k clockwise neighbors 
 Traverse around ring in clockwise order 
 For every edge: 

 Draw random number r 

  If r < p, then re-wire edge by selecting a random target node 

from the set of all nodes (no duplicates) 

 Otherwise keep old edge 

 Different values of p give different graphs 
  If p is close to 0, then original structure mostly preserved 

  If p is close to 1, then new graph is random 

  Interesting things happen when p is somewhere in-between 
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Regular, Small-World, Random 

Regular Small-World Random 

p = 0 p = 1 
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Problems with Small-World Graphs 

Small-world graphs explain why: 
 Highly clustered graphs can have short average path lengths 
Small-world graphs do NOT explain why: 
 This property emerges in real networks 

 Real networks are practically never ring-like 

Further problem with small-world graphs: 
 Nearly all nodes have same degree 
 Not true for random graphs (k edges ~ ck/k!) 
  Is same true for real networks too? 
 Let’s look at the Internet… 
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Internet 

 Famous study by Faloutsos et al. (3 brothers! ;-) in 1999 
 They examined Internet topology during 1998 

 AS-level topology, during 1998 Internet grew 45% 

Motivation for work: 
 What does the Internet look like? 
 Are there any topological properties that don’t change 

over time? 
 How can I generate Internet-like graphs for simulations? 
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Faloutsos Results 

  4 key properties, each follows a power-law 
  Sort nodes according to their (out)degree 
1.  Outdegree of a node is proportional to its rank to the 

power of a constant 
2.  Number of nodes with same outdegree is proportional to 

the outdegree to the power of a constant 
3.  Eigenvalues of a graph are proportional to the order to 

the power of a constant 
4.  Total number of pairs of nodes within a distance d is 

proportional to d to the power of a constant 
•  Why would Internet obey such laws? 
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Answer: Power-Law Networks 

  Also known as scale-free networks 
  Barabasi-Albert-Model 
1.  Network grows in time 
2.  New node has preferences to whom it wants to connect 
  Preferential connectivity modeled as 

  Each new node wants to connect to m other nodes 

  Probability that an existing node j gets one of the m 

connections is proportional to its degree d(j) 

  New nodes tend to connect to well-connected nodes 
  Another way to express this is “rich get richer” 
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Applications to Peer-to-Peer 

 Small-world model explains why short paths exist 
 Why can we find these paths? 

 Each node has only local information 

 Milgram’s results showed first steps were the largest 

 How to model this? 
 Kleinberg’s Small-World Model 

 Set of points in an n x n grid 

 Distance is the number of “steps” separating points 

-  d(i, j) = |xi - xj| + |yi - yj| 

 Construct graph as follows: 
 Every node i is connected to node j within distance q 

 For every node i, additional q edges are added. Probability that 

node j is selected is proportional to d(i, j)-r, for some constant r 
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Navigation in Kleinberg’s Model 

 We want to send a message to another node 
 Algorithm is decentralized if sending node only knows: 

  Its local neighbors 

 Position of the target node on the grid 

 Locations and long-range contacts of all nodes who come in 

contact of the message (not needed below, actually) 

 Can be shown: Number of messages needed is 
proportional to O(log n) (only one correct r per case) 

 Practical algorithm: Forward message to contact who is 
closest to target 

 Note: Kleinberg’s model assumes some way of 
associating nodes with points in grid 

 Compare with CAN DHT in Chapter 3 
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Power Law Networks and P2P 

 Robustness comparison of random and power-law graphs 
 Take network of 10000 nodes (random and power-law) and 

remove nodes randomly 
 Random graph: 

 Take out 5% of nodes: Biggest component 9000 nodes 

 Take out 18% of nodes: No biggest component, all components 

between 1 and 100 nodes 

 Take out 45% of nodes: Only groups of 1 or 2 survive 

 Power-law graph: 
 Take out 5% of nodes: Only isolated nodes break off 

 Take out 18% of nodes: Biggest component 8000 nodes 

 Take out 45% of nodes: Large cluster persists, fragments small 

 Recall Gnutella: Applies ONLY for random failures 
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Summary of Graphs 

 Three kinds of graph models: 
 Random graph 

 Small-World 

 Power-Law (Scale-Free) 

 Small-world graphs explain why we can have high 
clustering and short average paths 

 Power-law graphs explain how graphs are built in many 
real networks 
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Chapter Summary 

 Searching and addressing 
 Fundamental difference 

 Unstructured vs. structured networks 

 Distributed Hash Tables 
 DHT provides a key to value mapping 

 Three examples: Chord, CAN, Tapestry 

 Different networks and graphs 
 Random, small world, scale-free networks 


