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Chapter Outline 

 Cover performance and reliability issues in P2P systems 
 Evaluation of DHT performance 

 Pure DHT performance issues 

 Performance of DHT-based applications  

 Reliability issues in P2P systems 
 Main focus on availability 

 Theoretical models of reliability 
 How does replication improve reliability? 

 How many copies do we need? 

 Load balancing issues with block-based systems 
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DHT Performance Issues 

 DHTs provide useful abstractions to programmers 
 What is the cost? 
 DHTs need to maintain overlay structure 

 Additional communication needed 

 How should the parameters of a DHT be tuned? 
 Number of successors, base, frequency of updates, etc. 

 Do DHTs maintain correctness in “normal” conditions? 
 Most DHTs not evaluated against dynamic nodes 

 What happens when lot of nodes join and leave? 
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DHT Performance 

 How do DHTs cope with changes in membership? 
 How to compare different DHTs? 

 How to figure out fundamental differences? 
 Most evaluations are about lookup latency or size of 

routing table in static networks 
 Keeping large amount of state gives good results here! 
 No penalty for large amount of state! 

  In normal conditions, periodic maintenance messages 
maintain overlay structure 

 Compare DHTs in terms of how they maintain overlay 
 Also include lookup performance 

 Comparisons done by Chord group at MIT 
 Keep this in mind when looking at results! 
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Cost vs. Performance 

 Cost often measured as per-node state 
 More important metric: How to keep state up-to-date 

 Up-to-date state avoids timeouts 

 Also, need to find nearby neighbors 

 Cost metric: Number of bytes sent to network 
 Network usually more limiting than CPU or memory 

 Performance metric: Lookup latency 
 Dead nodes assumed to be detected quickly 

 DHT retries other nodes after dead node 

 Failed lookups converted to high latencies 

-  Fair comparison? 
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Comparison 

 Compare 4 DHTS: Tapestry, Chord, Kademlia, and Kelips 
 Here we look at Chord and Tapestry only 
 Different parameters: 
Tapestry 

 Base, stabilization interval, backup nodes 

Chord 
 Number of successors, finger base 
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Evaluation Parameters 

  1024 nodes in network 

  Only key lookup, no data 

retrieval 

  Nodes request random keys 

  Exponentially, mean 10 

mins 

  Nodes join and leave 

  Exponentially, mean 1 hour 

  6 hours simulated time 

  Nodes keep IP and ID 

  Many parameter 

combinations 

  No single best choice 

  Many optimal choices 

  Best points on convex hull of 

all points 
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Overall Results 

 All 4 DHTs shown 
 Chord is “best” 

 Kademlia uses iterative 
routing, recursive appears 
to be better 

 Any DHT can be below 
250ms latency 

 Some need lot of bandwidth 
 Chord uses bandwidth 

efficiently 
 Finger tables not needed 
 Successor pointers 

maintain correctness, low 
bandwidth required 

 Other DHTs have no good 
correctness mechanisms 
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Tapestry: Effects of Parameters 

 As base decreases, less bandwidth is needed 
 Less entries in neighbor map, hence less traffic 

 All bases can achieve same latency 
 Latency dominated by last hop, base can be small 

 Stabilization can run frequently 
 Small increase in bandwidth, big reduction in latency 



Kangasharju: Peer-to-Peer Networks 10 

Chord: Effect of Parameters 

 Chord only base is shown 
 Base is base of ID space 

 No single best choice 
 Convex hull is created by bases 2 

and 8 

 72 second successor update 
interval is best (not shown) 

 Higher update wastes bandwidth 

 Lower update has more timeouts 

 Finger update interval affects only 

performance, can pick suitable value 
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DHT Performance: Summary 

 4 different DHTs evaluated with different parameters 
 Cost of maintaining overlay vs. lookup latency 

  If tuned correctly, all 4 are about the same 
 Hard to tune correctly 

 Parameters may interact 

 Same parameter has different effects in different DHTs 

 Some parameters are irrelevant 
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Performance of DHT-Based Applications 

 Above results show that we can configure a DHT to give 
us “decent” performance at “reasonable” cost 

 Question: Is “decent” good enough for real applications? 
  In other words, how does a DHT-based P2P application 

compare against a client/server-application? 
 Recall: Performance of CFS storage system in local 

network was about the same as FTP in wide area 
 How about other kinds of applications? 
 Let’s take Domain Name System (DNS) as example 

 Fundamental Internet-service 

 Very much a client/server application 
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P2P DNS 

 Domain Name System (DNS) very much client-server 
 Ownership of domain = responsibility to serve its data 
 DNS concentrates traffic on root servers 

 Up to 18% of DNS traffic goes to root servers 

 Lot of traffic also due to misconfigurations 

 P2P DNS puts expertise in the system 
 No need to be an expert administrator 

 P2P DNS shares load more equally 
 P2P DNS has much, much higher latencies :( 
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DNS: Overview 

 DNS organized in zones (≈ domain) 
 Actual data in resource records (RR) 

 Several types of RRs: A, PTR, NS, MX, CNAME, … 

 Administrator of zone responsible for setting up a server 
for that zone (+ redundant servers at other domains) 

 Queries resolved hierarchically, starting from root 
 Owner of a zone is responsible for serving zone’s data 
 DNS shortcomings: 

 Need skill to configure name server 

 No security (but added-on later to some degree) 

 Queries can take very long in worst case 
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DNS: Example 

 Client wants to resolve www.foo.com 
 Replies to queries have additional information (IP address + name) 
 Queries can be iterative (here) or recursive 

Client 

a.root-servers.net 

ns.something.com 

ns.foo.com 

NS com. 
ns.something.com 

NS foo.com. ns.foo.com 

A www.foo.com. 

192.168.125.54 
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How to Do P2P DNS? 

 Put DNS resource records in a DHT 
 Key is hash of domain name and query type 

 For example, SHA1(www.foo.com, A) 

 Values replicated on some replicas (~ 5-7) 
 Can be built on any DHT, works the same way 
 All resource records must be signed 

 Some overhead for key retrieval 

 For migration, put P2P DNS server on local machine 
 Configure normal DNS to go through P2P DNS 

 No difference to applications 
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P2P DNS: Performance 

 Current DNS has median latency of 43 ms 
 Measured at MIT 

 Some queries can take a long time 
 Up to 1 minute (due to default timeouts) 

 P2P DNS has median latency of 350 ms! 
 Simulated on top of Chord 

 P2P is much, much worse 
 But extremely long queries cannot happen 
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Why (Not) P2P DNS? 

Pros 

  Simpler administration 

  Most problems in current DNS are 

misconfigurations 

  DNS servers not simple to configure well 

  P2P DNS robust against lost network 

connectivity 

  Only outgoing link cut -> maybe not able 

to find own name 

  No risk of incorrect delegation 

  Subdomains can be easily established 

  Signatures confirm 

Cons 

  All queries must be anticipated in 

advance 

  Not possible to set e.g. mail server 

for whole domain easily 

  Current DNS can tailor requests to 

client 

  Widely used in content distribution 

networks and load balancing 

  Might be possible to implement 

above in client software 
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Future of DHT-Based Applications? 

 DHT-based applications have to make several RPCs 
 1 million node Chord = 20 RPCs, Tapestry 5 RPCs 

 Experiments with DNS show even 5 is too much 
 Current DNS usually needs 2 RPCs 

 DNS puts lot of knowledge at the top of the hierarchy 

-  Root servers know about millions of domains 

 Many RPCs is main weakness of DHTs 

 DHT-based applications have all their features on clients 
 New feature -> install new clients 

 Some kind of an “active” network as a solution? 
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Reliability of P2P Storage 

  Example case: P2P storage system 
  Each object replicated in some peers 

  Peers can find where objects should be 

-  Typically DHT-based, but DHT is not absolutely required 

  No concern of consistency 
  Read-only storage system 

Questions: 
1.  How many copies are needed for a given level of reliability? 

  Unconstrained system with infinite resources 

2.  What is the optimal number of copies? 
  System with storage constraints 
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Reliability of Data in DHT-Storage 

 Storage system using a distributed hash table (DHT) 
 Peer A wants to store object O 

 Create k copies on different peers 
 k peers determined by DHT for each object (k closest)  

 Later peer B wants to read O 
 What can go wrong? 

 Simple storage system: Object created once, read many 
times, no modifications to object 

 Question: What is the value of k needed to achieve e.g., 
99.9% availability of O? 

 Remember: Only probabilistic guarantees possible! 
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Assumptions 

 Assume I peers in the DHT 
 Each peer has unlimited storage capacity 

 Peer is up with probability p  
 Peers are homogeneous, i.e., all peers have same up-probability 

 Peers uniformly distributed in hash space 
 Makes mathematical analysis tractable 

 New peers can join the network 
 Peers never permanently leave 

 User may need to access several objects to complete one user-
level action 

 For example, resolve path name to file 
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What Can Go Wrong? 

1.  All k peers are down when B reads 
•  Object is not available in any on-line peer 

2.  Real k closest peers were down when A wrote and are 
up when B reads 

3.  At least k peers join and become new closest peers 
•  In above two cases, object is (maybe) still available in the 

peers where A wrote it 

4.  All k peers have permanently left the network 
•  Assumed not to happen 

  We look at only the first three cases 
  What are the probabilities of each one of them? 
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Probabilities of Loss 

1. All k peers are down when B reads 

2. Real k closest peers were down when A wrote and are up when 
B reads 

3. N peers join and at least k peers become new closest peers 
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Numerical Values for Loss 

 First case (green) dominates clearly 
  In above tables, k = 5 

 For cases 2 and 3 also applies: 

 Search more than k nodes to find object 
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How to Improve? 

 Maintain storage invariant  O always at k closest 
 Needs additional coordination 

 Possible if down-events controlled 

 Crash  others need to detect crash (before they crash) 

 Guarantees availability as long as invariant maintained 

 Possibly wastes storage if copies are not removed when 

peers come back into the system 

 This approach taken by PAST storage system 

  Increase k 
 Create more copies, simple to implement 

 Wastes storage capacity? 

 Not good for changing objects (consistency) 



Kangasharju: Peer-to-Peer Networks 27 

What the User Sees? 

 Suppose: User’s action needs to access several objects 
 For example, resolve path names of files one level at a time 

 For each object: ps = 1 – pl1 = 1 – (1 – p)k 

  If we need to access 2 objects? 

 Success for user: pt = (1 – (1 – p)k)2 

 Solving for k: 

  In general for n objects: pt = (1 – (1 – p)k)n 
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How Large Should k Be? 

 Define target pt 

 This is what user sees 

 Failures temporary 

 When peers mostly up, 
k small 

  Increase in pt  small 
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Replication Summary 

 Replication in read-only system helps availability 
 Main cause of unavailability is peers going down 
 Create k copies of each object 

  If peers mostly up, k quite small ( < 10) 
 Maintaining actively copies in right peers helps 

 Above analysis assumes all objects equally popular or 
important 

 Not always true 
 Recall: Zipf-distribution for object popularities 
 Also, some objects may require higher availability 

 How should objects be replicated in this case? 



Kangasharju: Peer-to-Peer Networks 30 

P2P Content Management 

 Group of peers access a set of files 
 Some files are more popular than others 

 How many copies of each file should we have? 
 Where should the copies be placed? 
 Assumptions: 

 DHT-based system for determining responsible nodes 
 Set of files is static 
 File popularities Zipf-distributed 

 P2P communities 
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Abstract Community Model 

Up node 
Down node 

Community 

Outside  
repository 

Miss 

Response 

•   Examples of communities: Campus, distribution engine 
•   Assume good bandwidth within community 
•   Goal: Satisfy requests from within community 
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Replication Issues 

 How many copies of each object in community? 

 Which peers in community have copies?  

  Is there an algorithm that is: 
 simple 

 decentralized 

 adaptively replicates objects 

 provides near-optimal replica profile? 

 What does “optimal replica profile” mean?  



Kangasharju: Peer-to-Peer Networks 33 

Replication Theory 

  J objects, I peers 

  object j 

  requested with probability qj 

  size bj 

  peer i 

  up with probability pi 

  storage capacity Si 

  decision variable 

  xij = 1 if a replica of j is put in i; 0 otherwise 

  Goal: maximize hit probability in community (availability) 

  Extension to byte hit probability is possible 
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Optimization Problem 

Minimize 

subject to 

Can be reduced to Integer programming problem: NP 
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Homogeneous Up Probabilities 

 Suppose pi = p 

 Let                 = number of replicas of object j 

 Let  S = total group storage capacity 

 Minimize 

 subject to:     

Can be solved by 
dynamic programming 
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Replication vs. Up Probability 

up prob = .9 
up prob = .5 

up prob = .2 

Hit probabilities 
are different: 
0.6, 0.4, 0.3 
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Problems with Optimal Solutions 

 Don’t know a priori up/down probabilities 

 Don’t know a priori object request rates 

 Object request rates are changing over time 

 New objects are being introduced 

 Need efficient adaptive algorithms! 
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Assumptions & Goals 

Assume 

  Each object has a unique 

name (e.g., URN) 

  Each peer in community 

has shared and private 

storage 

  Each peer can access a 

DHT that gives current up 

winners for any object o 

Goals 

  Replicate while satisfying 

requests (no extra work) 

  Adaptive, decentralized, 

simple 

  High availability: mimics 

optimal performance 
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DHT: Winners 

 Hash functions map each object name j into a 
“random” ordering of the nodes:  

hash(j)  [ ij(1), ij(2),…, ij(I) ] 

 Each object j has a current “first-place winner,” 
“second-place winner,” etc. 

 Winners are current up winners 

 Any DHT can be modified to provide the winners 
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Adaptive Algorithm: Simple Version 

Suppose X is a node that wants object o.  

1) X uses DHT to find 1st-place up node i for o  
2) X asks i for o 
3) If i doesn’t have o, i retrieves o from the “outside”  and stores a copy 

in its shared storage. 
4) i sends o to X, which puts o in its private storage. 

Each node uses LRU replacement policy in shared storage 
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Adaptive Algorithm 

up node 

down node 

X 

i 

outside 

LRU 

Each object o has “attractor 
nodes” 

Object o tends to get 
replicated in its attractor 
nodes. 

Queries for o tend to be 
sent to attractor nodes. 

 tend to get hits 
Problem: Can miss even though 
object is in an up node in the 
community 
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Top-K Algorithm 

  If i doesn’t have o, i pings top-K winners. 

  i retrieves o from one of the top-K if present. 

  If none of the top-K has o, i retrieves o from outside. 

top-K up node 

ordinary up node 

down node 

X 

i 
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Simulation 

 Adaptive and optimal algorithms 

 100 nodes, 10,000 objects 

 Zipf = 0.8, 1.2 

 Storage capacity 5-30 objects/node 

 All objects the same size 

 Up probs 0.2, 0.5, and 0.9 

 Top K with K = {1, 2, 5} 
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Hit-Probability vs. Node Storage 

p = P(up)  
   = .5 

Zipf = .8 
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Number of Replicas 

p = P(up)  
   = .5 

15 objects 
per node 

K = 1 

Zipf = .8 
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General observations 

  Community improves 

performance significantly 

  LRU is lets unpopular objects 
linger in peers 

  Top-K algorithm is needed to find 
object in aggregate storage (see 

right) 

How can we do better? 
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Most Frequently Requested (MFR) 
 Each peer estimates local request rate for each object 

 denote λo(i) for rate at peer i for object o 

 Peer only stores the most requested objects 

 packs as many objects as possible 

Suppose i receives a request for o: 

  i updates λo(i)  

  If i doesn’t have o & MFR says it should: 

     i retrieves o from the outside 
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Most-Frequently-Requested Top-K Algorithm 

top-K up node 

ordinary up node 

down node 

X 

i1 

outside 

i2 

i3 

i4 

I should 
have o 

MFR combines replacement and admission policies 
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Hit-Probability vs. Node Storage 

p = P(up)  
   = .5 

MFR: K=1 

Zipf = .8 
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Replica Profile 

p = P(up)  
   = .5 

15 objects 
per node 

K = 1 

Zipf = .8 

Replica 
profile 
almost 
optimal 
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Summary: MFR Top-K Algorithm 

Implementation 
 Layers on top of location substrate 
 Decentralized 
 Simple: each peer keeps track of a local MFR table 
Performance 
 Provides near-optimal replica profile 
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Optimality of MFR 

  Recall basic idea of MFR: 

  Each peer estimates local request rate for each object 

  Analytical procedure for MFR Top-I: (all nodes) 

  Init: λj = qj/bj, j = 1, ..., J, and Ti = Si, i = 1, ..., I 

1.  Find file j with largest λ j 

2.  Sequentially examine winners for j until Ti ≥ bj and xij = 0 

-  Set xij = 1 

-  Set λ j  = λ j(1-pi) 

-  Set Ti = Ti – bj 

-  If no such node, remove file j from consideration 

3.  If still files to be considered go to step 1, otherwise stop. 
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Evaluation 

 Suppose all files are same size 
 Suppose no ties in step 1 (λj) 
 Then Top-I MFR converges to previous procedure 

  Faster way to evaluate performance 

 Comparing Top-I MFR to true optimal solution: 
 Almost always gives optimal result (95%) 

 Simple counter-example: Top-I MFR ≠ optimal 
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Top-I MFR and Non-Optimality 

 Assume 2 nodes and 4 objects 
 Each node can store 2 objects, both up prob. 0.5 

 Assume request probabilities and winners as shown: 

 What does Top-I MFR do and what is optimal? 

Object Req. Prob. 1st Winner 

1 5/13 1 

2 3/13 2 

3 3/13 2 

4 2/13 1 
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Solution 

 Top-I MFR places objects in the order of popularity 
 Object 1 --> Node 1, Object 2 --> Node 2, Object 3 --> Node 2 

 Next would be Object 1 again (reduced request rate 5/13 * 1/2) 

 But only node 1 has space and there is already copy of 1 there 

 Hence, Top-I MFR puts Object 4 --> Node 1 

 Optimal solution is: 
 Object 1 --> Node 1 and 2, Object 2 --> Node 1, Object 3 --> Node 2 

 As mentioned above, similar cases appear even in bigger communities 
 But problem typically “1 copy too much for object X and 1 copy too little for 

object Y” 
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Continuous Optimal 

Let yj = bjnj, and treat yj as continuous variable. 

       Minimize 

       subject to 

where  
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(1) Order objects according to qj/bj 

(2) There is an L such that n*j = 0 for all j > L. 

(3) For j <= L , “logarithmic replication rule”: 

Continuous Optimal (2) 

Logarithmic replication rule 
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Continuous Optimal vs. Discrete 

  Continuous gives 

upper bound 

  Bound usually 

tight 

  Differences are 

due to discrete 

being constrained 

to integer values 
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Replication Summary 

 Adaptive replication in communities 
 Peers in community download content 

 Content always available in “outside repository” 

 Model of optimal replication of content 
 Which peers should hold which objects 

 Model as an integer programming problem (NP-complete) 

 Approximation with “homogeneous case” 
 Optimal solution with dynamic programming 

 Several different algorithms for comparison 
 Simple LRU 

 Top-K LRU 

 MFR (best performance) 



Kangasharju: Peer-to-Peer Networks 60 

Replication: General Comments 

 Studied two cases: 
 Static replication, all files equally important 

 Dynamic, on-the-fly replication, some files more popular 

 Different goals in the two cases 
 Highest possible availability, no storage constraints 

 Provide high hit-rate, only limited storage 

 For first case, adding a storage constraint would limit 
number of files that can be stored 

 All the rest of the analysis and results remain unaffected 

 What can we learn? 
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Replication: Lessons 

 When peers mostly up, we need about 5-10 copies 
 Applies in both cases 

  Implication: P2P storage system with N GB of capacity can store about N/

5 or N/10 GB of data 

 Maintenance cost of reliable file server vs. extra hard disk? 

 When peers mostly down, we need >> 100 copies for high availability 
 This is more realistic for global P2P network (in today’s world) 

 For example, if you donate 100 GB to network, you can store: 

-  100 000 emails, OR 

-  1000 digital photos, OR 

-  300 MP3 files, OR 

-  1 movie (DivX) files (or ~0.25 movie in DVD quality) 

 Not efficient at all… 
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Replication: Future 

 What are the implications for P2P storage systems? 
  “No problem” in corporate environments 

 Lot of computers with good resources and high uptime 

 Cost of reliable file servers very high 

 P2P storage comes “for free” 

 Wide area storage? 
 Most of analysis assumes no additional coordination 

 Storage invariants can reduce number of copies 

 Must have additional coordination to make system attractive 

  Is factor-of-10/100 reduction in capacity acceptable to users? 

-  Most home users don’t care about reliability, don’t take backups 

-  Most home users wouldn’t see benefits? 
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Load Balancing 

  What if the first place winner for a popular object is 
(almost) always up? 

  Problem: How to balance the load between the peers in 
the community? 

  In fact, what is the goal of a load balancing algorithm? 
1.  Make everyone do the same amount of work? 

  But: Peers might be heterogeneous 

2.  Allow individual peers to determine their own load? 
  Problem: Too much refused traffic hurts performance 

  Two approaches: 
  Fragmentation 

  Overflow 
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Load Balancing: Solutions 

 Fragmentation 
  Idea: Divide each object into chunks, store chunks individually 

 One chunk is much smaller than a file, hence load is balanced better, 

since chunks are stored on different peers 

 Achieves overall load balancing (goal 1 from above) 

 Overflow 
  Idea: Allow peers to refuse requests 

 Request passed on to the next winner (eventually to outside) 

 Allows a peer to decide how much traffic to handle 

 Achieves goal number 2 from above 

 Fragmentation + Overflow 
 Use both approaches 
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Load Balancing: Fragmentation 

Peer up probability 
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  90-percentile 

load for Zipf 

parameter 1.2 

  K = number of 

chunks 

  Load normalized 

to “fair share” 

  Seems to work 

quite well for 

large number of 

chunks 

  Large files --> 

many chunks 
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Load Balancing: Overflow 

Peer up probability 
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 Overflow 
with 1 chunk 

 Different 
amounts of 
refused 
traffic 

 Worst case: 
5% 
additional 
load for 
each peer 
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Fragmentation + Overflow 

Peer up probability 
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  Same as 

above, but 

with 30 

chunks per 

file 

  Additional 

load less than 

0.5% in all 

cases 
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Overflow: Refused Traffic 

 When large number of traffic is refused, it goes to the 
outside, thus reducing hit-rate 

 How much is hit-rate affected? 
 Rough rule of thumb: Proportion of reduced traffic 

reduces overall storage capacity by the same proportion 
 Example: If 50% of peers are refusing 50% of the traffic, 

then overall storage capacity is reduced by 25% 
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Load Balancing: Summary 

 Without any load balancing mechanism, load is severely 
unbalanced 

 Fragmentation approach works well for achieving a 
uniform load on all peers 

 Pure overflow approach allows individual peers to reduce 
their load at a cost of increased load to others 

 Overflow with fragmentation works best 
 Refused traffic ends up effectively reducing the overall 

amount of storage offered by the community 
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Chapter Summary 

 Performance evaluation of P2P systems 
 DHT performance under heavy load 

 Evaluate effects of different parameters  

 Evalute DHT-based applications 

 Storage systems 
 Unconstrained system 

-  Provide target availability 

 Constrained system, P2P community 

-  Maximize hit-rate 

 Load balancing 


