
Peer-to-Peer Networks

Chapter 5: Performance and Reliability of
Peer-to-Peer Systems

Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

 Cover performance and reliability issues in P2P systems
 Evaluation of DHT performance

 Pure DHT performance issues

 Performance of DHT-based applications

 Reliability issues in P2P systems
 Main focus on availability

 Theoretical models of reliability
 How does replication improve reliability?

 How many copies do we need?

 Load balancing issues with block-based systems

Kangasharju: Peer-to-Peer Networks 3

DHT Performance Issues

 DHTs provide useful abstractions to programmers
 What is the cost?
 DHTs need to maintain overlay structure

 Additional communication needed

 How should the parameters of a DHT be tuned?
 Number of successors, base, frequency of updates, etc.

 Do DHTs maintain correctness in “normal” conditions?
 Most DHTs not evaluated against dynamic nodes

 What happens when lot of nodes join and leave?

Kangasharju: Peer-to-Peer Networks 4

DHT Performance

 How do DHTs cope with changes in membership?
 How to compare different DHTs?

 How to figure out fundamental differences?
 Most evaluations are about lookup latency or size of

routing table in static networks
 Keeping large amount of state gives good results here!
 No penalty for large amount of state!

  In normal conditions, periodic maintenance messages
maintain overlay structure

 Compare DHTs in terms of how they maintain overlay
 Also include lookup performance

 Comparisons done by Chord group at MIT
 Keep this in mind when looking at results!

Kangasharju: Peer-to-Peer Networks 5

Cost vs. Performance

 Cost often measured as per-node state
 More important metric: How to keep state up-to-date

 Up-to-date state avoids timeouts

 Also, need to find nearby neighbors

 Cost metric: Number of bytes sent to network
 Network usually more limiting than CPU or memory

 Performance metric: Lookup latency
 Dead nodes assumed to be detected quickly

 DHT retries other nodes after dead node

 Failed lookups converted to high latencies

-  Fair comparison?

Kangasharju: Peer-to-Peer Networks 6

Comparison

 Compare 4 DHTS: Tapestry, Chord, Kademlia, and Kelips
 Here we look at Chord and Tapestry only
 Different parameters:
Tapestry

 Base, stabilization interval, backup nodes

Chord
 Number of successors, finger base

Kangasharju: Peer-to-Peer Networks 7

Evaluation Parameters

  1024 nodes in network

  Only key lookup, no data

retrieval

  Nodes request random keys

  Exponentially, mean 10

mins

  Nodes join and leave

  Exponentially, mean 1 hour

  6 hours simulated time

  Nodes keep IP and ID

  Many parameter

combinations

  No single best choice

  Many optimal choices

  Best points on convex hull of

all points

Kangasharju: Peer-to-Peer Networks 8

Overall Results

 All 4 DHTs shown
 Chord is “best”

 Kademlia uses iterative
routing, recursive appears
to be better

 Any DHT can be below
250ms latency

 Some need lot of bandwidth
 Chord uses bandwidth

efficiently
 Finger tables not needed
 Successor pointers

maintain correctness, low
bandwidth required

 Other DHTs have no good
correctness mechanisms

Kangasharju: Peer-to-Peer Networks 9

Tapestry: Effects of Parameters

 As base decreases, less bandwidth is needed
 Less entries in neighbor map, hence less traffic

 All bases can achieve same latency
 Latency dominated by last hop, base can be small

 Stabilization can run frequently
 Small increase in bandwidth, big reduction in latency

Kangasharju: Peer-to-Peer Networks 10

Chord: Effect of Parameters

 Chord only base is shown
 Base is base of ID space

 No single best choice
 Convex hull is created by bases 2

and 8

 72 second successor update
interval is best (not shown)

 Higher update wastes bandwidth

 Lower update has more timeouts

 Finger update interval affects only

performance, can pick suitable value

Kangasharju: Peer-to-Peer Networks 11

DHT Performance: Summary

 4 different DHTs evaluated with different parameters
 Cost of maintaining overlay vs. lookup latency

  If tuned correctly, all 4 are about the same
 Hard to tune correctly

 Parameters may interact

 Same parameter has different effects in different DHTs

 Some parameters are irrelevant

Kangasharju: Peer-to-Peer Networks 12

Performance of DHT-Based Applications

 Above results show that we can configure a DHT to give
us “decent” performance at “reasonable” cost

 Question: Is “decent” good enough for real applications?
  In other words, how does a DHT-based P2P application

compare against a client/server-application?
 Recall: Performance of CFS storage system in local

network was about the same as FTP in wide area
 How about other kinds of applications?
 Let’s take Domain Name System (DNS) as example

 Fundamental Internet-service

 Very much a client/server application

Kangasharju: Peer-to-Peer Networks 13

P2P DNS

 Domain Name System (DNS) very much client-server
 Ownership of domain = responsibility to serve its data
 DNS concentrates traffic on root servers

 Up to 18% of DNS traffic goes to root servers

 Lot of traffic also due to misconfigurations

 P2P DNS puts expertise in the system
 No need to be an expert administrator

 P2P DNS shares load more equally
 P2P DNS has much, much higher latencies :(

Kangasharju: Peer-to-Peer Networks 14

DNS: Overview

 DNS organized in zones (≈ domain)
 Actual data in resource records (RR)

 Several types of RRs: A, PTR, NS, MX, CNAME, …

 Administrator of zone responsible for setting up a server
for that zone (+ redundant servers at other domains)

 Queries resolved hierarchically, starting from root
 Owner of a zone is responsible for serving zone’s data
 DNS shortcomings:

 Need skill to configure name server

 No security (but added-on later to some degree)

 Queries can take very long in worst case

Kangasharju: Peer-to-Peer Networks 15

DNS: Example

 Client wants to resolve www.foo.com
 Replies to queries have additional information (IP address + name)
 Queries can be iterative (here) or recursive

Client

a.root-servers.net

ns.something.com

ns.foo.com

NS com.
ns.something.com

NS foo.com. ns.foo.com

A www.foo.com.

192.168.125.54

Kangasharju: Peer-to-Peer Networks 16

How to Do P2P DNS?

 Put DNS resource records in a DHT
 Key is hash of domain name and query type

 For example, SHA1(www.foo.com, A)

 Values replicated on some replicas (~ 5-7)
 Can be built on any DHT, works the same way
 All resource records must be signed

 Some overhead for key retrieval

 For migration, put P2P DNS server on local machine
 Configure normal DNS to go through P2P DNS

 No difference to applications

Kangasharju: Peer-to-Peer Networks 17

P2P DNS: Performance

 Current DNS has median latency of 43 ms
 Measured at MIT

 Some queries can take a long time
 Up to 1 minute (due to default timeouts)

 P2P DNS has median latency of 350 ms!
 Simulated on top of Chord

 P2P is much, much worse
 But extremely long queries cannot happen

Kangasharju: Peer-to-Peer Networks 18

Why (Not) P2P DNS?

Pros

  Simpler administration

  Most problems in current DNS are

misconfigurations

  DNS servers not simple to configure well

  P2P DNS robust against lost network

connectivity

  Only outgoing link cut -> maybe not able

to find own name

  No risk of incorrect delegation

  Subdomains can be easily established

  Signatures confirm

Cons

  All queries must be anticipated in

advance

  Not possible to set e.g. mail server

for whole domain easily

  Current DNS can tailor requests to

client

  Widely used in content distribution

networks and load balancing

  Might be possible to implement

above in client software

Kangasharju: Peer-to-Peer Networks 19

Future of DHT-Based Applications?

 DHT-based applications have to make several RPCs
 1 million node Chord = 20 RPCs, Tapestry 5 RPCs

 Experiments with DNS show even 5 is too much
 Current DNS usually needs 2 RPCs

 DNS puts lot of knowledge at the top of the hierarchy

-  Root servers know about millions of domains

 Many RPCs is main weakness of DHTs

 DHT-based applications have all their features on clients
 New feature -> install new clients

 Some kind of an “active” network as a solution?

Kangasharju: Peer-to-Peer Networks 20

Reliability of P2P Storage

  Example case: P2P storage system
  Each object replicated in some peers

  Peers can find where objects should be

-  Typically DHT-based, but DHT is not absolutely required

  No concern of consistency
  Read-only storage system

Questions:
1.  How many copies are needed for a given level of reliability?

  Unconstrained system with infinite resources

2.  What is the optimal number of copies?
  System with storage constraints

Kangasharju: Peer-to-Peer Networks 21

Reliability of Data in DHT-Storage

 Storage system using a distributed hash table (DHT)
 Peer A wants to store object O

 Create k copies on different peers
 k peers determined by DHT for each object (k closest)

 Later peer B wants to read O
 What can go wrong?

 Simple storage system: Object created once, read many
times, no modifications to object

 Question: What is the value of k needed to achieve e.g.,
99.9% availability of O?

 Remember: Only probabilistic guarantees possible!

Kangasharju: Peer-to-Peer Networks 22

Assumptions

 Assume I peers in the DHT
 Each peer has unlimited storage capacity

 Peer is up with probability p
 Peers are homogeneous, i.e., all peers have same up-probability

 Peers uniformly distributed in hash space
 Makes mathematical analysis tractable

 New peers can join the network
 Peers never permanently leave

 User may need to access several objects to complete one user-
level action

 For example, resolve path name to file

Kangasharju: Peer-to-Peer Networks 23

What Can Go Wrong?

1.  All k peers are down when B reads
•  Object is not available in any on-line peer

2.  Real k closest peers were down when A wrote and are
up when B reads

3.  At least k peers join and become new closest peers
•  In above two cases, object is (maybe) still available in the

peers where A wrote it

4.  All k peers have permanently left the network
•  Assumed not to happen

  We look at only the first three cases
  What are the probabilities of each one of them?

Kangasharju: Peer-to-Peer Networks 24

Probabilities of Loss

1. All k peers are down when B reads

2. Real k closest peers were down when A wrote and are up when
B reads

3. N peers join and at least k peers become new closest peers

Kangasharju: Peer-to-Peer Networks 25

Numerical Values for Loss

 First case (green) dominates clearly
  In above tables, k = 5

 For cases 2 and 3 also applies:

 Search more than k nodes to find object

Kangasharju: Peer-to-Peer Networks 26

How to Improve?

 Maintain storage invariant O always at k closest
 Needs additional coordination

 Possible if down-events controlled

 Crash others need to detect crash (before they crash)

 Guarantees availability as long as invariant maintained

 Possibly wastes storage if copies are not removed when

peers come back into the system

 This approach taken by PAST storage system

  Increase k
 Create more copies, simple to implement

 Wastes storage capacity?

 Not good for changing objects (consistency)

Kangasharju: Peer-to-Peer Networks 27

What the User Sees?

 Suppose: User’s action needs to access several objects
 For example, resolve path names of files one level at a time

 For each object: ps = 1 – pl1 = 1 – (1 – p)k

  If we need to access 2 objects?

 Success for user: pt = (1 – (1 – p)k)2

 Solving for k:

  In general for n objects: pt = (1 – (1 – p)k)n

Kangasharju: Peer-to-Peer Networks 28

How Large Should k Be?

 Define target pt

 This is what user sees

 Failures temporary

 When peers mostly up,
k small

  Increase in pt small
increase in k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

120

140

160

180

200

Individual peer up probability, p

Nu
m

be
r o

f c
op

ie
s

ne
ed

ed
, r

pt = 99%
pt = 99.9%
pt = 99.99%
pt = 99.999%

0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

Zoom

Kangasharju: Peer-to-Peer Networks 29

Replication Summary

 Replication in read-only system helps availability
 Main cause of unavailability is peers going down
 Create k copies of each object

  If peers mostly up, k quite small (< 10)
 Maintaining actively copies in right peers helps

 Above analysis assumes all objects equally popular or
important

 Not always true
 Recall: Zipf-distribution for object popularities
 Also, some objects may require higher availability

 How should objects be replicated in this case?

Kangasharju: Peer-to-Peer Networks 30

P2P Content Management

 Group of peers access a set of files
 Some files are more popular than others

 How many copies of each file should we have?
 Where should the copies be placed?
 Assumptions:

 DHT-based system for determining responsible nodes
 Set of files is static
 File popularities Zipf-distributed

 P2P communities

Kangasharju: Peer-to-Peer Networks 31

Abstract Community Model

Up node
Down node

Community

Outside
repository

Miss

Response

•  Examples of communities: Campus, distribution engine
•  Assume good bandwidth within community
•  Goal: Satisfy requests from within community

Kangasharju: Peer-to-Peer Networks 32

Replication Issues

 How many copies of each object in community?

 Which peers in community have copies?

  Is there an algorithm that is:
 simple

 decentralized

 adaptively replicates objects

 provides near-optimal replica profile?

 What does “optimal replica profile” mean?

Kangasharju: Peer-to-Peer Networks 33

Replication Theory

  J objects, I peers

  object j

  requested with probability qj

  size bj

  peer i

  up with probability pi

  storage capacity Si

  decision variable

  xij = 1 if a replica of j is put in i; 0 otherwise

  Goal: maximize hit probability in community (availability)

  Extension to byte hit probability is possible

Kangasharju: Peer-to-Peer Networks 34

Optimization Problem

Minimize

subject to

Can be reduced to Integer programming problem: NP

Kangasharju: Peer-to-Peer Networks 35

Homogeneous Up Probabilities

 Suppose pi = p

 Let = number of replicas of object j

 Let S = total group storage capacity

 Minimize

 subject to:

Can be solved by
dynamic programming

Kangasharju: Peer-to-Peer Networks 36

Replication vs. Up Probability

up prob = .9
up prob = .5

up prob = .2

Hit probabilities
are different:
0.6, 0.4, 0.3

Kangasharju: Peer-to-Peer Networks 37

Problems with Optimal Solutions

 Don’t know a priori up/down probabilities

 Don’t know a priori object request rates

 Object request rates are changing over time

 New objects are being introduced

 Need efficient adaptive algorithms!

Kangasharju: Peer-to-Peer Networks 38

Assumptions & Goals

Assume

  Each object has a unique

name (e.g., URN)

  Each peer in community

has shared and private

storage

  Each peer can access a

DHT that gives current up

winners for any object o

Goals

  Replicate while satisfying

requests (no extra work)

  Adaptive, decentralized,

simple

  High availability: mimics

optimal performance

Kangasharju: Peer-to-Peer Networks 39

DHT: Winners

 Hash functions map each object name j into a
“random” ordering of the nodes:

hash(j) [ij(1), ij(2),…, ij(I)]

 Each object j has a current “first-place winner,”
“second-place winner,” etc.

 Winners are current up winners

 Any DHT can be modified to provide the winners

Kangasharju: Peer-to-Peer Networks 40

Adaptive Algorithm: Simple Version

Suppose X is a node that wants object o.

1) X uses DHT to find 1st-place up node i for o
2) X asks i for o
3) If i doesn’t have o, i retrieves o from the “outside” and stores a copy

in its shared storage.
4) i sends o to X, which puts o in its private storage.

Each node uses LRU replacement policy in shared storage

Kangasharju: Peer-to-Peer Networks 41

Adaptive Algorithm

up node

down node

X

i

outside

LRU

Each object o has “attractor
nodes”

Object o tends to get
replicated in its attractor
nodes.

Queries for o tend to be
sent to attractor nodes.

 tend to get hits
Problem: Can miss even though
object is in an up node in the
community

Kangasharju: Peer-to-Peer Networks 42

Top-K Algorithm

  If i doesn’t have o, i pings top-K winners.

  i retrieves o from one of the top-K if present.

  If none of the top-K has o, i retrieves o from outside.

top-K up node

ordinary up node

down node

X

i

Kangasharju: Peer-to-Peer Networks 43

Simulation

 Adaptive and optimal algorithms

 100 nodes, 10,000 objects

 Zipf = 0.8, 1.2

 Storage capacity 5-30 objects/node

 All objects the same size

 Up probs 0.2, 0.5, and 0.9

 Top K with K = {1, 2, 5}

Kangasharju: Peer-to-Peer Networks 44

Hit-Probability vs. Node Storage

p = P(up)
 = .5

Zipf = .8

Kangasharju: Peer-to-Peer Networks 45

Number of Replicas

p = P(up)
 = .5

15 objects
per node

K = 1

Zipf = .8

Kangasharju: Peer-to-Peer Networks 46

General observations

  Community improves

performance significantly

  LRU is lets unpopular objects
linger in peers

  Top-K algorithm is needed to find
object in aggregate storage (see

right)

How can we do better?

Kangasharju: Peer-to-Peer Networks 47

Most Frequently Requested (MFR)
 Each peer estimates local request rate for each object

 denote λo(i) for rate at peer i for object o

 Peer only stores the most requested objects

 packs as many objects as possible

Suppose i receives a request for o:

  i updates λo(i)

  If i doesn’t have o & MFR says it should:

 i retrieves o from the outside

Kangasharju: Peer-to-Peer Networks 48

Most-Frequently-Requested Top-K Algorithm

top-K up node

ordinary up node

down node

X

i1

outside

i2

i3

i4

I should
have o

MFR combines replacement and admission policies

Kangasharju: Peer-to-Peer Networks 49

Hit-Probability vs. Node Storage

p = P(up)
 = .5

MFR: K=1

Zipf = .8

Kangasharju: Peer-to-Peer Networks 50

Replica Profile

p = P(up)
 = .5

15 objects
per node

K = 1

Zipf = .8

Replica
profile
almost
optimal

Kangasharju: Peer-to-Peer Networks 51

Summary: MFR Top-K Algorithm

Implementation
 Layers on top of location substrate
 Decentralized
 Simple: each peer keeps track of a local MFR table
Performance
 Provides near-optimal replica profile

Kangasharju: Peer-to-Peer Networks 52

Optimality of MFR

  Recall basic idea of MFR:

  Each peer estimates local request rate for each object

  Analytical procedure for MFR Top-I: (all nodes)

  Init: λj = qj/bj, j = 1, ..., J, and Ti = Si, i = 1, ..., I

1.  Find file j with largest λ j

2.  Sequentially examine winners for j until Ti ≥ bj and xij = 0

-  Set xij = 1

-  Set λ j = λ j(1-pi)

-  Set Ti = Ti – bj

-  If no such node, remove file j from consideration

3.  If still files to be considered go to step 1, otherwise stop.

Kangasharju: Peer-to-Peer Networks 53

Evaluation

 Suppose all files are same size
 Suppose no ties in step 1 (λj)
 Then Top-I MFR converges to previous procedure

 Faster way to evaluate performance

 Comparing Top-I MFR to true optimal solution:
 Almost always gives optimal result (95%)

 Simple counter-example: Top-I MFR ≠ optimal

Kangasharju: Peer-to-Peer Networks 54

Top-I MFR and Non-Optimality

 Assume 2 nodes and 4 objects
 Each node can store 2 objects, both up prob. 0.5

 Assume request probabilities and winners as shown:

 What does Top-I MFR do and what is optimal?

Object Req. Prob. 1st Winner

1 5/13 1

2 3/13 2

3 3/13 2

4 2/13 1

Kangasharju: Peer-to-Peer Networks 55

Solution

 Top-I MFR places objects in the order of popularity
 Object 1 --> Node 1, Object 2 --> Node 2, Object 3 --> Node 2

 Next would be Object 1 again (reduced request rate 5/13 * 1/2)

 But only node 1 has space and there is already copy of 1 there

 Hence, Top-I MFR puts Object 4 --> Node 1

 Optimal solution is:
 Object 1 --> Node 1 and 2, Object 2 --> Node 1, Object 3 --> Node 2

 As mentioned above, similar cases appear even in bigger communities
 But problem typically “1 copy too much for object X and 1 copy too little for

object Y”

Kangasharju: Peer-to-Peer Networks 56

Continuous Optimal

Let yj = bjnj, and treat yj as continuous variable.

 Minimize

 subject to

where

Kangasharju: Peer-to-Peer Networks 57

(1) Order objects according to qj/bj

(2) There is an L such that n*j = 0 for all j > L.

(3) For j <= L , “logarithmic replication rule”:

Continuous Optimal (2)

Logarithmic replication rule

Kangasharju: Peer-to-Peer Networks 58

Continuous Optimal vs. Discrete

  Continuous gives

upper bound

  Bound usually

tight

  Differences are

due to discrete

being constrained

to integer values

Kangasharju: Peer-to-Peer Networks 59

Replication Summary

 Adaptive replication in communities
 Peers in community download content

 Content always available in “outside repository”

 Model of optimal replication of content
 Which peers should hold which objects

 Model as an integer programming problem (NP-complete)

 Approximation with “homogeneous case”
 Optimal solution with dynamic programming

 Several different algorithms for comparison
 Simple LRU

 Top-K LRU

 MFR (best performance)

Kangasharju: Peer-to-Peer Networks 60

Replication: General Comments

 Studied two cases:
 Static replication, all files equally important

 Dynamic, on-the-fly replication, some files more popular

 Different goals in the two cases
 Highest possible availability, no storage constraints

 Provide high hit-rate, only limited storage

 For first case, adding a storage constraint would limit
number of files that can be stored

 All the rest of the analysis and results remain unaffected

 What can we learn?

Kangasharju: Peer-to-Peer Networks 61

Replication: Lessons

 When peers mostly up, we need about 5-10 copies
 Applies in both cases

  Implication: P2P storage system with N GB of capacity can store about N/

5 or N/10 GB of data

 Maintenance cost of reliable file server vs. extra hard disk?

 When peers mostly down, we need >> 100 copies for high availability
 This is more realistic for global P2P network (in today’s world)

 For example, if you donate 100 GB to network, you can store:

-  100 000 emails, OR

-  1000 digital photos, OR

-  300 MP3 files, OR

-  1 movie (DivX) files (or ~0.25 movie in DVD quality)

 Not efficient at all…

Kangasharju: Peer-to-Peer Networks 62

Replication: Future

 What are the implications for P2P storage systems?
  “No problem” in corporate environments

 Lot of computers with good resources and high uptime

 Cost of reliable file servers very high

 P2P storage comes “for free”

 Wide area storage?
 Most of analysis assumes no additional coordination

 Storage invariants can reduce number of copies

 Must have additional coordination to make system attractive

  Is factor-of-10/100 reduction in capacity acceptable to users?

-  Most home users don’t care about reliability, don’t take backups

-  Most home users wouldn’t see benefits?

Kangasharju: Peer-to-Peer Networks 63

Load Balancing

  What if the first place winner for a popular object is
(almost) always up?

  Problem: How to balance the load between the peers in
the community?

  In fact, what is the goal of a load balancing algorithm?
1.  Make everyone do the same amount of work?

  But: Peers might be heterogeneous

2.  Allow individual peers to determine their own load?
  Problem: Too much refused traffic hurts performance

  Two approaches:
  Fragmentation

  Overflow

Kangasharju: Peer-to-Peer Networks 64

Load Balancing: Solutions

 Fragmentation
  Idea: Divide each object into chunks, store chunks individually

 One chunk is much smaller than a file, hence load is balanced better,

since chunks are stored on different peers

 Achieves overall load balancing (goal 1 from above)

 Overflow
  Idea: Allow peers to refuse requests

 Request passed on to the next winner (eventually to outside)

 Allows a peer to decide how much traffic to handle

 Achieves goal number 2 from above

 Fragmentation + Overflow
 Use both approaches

Kangasharju: Peer-to-Peer Networks 65

Load Balancing: Fragmentation

Peer up probability

N
or

m
al

iz
ed

 lo
ad

  90-percentile

load for Zipf

parameter 1.2

  K = number of

chunks

  Load normalized

to “fair share”

  Seems to work

quite well for

large number of

chunks

  Large files -->

many chunks

Kangasharju: Peer-to-Peer Networks 66

Load Balancing: Overflow

Peer up probability

Ad
di

ti
on

al
 lo

ad
 p

er
 p

ee
r

 Overflow
with 1 chunk

 Different
amounts of
refused
traffic

 Worst case:
5%
additional
load for
each peer

Kangasharju: Peer-to-Peer Networks 67

Fragmentation + Overflow

Peer up probability

Ad
di

ti
on

al
 lo

ad
 p

er
 p

ee
r

  Same as

above, but

with 30

chunks per

file

  Additional

load less than

0.5% in all

cases

Kangasharju: Peer-to-Peer Networks 68

Overflow: Refused Traffic

 When large number of traffic is refused, it goes to the
outside, thus reducing hit-rate

 How much is hit-rate affected?
 Rough rule of thumb: Proportion of reduced traffic

reduces overall storage capacity by the same proportion
 Example: If 50% of peers are refusing 50% of the traffic,

then overall storage capacity is reduced by 25%

Kangasharju: Peer-to-Peer Networks 69

Load Balancing: Summary

 Without any load balancing mechanism, load is severely
unbalanced

 Fragmentation approach works well for achieving a
uniform load on all peers

 Pure overflow approach allows individual peers to reduce
their load at a cost of increased load to others

 Overflow with fragmentation works best
 Refused traffic ends up effectively reducing the overall

amount of storage offered by the community

Kangasharju: Peer-to-Peer Networks 70

Chapter Summary

 Performance evaluation of P2P systems
 DHT performance under heavy load

 Evaluate effects of different parameters

 Evalute DHT-based applications

 Storage systems
 Unconstrained system

-  Provide target availability

 Constrained system, P2P community

-  Maximize hit-rate

 Load balancing

