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Chapter Outline 

 Using DHTs to build more complex systems 
 How DHT can help? 
 What problems DHTs solve? 
 What problems are left unsolved? 

 P2P storage basics, with examples 
 Splitting into blocks (CFS) 
 Wide-scale replication (OceanStore) 
 Modifiable filesystem with logs (Ivy) 

 Future of P2P filesystems 
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How to Use a DHT? 

 Recall: DHT maps keys to values 
 Applications based on DHTs must need this functionality 

 Or: Must be designed in this way! 

 Possible to design an application in several ways 

 Keys and values are application specific 
 For filesystem: Value = file 

 For email: Value = email message 

 For distributed DB: Value = contents of entry, etc. 

 Application stores values in DHT and uses them 
 Simple, but a powerful tool 
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Problems Solved by DHT 

 DHT solves the problem of mapping keys to values in the 
distributed hash table 

 Efficient storage and retrieval of values 
 Efficient routing 

 Robust against many failures 

 Efficient in terms of network usage 

 Provides hash table-like abstraction to application 
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Problems NOT Solved by DHT 

 Everything else except what is on previous slide… 
  In particular, the following problems 
 Robustness 

 No guarantees against big failures 
 Threat models for DHTs not well-understood yet 

 Availability 
 Data not guaranteed to be available 
 Only probabilistic guarantees (but possible to get high prob.) 

 Consistency 
 No support for consistency 
 Data in DHT often highly replicated, consistency is a 

problem 
 Version management 

 No support for version management 
 Might be possible to support this to some degree 
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P2P FS: Introduction 

 P2P filesystems (FS) or P2P storage systems were the 
first applications of DHTs 

 Fundamental principle: 
  Key = filename, Value = file contents 

 Different kinds of systems 
 Storage for read-only objects 

 Read-write support 

 Stand-alone storage systems 

 Systems with links to standard filesystems (e.g., NFS) 



Kangasharju: Peer-to-Peer Networks 7 

P2P FS: Current State 

 Only examples of P2P filesystems come from research 
 Research prototypes exist for many systems 
 No wide-area deployment 

 Experiments on research testbeds 

 No examples of real deployment and real usage in wide-area 

 After initial work, no recent advances? 
 At least, not visible advances 

 Three examples: 
 Cooperative File System, CFS 

 OceanStore 

  Ivy 
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P2P FS: Why? 

 Why build P2P filesystems? 
 Light-weight, reliable, wide-area storage 

 At least in principle… 

 Distributed filesystems not widely deployed either… 
 Were studied already long time ago 

 Gain experience with DHT and how DHTs could be used 
in real applications 

 DHT abstraction is powerful, but it has limitations 

 Understanding of the limitations is valuable 
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P2P FS: Basic Techniques 

  Three fundamental basic techniques for building 
distributed storage systems 

1.  Splitting files into blocks 
2.  Replicating files (or blocks!) 
3.  Using logs to allow modifications 

  For now: Simple analysis of advantages and 
disadvantages and three examples 

  Detailed performance analysis in Chapter 5 
  For blocks and replication 
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Splitting Files into Blocks 

 Why: Files are of different sizes and peers storing large 
files have to serve more data 

Pro:  
 Dividing files into equal-sized blocks and storing blocks on 

different peers can achieve load balance 
  If different files share blocks, we can save on storage 
Con: 
  Instead of needing one peer online, all peers with all 

blocks must be online (see below) 
 Need metadata about blocks to be stored somewhere 
 Granularity tradeoff: Small blocks -> Good load balance, 

but lots of overhead and vice versa 
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Replication 

 Why: If file (or block) is stored only on one peer and that 
peer is offline, data is not available 

 Replicating content to multiple peers significantly 
increases content availability 

Pro: 
 High availability and reliability 

 But only probabilistic guarantees 
Con: 
 How to coordinate lots of replicas? 

 Especially important if content can change 
 Unreliable network requires high degree of replication for 

decent availability 
  “Wastes” storage space 
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Logs 

 Why: If we want to change the stored files, we need to 
modify every stored replica 

 Keep a log for every file (user, …) which gives information 
about the latest version 

Pro: 
 Changes concentrated in one place 
 Anyone can figure out what is the latest version 
Con: 
 How to keep the log available? 

 By replicating it? ;-) 
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P2P FS: Overview 

 Three examples of P2P filesystems 
 CFS (blocks and replication) 

 Basic, read-only system 

 Based on Chord 

 OceanStore (replication) 
 Vision for a global storage system 

 Based on Tapestry 

  Ivy (logs) 
 Read-write, provide NFS semantics 

 Based on Chord 
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CFS 

 CFS = Cooperative File System 
 Developed at MIT, by same people as Chord 

 CFS based on the Chord DHT 
 Read-only system, only 1 publisher 

 CFS stores blocks instead of whole files 
 Part of CFS is a generic block storage layer 

 Features: 
 Load balancing 

 Performance equal to FTP 

 Efficiency and fast recovery from failures 
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CFS Properties 

 Decentralized control 
 Scalability (comes from Chord) 
 Availability 

  In absence of catastrophic failures, of course… 

 Load balance 
 Load balanced according to peers’ capabilities 

 Persistence 
 Data will be stored for as long as agreed 

 Quotas 
 Possibility of per-user quotas 

 Efficiency 
 As fast as common FTP in wide area 
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CFS: Layers, Clients, and Servers 

 FS: provide filesystem API, interpret blocks as files 
 DHash: Provides block storage 
 Chord: DHT layer, slightly modified 
 Clients access files, servers just provide storage 

Chord Chord Chord 

DHash DHash DHash 

FS 

Client Server Server 
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Chord Layer in CFS 

 Chord layer is slightly modified from basic Chord 
  Instead of 1 successor, each node keeps track of r 

successors 
 Finger tables as before 

 Also, try to reduce lookup latency 
 Nodes measure latencies to other nodes 

 Report measured latencies to other nodes 
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DHash Layer 

 DHash stores blocks as opposed to whole files 
 Better load balancing 
 More network query traffic, but not really significant 

 Each block replicated k times, with r ≥ k 
 Two kinds of blocks: 

 Content block, addressed by hash of contents 
 Signed blocks (= root blocks), addressed by public key 

-  Signed block is the root of the filesystem 
-  One filesystem per publisher 

 Blocks are cached in network 
 Most of caching near the responsible node 
 Blocks in local cache replaced according to least-recently-

used 
 Consistency not a problem, blocks addressed by content 

-  Root blocks different, may get old (but consistent) data 
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DHash API 

 DHash provides following API to clients: 

 Filesystem starts with root (= signed) block 
 Block under publisher’s public key and signed with private key 

 For clients, read-only, publisher can modify filesystem by inserting a 

new root block 

 Root block has pointers to other blocks 

-  Either piece of a file or filesystem metadata (e.g., directory) 

 Data stored for an agreed-upon finite interval 

Put_h(block) Store block 

Put_s(block, pubkey) Store or update signed block 

Get(key) Fetch block associated with key 
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CFS Filesystem Structure 

 Root block identified by publisher’s public key 
 Each publisher has its own filesystem 
 Different publishers are on separate filesystems 

 Other blocks identified based on hash of contents 
 Other blocks can be metadata or pieces of file 

B2 

B1 D F 
Root block 

Signature 

H(D) 
H(F) H(B1) 

H(B2) 

Public 
key 
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Load Balancing and Quotas 

 Different servers have different capabilities 
 One real server can run several virtual servers 
 Number of virtual servers depends on the capabilities 

  “Big” servers run more virtual servers 

 CFS operates at virtual server level 
 Virtual nodes on a single real node know each other 

 Possible to use short cuts in routing 

 Quotas can be used to limit storage for each node 
 Quotas set on a per-IP address basis 

 Better quotas require central administration 

 Some systems implement “better” quotas, e.g., PAST 
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Updates in CFS 

 Only publisher can change data in filesystem 
 CFS will store any block under its content hash 

 Highly unlikely to find two blocks with same SHA-1 hash 

 No explicit protection for content blocks needed 

 Root block is signed by publisher 
 Publisher must keep private key secret 

 No explicit delete operation 
 Data stored only for agreed-upon period 

 Publisher must refresh periodically if persistence is needed 
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OceanStore 

 OceanStore developed at UC Berkeley 
 Runs on Tapestry DHT 
 Supports object modification 

 Vision of ubiquitous computing: 
  Intelligent devices, transparently in the environment 

 Highly dynamic, untrusted environment 

 Question: Where does persistent information reside? 
 OceanStore aims to be the answer 
 OceanStore’s target: 

 1010 users, each with 10000 files, i.e., 1014 files total 
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OceanStore: Basics and Goals 

  Users pay for the storage service 
  Several companies can provide services together 

  Two goals: 
1.  Untrusted infrastructure 

  Everything is encrypted, infrastructure unreliable 

  However, assume that “most servers are working correctly 

most of the time” 

  One class of servers trusted to follow protocol (but not 

trusted with data) 

2.  Nomadic data 
  Anytime, anywhere 

  Introspection used to tune system at run-time 
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OceanStore Applications 

 OceanStore suitable for many kinds of applications 
 Storage and sharing of large amounts of data 

 Data follows users dynamically 

 Groupware applications 
 Concurrent updates from many people 

 For example, calendars, contact lists, etc. 

  In particular, email and other communication applications 

 Streaming applications 
 Also for sensor networks and dissemination 

 Here we concentrate on storage 
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System Overview 

 Each object has globally unique identifier (GUID) 
 Objects replicated and migrated on the fly 
 Replicas located in two ways 

 Probabilistic, fast algorithm tried first 

 Slower, but deterministic algorithm used if first one fails 

 Objects exist in two forms, active and archival 
 Active is the latest version with handle for updates 

 Archival is a permanent, read-only version 

-  Archive versions encoded with erasure codes with lot of redundancy 

-  Only a global disaster can make data disappear 
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Naming and Access Control 

Object naming 
 Self-certifying object names 

 Hash of the object’s owners key and human readable name 

 Allows directories 
 System has no root, but user can select her own root(s) 

Access control 
 Restricting readers 

 All data is encrypted, can restrict readers by not giving key 

 Revoke read permission by re-encrypting everything 

 Restricting writers 
 All writes must be signed and compared against ACL 
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Locating Objects 

  OceanStore uses two mechanisms for locating objects 
1.  Probabilistic algorithm 

  Frequently accessed objects likely to be nearby and easily found 

  This algorithm finds them fast 

  Uses attenuated Bloom filters 

  See below for more details 

2.  Deterministic algorithm 
  OceanStore based on Tapestry 

  Deterministic routing is Tapestry’s routing 

  Guaranteed to find the object 

  See Chapter 3 for the details 
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Sidenote: Bloom Filters 

 Bloom filters are “a space-efficient probabilistic data 
structure that is used to test whether or not an element is 
a member of a set” 

 False positives are possible 

 False negatives are NOT possible 

 Bloom filter is an array of k bits 
 Also need m different hash functions, each maps key to a bit 

 To insert, calculate all m hash functions and set bits to 1 
 To check, calculate all m hash functions and if all bits are 

1, key is “probably” in the set 
  If any bit is 0, then it is definitely not in 
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Sidenote: Bloom Filters 

 To insert or check for an item, Bloom filters take average O(m) time 
 Fixed constant! Independent of number of entries 

 No other data structure allows for this (hash table is close) 

 Attenuated Bloom filter of depth D is same as an array of D normal 
Bloom filters 

 First filter is for locally stored objects at current node 

 The ith Bloom filter is the union of all Bloom filters at distance i through 

any path from current node 

 Attenuated Bloom filter for each network edge 

 Queries routed on the edge where the distance to object is shortest 
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Probabilistic Query Process 

  Node n1 wants to find object X, X hashes to bits 0, 1, 3 

  Node n1 does not have 0, 1, and 3 in local filter 

  Neighbor filter for n2 has them, forward query to n2 

  Node n2 does not have them in local filter 

  Filter for neighbor n3 has them, forward to n3 

  Node n3 has object 

10101 

n1 

11100 

n2 

11010 

n3 

00011 

n4 

11100 

11011 
11010 

00011 

X 

Node 

Local filter 

Neighbor filter 



Kangasharju: Peer-to-Peer Networks 32 

Update Model 

 Update model in OceanStore based on conflict resolution 
 Update semantics 

 Each update has a list of predicates with associated actions 

 Predicates evaluated in order 

 Actions for first true predicate are atomically applied (commit) 

  If no predicates are true, action aborts 

 Update is logged in both cases 
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Update Model: Predicates 

 List of predicates is short 
 Untrusted environment limits what predicates can do 
 Available predicates: 

 Compare-version (metadata comparison, easy) 

 Compare-size (same as above) 

 Compare-block (easy if encryption is position-dependent 

block cipher) 

 Search (possible to search ciphertext, get boolean result) 
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Available Operations 

 Four operations available 
 Replace-block 
  Insert-block 
 Delete-block 
 Append 

  If position-dependent cipher, Replace-block and Append 
are easy operations 

 For Insert-block and Delete-block: 
 Two kinds of blocks: Index and data blocks 
  Index blocks can contain pointers to other blocks 
 To insert a block, we replace old block with an index block 

which points to old block and new block 
-  Actual blocks are appended to object 

 May be susceptible to traffic analysis 
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Serializing Updates 

 Replicas divided into two tiers 
 Primary tier is trusted to follow protocol 

 Secondary tier is everyone else 

 Primary tier cooperate in a Byzantine agreement protocol 
 Secondary tier communicates with primary tier and 

secondary via epidemic algorithms 
 Reason for two tiers: 

 Fault-tolerant protocols possible with only a small number of 

replicas, protocols communication-intensive 

 Primary tier is well-connected and small 
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Byzantine Generals Problem 

  Several divisions of the Byzantine army surround an enemy 
city. Each division is commanded by a general. 

  The generals communicate only through messenger 
  Need to arrive at a common plan after observing the enemy 

  Some of the generals may be traitors 
  Traitors can send false messages 

  Required: An algorithm to guarantee that 
1.  All loyal generals decide upon the same plan of action, 

irrespective of what the traitors do. 
2.  A small number of traitors cannot cause the loyal generals to 

adopt a bad plan. 
Solution: (from L. Lamport) 
  If no more than m generals out of n = 3m + 1 are traitors, 

everybody will follow the orders 
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Path of an Update 

 Update is sent to primary tier and to random replicas in 
secondary tier for that object 
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Path of an Update 

 Primary tier performs Byzantine agreement 
 Secondary tier propagates update epidemically 
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Path of an Update 

 When primary tier has finished agreement protocol, the 
update is sent over multicast to all secondary replicas 
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Deep Archival Storage 

 Archival mechanism uses erasure codes 
 Reed-Solomon, Tornado, etc. 

 Generate redundant data fragments 
 Created by the primary tier 

  If there are enough fragments and they are spread widely, 
then it is likely that we can retrieve the data 

 Archival copies are created when objects are changed 
 Every version is archived 

 Can be tuned to be done less frequently 
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Ivy 

  Ivy developed at MIT 
 Based on Chord 
 Provides NFS-like semantics 

 At least for fully connected networks 

 Any user can modify any file 
  Ivy handles everything through logs 

  Ivy presents a conventional filesystem interface 



Kangasharju: Peer-to-Peer Networks 42 

Problems for Distributed Read/Write 

1.  Multiple distributed writers make it difficult to maintain 
consistent metadata 

2.  Unreliable participants make locking unattractive 
  Locking could help maintain consistency 

3.  Participants cannot be trusted 
  Machines may be compromised 

  Need to be able to undo 

4.  Distributed filesystem may become partitioned 
  System must remain operational during partitions 

  Help applications repair conflicting updates made during 

partitions 
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Solution: Logs 

  Each participant maintains log of its changes 
  Logs maintain filesystem data and metadata 
  Participant has private snapshot of logs of others 

  Logs stored in DHash (see under CFS for details) 
  Participant writes to its own log, reads all others 

  Log-head points to most recent log record 
  Version vectors impose order on log records from multiple logs 

:
:

View block Log head 

Log records 
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Ivy: Views 

 Each user writing to a filesystem has its own log 
 Participants agree on a view 

 View is a set of logs that comprise the filesystem 

 View block is immutable (“root”) 
 View block has log heads for all participants 
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Combining Logs 

  How to determine order of modifications from logs? 

  Order should obey causality 

  All participants should agree on the order 

  Each new log record has a sequence number and a version vector 

  Sequence number increasing (managed locally) 

  Version vector has sequence numbers from other logs in view 

  Version vector summarizes knowledge about log 

  Log records ordered by comparing version vectors 

  Vectors u and v comparable if u < v, v < u, or v = u 

  Otherwise concurrent 

  Simultaneous operations result in equal or concurrent vectors 

  Ordered by public keys of participants 

  May need special actions to return to consistency (overlapping modifications) 
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Ivy: Snapshots 

 Private snapshots avoid traversing whole filesystem 
 Snapshot contains the entire state 
 Each participant has own snapshot 

 Contents of snapshots mostly the same for all participants 

 DHash will store them only once 

 To create snapshot, node: 
 Gets all logs recent than current snapshot 

 Write new snapshot 

 New user must either build from scratch or take a trusted 
snapshot 
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P2P FS: General Problems 

 Built on top of unreliable nodes and network 
 How to achieve reliability? 

 Replication gives reliability (see Chapter 5) 

 Replication makes maintaining consistency difficult 

 Nodes cannot be trusted in the general case 
 Must encrypt all data 

 Hard to do content-based conflict resolution (e.g., diff) 

 Performance 
 Distributed filesystems have much lower performance 
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P2P FS: Future 

 What does future hold for P2P filesystems? 
 What is right area of application? 
  Intranet? 

 Trusted environment, high bandwidth 

 Possibly easy to deploy? 

-  Need to make a product first? 

 Global Internet? 
 Lots of untrusted peers, widely distributed 

 All the problems from above 

 Can take off as a “hobby” project? 

 Nowhere? 
 P2P filesystems are a total waste of time? 
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P2P FS: Future 

 Do we need a P2P FS to build useful applications? 
 Yes, they allow efficient distributed storage 

 Working storage system is the basic building block of a useful 

application 

 No, DHT is enough 
 Several examples of P2P applications directly on top of a DHT 

 Fully reliable P2P FS would make network into one virtual 
computer 

 Modulo performance issues 

 Building P2P apps would be like building normal apps 
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P2P FS: Real-World Examples 

 Microsoft has done lot of research in this area 
 Even built prototypes 

 Why no products on the market? 
 Below some wild speculation 

 P2P FS would compete with traditional file servers? 
 P2P needs to be built in to the OS, would kill server market? 

  Impossible to build a “good enough” P2P FS? 
 Theoretically doable, but too slow and weak in practice? 

 P2P filesystem can be done, but has no advantages? 
 Possibly to build a useful system, but it costs as much as a 

server-based system? 
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Chapter Summary 

 How to build applications with DHTs 
 Basic technologies of distributed storage 
 As examples, 3 P2P filesystems 

 CFS 

-  Read-only 

 OceanStore 

-  Modifications allowed, global vision 

  Ivy 

-  NFS-like semantics, traditional filesystem interface 

 Discussion about the future of P2P filesystems 


