
Peer-to-Peer and Grid Computing

Chapter 3: Networks, Searching and
Distributed Hash Tables

Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

n Networks and graphs
n Graph theory meets networking

n Different types of graphs and their properties

n Searching and addressing
n Structured and unstructured networks

n Distributed Hash Tables
nWhat they are?

n How they work?

nWhat are they good for?

n Examples: Chord, CAN, Plaxton/Pastry/Tapestry

Kangasharju: Peer-to-Peer Networks 3

Networks and Graphs

n Refresher of graph theory
n Graph families and models

n Random graphs

n Small world graphs

n Scale-free graphs

n Graph theory and P2P
n How are the graph properties reflected in real systems?

Kangasharju: Peer-to-Peer Networks 4

What Is a Graph?

n Definition of a graph:
Graph G = (V, E) consists of two finite sets, set V of vertices
(nodes) and set E of edges (arcs) for which the following
applies:
1. If e ∈ E, then exists (v, u) ∈ V x V, such that v ∈ e and u ∈ e

2. If e ∈ E and above (v, u) exists, and further for (x, y) ∈ V x V

applies x ∈ e and y ∈ e, then {v, u} = {x, y}

1 2

3

4
e2

e1

e3

e5 e4
Example graph with
4 vertices and 5 edges

Kangasharju: Peer-to-Peer Networks 5

Properties of Graphs

n An edge e ∈ E is directed if the start and end vertices in
condition 2 above are identical: v = x and y = u

n An edge e ∈ E is undirected if v = x and y = u as well as v = y
and u = x are possible

n A graph G is directed (undirected) if the above property holds
for all edges

n A loop is an edge with identical endpoints
n Graph G1 = (V1, E1) is a subgraph of G = (V, E), if V1 ⊆ V and

E1 ⊆ E (such that conditions 1 and 2 are met)

Kangasharju: Peer-to-Peer Networks 6

Important Types of Graphs

n Vertices v, u ∈ V are connected if there is a path from v to
u: (v, v2), (v2, v3), …, (vk-1, u) ∈ E

n Graph G is connected if all v, u ∈ V are connected
n Undirected, connected, acyclic graph is called a tree

n Sidenote: Undirected, acyclic graph which is not connected

is called a forest

n Directed, connected, acyclic graph is also called DAG
n DAG = directed, acyclic graph (connected is “assumed”)

n An induced graph G(VC) = (VC, EC) is a graph VC ⊆ V and
with edges EC = {e = (i, j) | i, j ∈ VC}

n An induced graph is a component if it is connected

Kangasharju: Peer-to-Peer Networks 7

Vertex Degree

n In graph G = (V, E), the degree of vertex v ∈ V is the total
number of edges (v, u) ∈ E and (u, v) ∈ E
n Degree is the number of edges which touch a vertex

n For directed graph, we distinguish between in-degree and
out-degree
n In-degree is number of edges coming to a vertex

n Out-degree is number of edges going away from a vertex

n The degree of a vertex can be obtained as:
n Sum of the elements in its row in the incidence matrix

n Length of its vertex incidence list

Kangasharju: Peer-to-Peer Networks 8

Important Graph Metrics

n Distance: d(v, u) between vertices v and u is the length of
the shortest path between v and u

n Average path length: Sum of the distances over all pairs
of nodes divided by the number of pairs

n Diameter: d(G) of graph G is the maximum of d(v, u) for
all v, u ∈ V

Kangasharju: Peer-to-Peer Networks 9

Six Degrees of Separation

n Famous experiment from 1960’s (S. Milgram)
n Send a letter to random people in Kansas and Nebraska

and ask people to forward letter to a person in Boston
n Person identified by name, profession, and city

n Rule: Give letter only to people you know by first name
and ask them to pass it on according to same rule

n Some letters reached their goal
n Letter needed six steps on average to reach the person
n Graph theoretically: Social networks have dense local

structure, but (apparently) small diameter
n How to model such networks?

Kangasharju: Peer-to-Peer Networks 10

Random Graphs

n Random graphs are first widely studied graph family
n Many P2P networks choose neighbors more or less randomly

n Two different notations generally used:
n Erdös and Renyi

n Gilbert (we will use this)

n Gilbert’s definition: Graph Gn,p (with n nodes) is a graph
where the probability of an edge e = (v, w) is p

Construction algorithm:
n For each possible edge, draw a random number
n If the number is smaller than p, then the edge exists
n p can be function of n or constant

Kangasharju: Peer-to-Peer Networks 11

Basic Results for Random Graphs

Giant Connected Component:
Let c > 0 be a constant and p = c/n. If c < 1 every
component of Gn,p has order O(log N) with high
probability. If c > 1 then there will be one component of
size n*(f(c) + O(1)) where f(c) > 0, with high probability. All
other components have size O(log N)

n In plain English: Giant connected component emerges
with high probability when average degree is about 1

Node degree distribution
n If we take random node, how high is probability P(k) that

node has degree k?
n Node degree is Poisson distributed P(k) =

cke−c

k!

Kangasharju: Peer-to-Peer Networks 12

More Basic Results

Clustering coefficient
n Clustering coefficient measures number of edges

between neighbors divided by maximum number of edges
between them (clique-like)

n Clustering coefficient C(i) is defined as
n E(N(i)) = number of edges between neighbors of i
n d(i) = degree of i

n Clustering coefficient of a random graph is asymptotically
equal to p with high probability

C(i) =
E(N(i))

d(i)(d(i) −1)

Kangasharju: Peer-to-Peer Networks 13

Random Graphs: Summary

n Before random graphs, regular graphs were popular
n Regular: Every node has same degree

n Random graphs have two advantages over regular graphs
1. Many interesting properties analytically solvable
2. Much better for applications, e.g., social networks
n Note: Does not mean social networks are random graphs;

just that the properties of social networks are well-described
by random graphs

n Question: How to model networks with local clusters and
small diameter?

n Answer: Small-world networks

Kangasharju: Peer-to-Peer Networks 14

Small-World Networks

n Developed/discovered by Watts and Strogatz (1998)
n Over 30 years after Milgram’s experiment!

n Watts and Strogatz looked at three networks
n Film collaboration between actors
n US power grid
n Neural network of worm C. elegans

n Results:
n Compared to a random graph with same number of nodes
n Diameters similar, slightly higher for real graph
n Clustering coefficient orders of magnitude higher

Definition of small-worlds network:
n Dense local clustering structure and small diameter

comparable to that of a same-sized random graph

Kangasharju: Peer-to-Peer Networks 15

Constructing Small-World Graphs

n Put all n nodes on a ring, number them consecutively from 1 to n
n Connect each node with its k clockwise neighbors
n Traverse around ring in clockwise order
n For every edge:

n Draw random number r

n If r < p, then re-wire edge by selecting a random target node from the

set of all nodes (no duplicates)

n Otherwise keep old edge

n Different values of p give different graphs
n If p is close to 0, then original structure mostly preserved

n If p is close to 1, then new graph is random

n Interesting things happen when p is somewhere in-between

Kangasharju: Peer-to-Peer Networks 16

Regular, Small-World, Random

Regular Small-World Random

p = 0 p = 1

Kangasharju: Peer-to-Peer Networks 17

Problems with Small-World Graphs

Small-world graphs explain why:
n Highly clustered graphs can have short average path lengths
Small-world graphs do NOT explain why:
n This property emerges in real networks

n Real networks are practically never ring-like

Further problem with small-world graphs:
n Nearly all nodes have same degree
n Not true for random graphs (k edges ~ ck/k!)
n Is same true for real networks too?
n Let’s look at the Internet…

Kangasharju: Peer-to-Peer Networks 18

Internet

n Famous study by Faloutsos et al. (3 brothers! ;-) in 1999
n They examined Internet topology during 1998

n AS-level topology, during 1998 Internet grew 45%

Motivation for work:
n What does the Internet look like?
n Are there any topological properties that don’t change

over time?
n How can I generate Internet-like graphs for simulations?

Kangasharju: Peer-to-Peer Networks 19

Faloutsos Results

n 4 key properties, each follows a power-law
n Sort nodes according to their (out)degree
1. Outdegree of a node is proportional to its rank to the

power of a constant
2. Number of nodes with same outdegree is proportional to

the outdegree to the power of a constant
3. Eigenvalues of a graph are proportional to the order to

the power of a constant
4. Total number of pairs of nodes within a distance d is

proportional to d to the power of a constant
• Why would Internet obey such laws?

Kangasharju: Peer-to-Peer Networks 20

Answer: Power-Law Networks

n Also known as scale-free networks
n Barabasi-Albert-Model
1. Network grows in time
2. New node has preferences to whom it wants to connect
n Preferential connectivity modeled as

n Each new node wants to connect to m other nodes

n Probability that an existing node j gets one of the m

connections is proportional to its degree d(j)

n New nodes tend to connect to well-connected nodes
n Another way to express this is “rich get richer”

Kangasharju: Peer-to-Peer Networks 21

Applications to Peer-to-Peer

n Small-world model explains why short paths exist
n Why can we find these paths?

n Each node has only local information

n Milgram’s results showed first steps were the largest

n How to model this?
n Kleinberg’s Small-World Model

n Set of points in an n x n grid

n Distance is the number of “steps” separating points

- d(i, j) = |xi - xj| + |yi - yj|

n Construct graph as follows:
n Every node i is connected to node j within distance q

n For every node i, additional q edges are added. Probability that

node j is selected is proportional to d(i, j)-r, for some constant r

Kangasharju: Peer-to-Peer Networks 22

Navigation in Kleinberg’s Model

n We want to send a message to another node
n Algorithm is decentralized if sending node only knows:

n Its local neighbors

n Position of the target node on the grid

n Locations and long-range contacts of all nodes who come in

contact of the message (not needed below, actually)

n Can be shown: Number of messages needed is
proportional to O(log n) (only one correct r per case)

n Practical algorithm: Forward message to contact who is
closest to target

n Note: Kleinberg’s model assumes some way of
associating nodes with points in grid
n Compare with CAN DHT

Kangasharju: Peer-to-Peer Networks 23

Power Law Networks and P2P

n Robustness comparison of random and power-law graphs
n Take network of 10000 nodes (random and power-law) and

remove nodes randomly
n Random graph:

n Take out 5% of nodes: Biggest component 9000 nodes

n Take out 18% of nodes: No biggest component, all components

between 1 and 100 nodes

n Take out 45% of nodes: Only groups of 1 or 2 survive

n Power-law graph:
n Take out 5% of nodes: Only isolated nodes break off

n Take out 18% of nodes: Biggest component 8000 nodes

n Take out 45% of nodes: Large cluster persists, fragments small

n Recall Gnutella: Applies ONLY for random failures

Kangasharju: Peer-to-Peer Networks 24

Summary of Graphs

n Three kinds of graph models:
n Random graph

n Small-World

n Power-Law (Scale-Free)

n Small-world graphs explain why we can have high
clustering and short average paths

n Power-law graphs explain how graphs are built in many
real networks

Kangasharju: Peer-to-Peer Networks 25

Searching and Addressing

n Two basic ways to find objects:
1. Search for them
2. Address them using their unique name
n Both have pros and cons (see below)
n Most existing P2P networks built on searching, but some

networks are based on addressing objects
n Difference between searching and addressing is a very

fundamental difference
n Determines how network is constructed

n Determines how objects are placed

n “Determines” efficiency of object location

n Let’s compare searching and addressing

Kangasharju: Peer-to-Peer Networks 26

Addressing vs. Searching

Addressing
n Pros:

n Each object uniquely identifiable

n Object location can be made efficient

n Cons:

n Need to know unique name

n Need to maintain structure required

by addresses

Searching
n Pros:

n No need to know unique names

- More user friendly

n Cons:

n Hard to make efficient

- Can solve with money, see Google

n Need to compare actual objects to know

if they are same

• “Addressing” networks find objects by addressing them with their unique name
(cf. URLs in Web)
• “Searching” networks find objects by searching with keywords that match
objects’s description (cf. Google)

Kangasharju: Peer-to-Peer Networks 27

Addressing vs. Searching: Examples

Object names in DHT,

URNs

?

(Search components of URNs)

Logical name
of object

N/A

Searching in P2P networks,

Standard Google search

Desktop searches

Content or
metadata of

object

URLs in Web

Searching in P2P networks,

Searching in filesystem

(Desktop searches)

(Search components of URL with Google?)

Physical name
of object

AddressingSearching

Kangasharju: Peer-to-Peer Networks 28

Searching, Addressing, and P2P

n We can distinguish two main P2P network types
Unstructured networks/systems
n Based on searching
n Unstructured does NOT mean complete lack of structure

n Network has graph structure, e.g., scale-free
n Network has structure, but peers are free to join anywhere

and objects can be stored anywhere
n So far we have seen unstructured networks
Structured networks/systems
n Based on addressing
n Network structure determines where peers belong in the

network and where objects are stored
n How to build structured networks?

Kangasharju: Peer-to-Peer Networks 29

Another Classification of P2P Systems

n Sometimes P2P systems classified in generations
n No 100% consensus on what is in which generation
n 1st generation

n Typically: Napster

n 2nd generation
n Typically: Gnutella

n 3rd generation
n Typically: Superpeer networks

n 4th generation
n Typically: Distributed hash tables

n Note: For DHTs, no division into generations yet

Kangasharju: Peer-to-Peer Networks 30

Distributed Hash Tables

n What are they?
n How they work?
n What are they good for?
n Examples:

n Chord

n CAN

n Plaxton/Pastry/Tapestry

Kangasharju: Peer-to-Peer Networks 31

DHT: Motivation

n Why we need DHTs?
n Searching in P2P networks is not efficient

n Either centralized system with all its problems

n Or distributed system with all its problems

n Hybrid systems cannot guarantee discovery either

n Actual file transfer process in P2P network is scalable
n File transfers directly between peers

n Searching does not scale in same way
n Original motivation for DHTs: More efficient searching and

object location in P2P networks
n Put another way: Use addressing instead of searching

Kangasharju: Peer-to-Peer Networks 32

Recall: Hash Tables

n Hash tables are a well-known data structure
n Hash tables allow insertions, deletions, and finds in

constant (average) time
n Hash table is a fixed-size array

n Elements of array also called hash buckets

n Hash function maps keys to elements in the array
n Properties of good hash functions:

n Fast to compute

n Good distribution of keys into hash table

n Example: SHA-1 algorithm

Kangasharju: Peer-to-Peer Networks 33

Hash Tables: Example

n Hash function:
hash(x) = x mod 10

n Insert numbers 0, 1, 4, 9,
16, and 25

n Easy to find if a given key
is present in the table

0

1

2

6

4

8

3

7

9

5

0
1

4

25
16

9

Kangasharju: Peer-to-Peer Networks 34

Distributed Hash Table: Idea

n Hash tables are fast for
lookups

n Idea: Distribute hash
buckets to peers

n Result is Distributed Hash
Table (DHT)

n Need efficient mechanism
for finding which peer is
responsible for which
bucket and routing
between them

0

1

2

6

4

8

3

7

9

5

0
1

4
25
16

9

Kangasharju: Peer-to-Peer Networks 35

DHT: Principle

n In a DHT, each node is
responsible for one or more
hash buckets
n As nodes join and leave, the

responsibilities change

n Nodes communicate among
themselves to find the
responsible node
n Scalable communications

make DHTs efficient

n DHTs support all the normal
hash table operations

0

1

2

0
1

6

4

3

5

4
25
16

8

7

9
9

Kangasharju: Peer-to-Peer Networks 36

Summary of DHT Principles

n Hash buckets distributed over nodes
n Nodes form an overlay network

n Route messages in overlay to find responsible node

n Routing scheme in the overlay network is the difference
between different DHTs

n DHT behavior and usage:
n Node knows “object” name and wants to find it

- Unique and known object names assumed

n Node routes a message in overlay to the responsible node

n Responsible node replies with “object”

- Semantics of “object” are application defined

Kangasharju: Peer-to-Peer Networks 37

DHT Examples

n In the following look at some example DHTs
n Chord

n CAN

n Tapestry

n Several others exist too
n Pastry, Plaxton, Kademlia, Koorde, Symphony, P-Grid, CARP, …

n All DHTs provide the same abstraction:
n DHT stores key-value pairs

nWhen given a key, DHT can retrieve/store the value

n No semantics associated with key or value

n Difference is in overlay routing scheme

Kangasharju: Peer-to-Peer Networks 38

Chord

n Chord was developed at MIT
n Originally published in 2001 at Sigcomm conference

n Chord’s overlay routing principle quite easy to understand
n Paper has mathematical proofs of correctness and

performance

n Many projects at MIT around Chord
n CFS storage system

n Ivy storage system

n Plus many others…

Kangasharju: Peer-to-Peer Networks 39

Chord: Basics

n Chord uses SHA-1 hash function
n Results in a 160-bit object/node identifier

n Same hash function for objects and nodes

n Node ID hashed from IP address
n Object ID hashed from object name

n Object names somehow assumed to be known by everyone

n SHA-1 gives a 160-bit identifier space
n Organized in a ring which wraps around

n Nodes keep track of predecessor and successor

n Node responsible for objects between its predecessor and itself

n Overlay is often called “Chord ring” or “Chord circle”

Kangasharju: Peer-to-Peer Networks 40

Chord: Examples

n Below examples for:
n How to join the Chord ring

n How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 41

Joining: Step-By-Step Example

0

1

2

3

4

5

6

7

n Setup: Existing network with

nodes on 0, 1 and 4

n Note: Protocol messages simply

examples

n Many different ways to

implement Chord

n Here only conceptual example

n Covers all important aspects

Kangasharju: Peer-to-Peer Networks 42

Joining: Step-By-Step Example: Start

0

1

2

3

4

5

6

7

n New node wants to join

n Hash of the new node: 6

n Known node in network:

Node1

n Contact Node1

n Include own hash

Kangasharju: Peer-to-Peer Networks 43

Joining: Step-By-Step Example:
Situation Before Join

0

1

2

3

4

5

6

7

Data for]4;0]

Data for]0;1]

Data for]1;4]

No data

succ0succ0

succ1succ1succ4succ4

pred1pred1pred0pred0

pred4pred4

Kangasharju: Peer-to-Peer Networks 44

Joining: Step-By-Step Example:
Contact known node

0

1

2

3

4

5

6

7

JOIN 6

n Arrows indicate

open connections

n Example assumes

connections are kept

open, i.e., messages

processed recursively

n Iterative processing is

also possible

Kangasharju: Peer-to-Peer Networks 45

Joining: Step-By-Step Example:
Join gets routed along the network

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 46

Joining: Step-By-Step Example:
Successor of New Node Found

0

1

2

3

4

5

6

7

JOIN 6

Kangasharju: Peer-to-Peer Networks 47

Joining: Step-By-Step Example:
Joining Successful + Transfer

0
1

2

3

4
5

6

7

TRANSFER
Data in range]4;6]Joining is successful

Old responsible node
transfers data that
should be in new
node

New node informs
Node4 about new
successor (not shown)

Note: Transferring can happen also later

Kangasharju: Peer-to-Peer Networks 48

Joining: Step-By-Step Example:
All Is Done

0

1

2

3

4

5

6

7 succ0succ0

succ1succ1succ4succ4

pred1pred1pred0pred0

pred4pred4pred6pred6

succ6succ6

Data for]6;0]

Data for]0;1]

Data for]1;4]

Data for]4;6]

Kangasharju: Peer-to-Peer Networks 49

Storing a Value

n Node 6 wants to store
object with name “Foo”
and value 5

n hash(Foo) = 2
0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 50

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 51

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Kangasharju: Peer-to-Peer Networks 52

Storing a Value

0

1

2

3

4

5

6

7

STORE 2 5

Value is now stored
in node 4.

Kangasharju: Peer-to-Peer Networks 53

Retrieving a Value

n Node 1 wants to get
object with name “Foo”

n hash(Foo) = 2
à Foo is stored on node 4

0

1

2

3

4

5

6

7

Kangasharju: Peer-to-Peer Networks 54

Retrieving a Value

0

1

2

3

4

5

6

7

RETRIEVE 2

Kangasharju: Peer-to-Peer Networks 55

Retrieving a Value

0

1

2

3

4

5

6

7

RESULT 5

Kangasharju: Peer-to-Peer Networks 56

Chord: Scalable Routing

n Routing happens by passing message to successor
n What happens when there are 1 million nodes?

n On average, need to route 1/2-way across the ring

n In other words, 0.5 million hops! Complexity O(n)

n How to make routing scalable?
n Answer: Finger tables
n Basic Chord keeps track of predecessor and successor
n Finger tables keep track of more nodes

n Allow for faster routing by jumping long way across the ring

n Routing scales well, but need more state information

n Finger tables not needed for correctness, only
performance improvement

Kangasharju: Peer-to-Peer Networks 57

Chord: Finger Tables

n In m-bit identifier space, node has up to m fingers
n Fingers are stored in the finger table

n Row i in finger table at node n contains first node s that
succeeds n by at least 2i-1 on the ring

n In other words:
finger[i] = successor(n + 2i-1)

n First finger is the successor
n Distance to finger[i] is at least 2i-1

Kangasharju: Peer-to-Peer Networks 58

Chord: Scalable Routing

n Finger intervals increase with distance

from node n

n If close, short hops and if far, long hops

Two key properties:

n Each node only stores information about

a small number of nodes

n Cannot in general determine the

successor of an arbitrary ID

n Example has three nodes at 0, 1, and 4

n 3-bit ID space --> 3 rows of fingers

4[4,0)4

4[2,4)2

1[1,2)1

Succ.Int.Start

0

1

2

3

4

5

6

7

0[5,1)5

4[3,5)3

4[2,3)2

Succ.Int.Start

0[0,4)0

0[6,0)6

0[5,6)5

Succ.Int.Start

Kangasharju: Peer-to-Peer Networks 59

Chord: Performance

n Search performance of “pure” Chord O(n)
n Number of nodes is n

n With finger tables, need O(log n) hops to find the correct node
n Fingers separated by at least 2i-1

nWith high probability, distance to target halves at each step

n In beginning, distance is at most 2m

n Hence, we need at most m hops

n For state information, “pure” Chord has only successor and
predecessor, O(1) state

n For finger tables, need m entries
n Actually, only O(log n) are distinct

n Proof is in the paper

Kangasharju: Peer-to-Peer Networks 60

CAN: Content Addressable Network

n CAN developed at UC Berkeley
n Originally published in 2001 at Sigcomm conference(!)

n CANs overlay routing easy to understand
n Paper concentrates more on performance evaluation

n Also discussion on how to improve performance by tweaking

n CAN project did not have much of a follow-up
n Only overlay was developed, no bigger follow-ups

Kangasharju: Peer-to-Peer Networks 61

CAN: Basics

n CAN based on N-dimensional Cartesian coordinate space
n Our examples: N = 2
n One hash function for each dimension

n Entire space is partitioned amongst all the nodes
n Each node owns a zone in the overall space

n Abstractions provided by CAN:
n Can store data at points in the space
n Can route from one point to another

n Point = Node that owns the zone in which the point
(coordinates) is located

n Order in which nodes join is important

Kangasharju: Peer-to-Peer Networks 62

CAN: Partitioning

1

Kangasharju: Peer-to-Peer Networks 63

CAN: Partitioning

1 2

Kangasharju: Peer-to-Peer Networks 64

CAN: Partitioning

1

2

3

Kangasharju: Peer-to-Peer Networks 65

CAN: Partitioning

1

2

3

4

Kangasharju: Peer-to-Peer Networks 66

CAN: Partitioning

n CAN forms a d-

dimensional

torus

Kangasharju: Peer-to-Peer Networks 67

CAN: Examples

n Below examples for:
n How to join the network

n How routing tables are managed

n How to store and retrieve values

Kangasharju: Peer-to-Peer Networks 68

CAN: Node Insertion

I

New node

Discover some
node “I” already
in CAN

Kangasharju: Peer-to-Peer Networks 69

CAN: Node Insertion

pick random
point in space

I

(p,q)

New node

New node picks
its coordinates
in space

Kangasharju: Peer-to-Peer Networks 70

CAN: Node Insertion

(p,q)

I routes to
(p,q), and
discovers that
node J owns
(p,q)

I

J

new node

Kangasharju: Peer-to-Peer Networks 71

CAN: Node Insertion

NewJ

Split J’s zone
in half. New
owns one half

Kangasharju: Peer-to-Peer Networks 72

CAN: Routing Table

Kangasharju: Peer-to-Peer Networks 73

CAN: Routing

(a,b)

(x,y)

Kangasharju: Peer-to-Peer Networks 74

a = hx(K)

CAN: Storing Values

x = a

node I::insert(K,V)

I

y = b

b = hy(K)

Kangasharju: Peer-to-Peer Networks 75

(1) a = hx(K)
b = hy(K)

CAN: Storing Values

(2) route(K,V) -> (a,b)

node I::insert(K,V)

I

Kangasharju: Peer-to-Peer Networks 76

CAN: Storing Values

(2) route(K,V) -> (a,b)

(3) (a,b) stores (K,V)

(K,V)

node I::insert(K,V)

I(1) a = hx(K)
b = hy(K)

Kangasharju: Peer-to-Peer Networks 77

CAN: Retrieving Values

(2) route “retrieve(K)” to (a,b) (K,V)

(1) a = hx(K)
b = hy(K)

node J::retrieve(K)

J

Kangasharju: Peer-to-Peer Networks 78

CAN: Improvements

n Possible to increase number of dimensions d
n Small increase in routing table size

- Shorter routing path, more neighbors for fault tolerance

n Multiple realities (= coordinate spaces)
n Use more hash functions

n Same properties as increased dimensions

n Routing weighted by round-trip times
n Take into account network topology

n Forward to the “best” neighbor

Kangasharju: Peer-to-Peer Networks 79

CAN: More Improvements

n Use well-known landmark servers (e.g., DNS roots)
n Nodes join CAN in different areas, depending on distance to

landmarks

- Pick points “near” landmark

n Idea: Geographically close nodes see same landmarks

n Uniform partitioning
n New node splits the largest zone in the neighborhood

instead of the zone of the responsible node

Kangasharju: Peer-to-Peer Networks 80

CAN: Performance

n State information at node O(d)
n Number of dimensions is d

n Need two neighbors in all coordinate axis

n Independent of the number of nodes!

n Routing takes O(dn1/d) hops
n Network has n nodes

n Multiple dimensions and realities improve this

n For routing: multiple dimensions are better

n But: multiple realities improve availability and fault tolerance

Kangasharju: Peer-to-Peer Networks 81

Tapestry

n Tapestry developed at UC Berkeley(!)
n Different group from CAN developers

n Tapestry developed in 2000, but published in 2004
n Originally only as technical report, 2004 as journal article

n Many follow-up projects on Tapestry
n Example: OceanStore

n Tapestry based on work by Plaxton et al.
n Plaxton network has also been used by Pastry
n Pastry was developed at Microsoft Research and Rice

University
n Difference between Pastry and Tapestry minimal
n Tapestry and Pastry add dynamics and fault tolerance to

Plaxton network

Kangasharju: Peer-to-Peer Networks 82

Tapestry: Plaxton Network

n Plaxton network (or Plaxton mesh) based on prefix routing
(similar to IP address allocation)
n Prefix and postfix are functionally identical
n Tapestry originally postfix, now prefix?!?

n Node ID and object ID hashed with SHA-1
n Expressed as hexadecimal (base 16) numbers (40 digits)
n Base is very important, here we use base 16

n Each node has a neighbor map with multiple levels
n Each level represents a matching prefix up to digit position in ID
n A given level has number of entries equal to the base of ID
n ith entry in jth level is closest node which starts prefix(N,j-1)+”i”
n Example: 9th entry of 4th level for node 325AE is the closest node

with ID beginning with 3259

Kangasharju: Peer-to-Peer Networks 83

Tapestry: Routing Mesh

n (Partial) routing mesh for a single node 4227
n Neighbors on higher levels match more digits

4228 27AB

6F43

43C9
51E5 4242

1D76

44AF

4227

L1

L1L1

L1
L4

L2

L2
L3

Kangasharju: Peer-to-Peer Networks 84

Tapestry: Neighbor Map for 4227

42284

42A23

44AF43C92

6F4351E527AB1D761

A8654321Level

• There are actually 16 columns in the map (base 16)
• Normally more (most?) entries would be filled
• Tapestry has neighbor maps of size 40 x 16

Kangasharju: Peer-to-Peer Networks 85

Tapestry: Routing Example

42AD

n Route message from 5230 to 42AD
n Always route to node closer to target

n At nth hop, look at n+1th level in neighbor map --> “always” one digit more
n Not all nodes and links are shown

5230
400F

4227 4629

42A2

AC78

42A7

4112

4211

42E0

42A9

Kangasharju: Peer-to-Peer Networks 86

Tapestry: Properties

n Node responsible for objects which have same ID
n Unlikely to find such node for every object
n Node responsible also for “nearby” objects (surrogate routing,

see below)
n Object publishing:

n Responsible nodes store only pointers
- Multiple copies of object possible
- Each copy must publish itself

n Pointers cached along the publish path
n Queries routed towards responsible node
n Queries “often” hit cached pointers

- Queries for same object go (soon) to same nodes
n Note: Tapestry focuses on storing objects

n Chord and CAN focus on values, but in practice no difference

Kangasharju: Peer-to-Peer Networks 87

Tapestry: Publishing Example

n Two copies of object “DOC” with ID 4377 created at AA93 and 4228
n AA93 and 4228 publish object DOC, messages routed to 4377

n Publish messages create location pointers on the way
n Any subsequent query can use location pointers

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path
Publish path

Location pointer

Kangasharju: Peer-to-Peer Networks 88

Tapestry: Querying Example

n Requests initially route towards 4377

n When they encounter the publish path, use location pointers to find object

n Often, no need to go to responsible node

n Downside: Must keep location pointers up-to-date

4377

AA93

4228

43FE

437A

4361

4664 4B4F

E791

4A6D

57EC

DOC

DOC

Routing path

Location pointer

Kangasharju: Peer-to-Peer Networks 89

Tapestry: Making It Work

n Previous examples show a Plaxton network
n Requires global knowledge at creation time

n No fault tolerance, no dynamics

n Tapestry adds fault tolerance and dynamics
n Nodes join and leave the network

n Nodes may crash

n Global knowledge is impossible to achieve

n Tapestry picks closest nodes for neighbor table
n Closest in IP network sense (= shortest RTT)

n Network distance (usually) transitive

- If A is close to B, then B is also close to A

n Idea: Gives best performance

Kangasharju: Peer-to-Peer Networks 90

Tapestry: Fault-Tolerant Routing

n Tapestry keeps mesh connected with keep-alives
n Both TCP timeouts and UDP “hello” messages

n Requires extra state information at each node

n Neighbor table has backup neighbors
n For each entry, Tapestry keeps 2 backup neighbors

n If primary fails, use secondary

- Works well for uncorrelated failures

n When node notices a failed node, it marks it as invalid
n Most link/connection failures short-lived

n Second chance period (e.g., day) during which failed node

can come back and old route is valid again

n If node does not come back, one backup neighbor is

promoted and a new backup is chosen

Kangasharju: Peer-to-Peer Networks 91

Tapestry: Fault-Tolerant Location

n Responsible node is a single point of failure
n Solution: Assign multiple roots per object

n Add “salt” to object name and hash as usual

n Salt = globally constant sequence of values (e.g., 1, 2, 3, …)

n Same idea as CAN’s multiple realities
n This process makes data more available, even if the

network is partitioned
nWith s roots, availability is P 1 - (1/2)s

n Depends on partition

n These two mechanisms “guarantee” fault-tolerance
n In most cases :-)

n Problem: If the only out-going link fails…

Kangasharju: Peer-to-Peer Networks 92

Tapestry: Surrogate Routing

n Responsible node is node with same ID as object
n Such a node is unlikely to exist

n Solution: surrogate routing
n What happens when there is no matching entry in

neighbor map for forwarding a message?
n Node picks (deterministically) one entry in neighbor map

n Details are not explained in the paper :(

n Idea: If “missing links” are deterministically picked, any
message for that ID will end up at same node
n This node is the surrogate

n If new nodes join, surrogate may change
n New node is neighbor of surrogate

Kangasharju: Peer-to-Peer Networks 93

Tapestry: Performance

nMessages routed in O(logb N) hops
nAt each step, we resolve one more digit in ID
nN is the size of the namespace (e.g, SHA-1 = 40 digits)
nSurrogate routing adds a bit to this, but not significantly

nState required at a node is O(b logb N)
nTapestry has c backup links per neighbor, O(cb logb N)
nAdditionally, same number of backpointers

Kangasharju: Peer-to-Peer Networks 94

DHT: Comparison

++--+++Used for other

projects

YN/YNIP Topology-Aware

+++++-/+Robustness

+++++Caching efficient

O(b·logb N)O(d)O(log n)State

O(logb N)O(d·n1/d)O(log n)Routing

Prefix routingN-dimensionalRingType of network

TapestryCANChord

Note: n is number of nodes, N is size of Tapestry’s namespace

Kangasharju: Peer-to-Peer Networks 95

Other DHTs

n Many other DHTs exist too
n Pastry, similar to Tapestry

n Kademlia, uses XOR metric

n Kelips, group nodes into k groups, similar to KaZaA

n Plus some others…

n Overnet P2P network (also eDonkey) uses Kademlia
nWide-spread deployed DHT

n All DHTs provide same API
n In principle, DHT-layer is interchangeable

Kangasharju: Peer-to-Peer Networks 96

Chapter Summary

n Different networks and graphs
n Random, small world, scale-free networks

n Searching and addressing
n Fundamental difference

n Unstructured vs. structured networks

n Distributed Hash Tables
n DHT provides a key to value mapping

n Three examples: Chord, CAN, Tapestry

