
Peer-to-Peer and Grid Computing

Chapter 4: Peer-to-Peer Storage



Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

n Using DHTs to build more complex systems
n How DHT can help?
nWhat problems DHTs solve?
nWhat problems are left unsolved?

n P2P storage basics, with examples
n Splitting into blocks (CFS)
nWide-scale replication (OceanStore)
n Modifiable filesystem with logs (Ivy)

n Future of P2P filesystems



Kangasharju: Peer-to-Peer Networks 3

How to Use a DHT?

n Recall: DHT maps keys to values
n Applications based on DHTs must need this functionality

n Or: Must be designed in this way!

n Possible to design an application in several ways

n Keys and values are application specific
n For filesystem: Value = file

n For email: Value = email message

n For distributed DB: Value = contents of entry, etc.

n Application stores values in DHT and uses them
n Simple, but a powerful tool



Kangasharju: Peer-to-Peer Networks 4

Problems Solved by DHT

n DHT solves the problem of mapping keys to values in the
distributed hash table

n Efficient storage and retrieval of values
n Efficient routing

n Robust against many failures

n Efficient in terms of network usage

n Provides hash table-like abstraction to application



Kangasharju: Peer-to-Peer Networks 5

Problems NOT Solved by DHT

n Everything else except what is on previous slide…
n In particular, the following problems
n Robustness

n No guarantees against big failures
n Threat models for DHTs not well-understood yet

n Availability
n Data not guaranteed to be available
n Only probabilistic guarantees (but possible to get high prob.)

n Consistency
n No support for consistency
n Data in DHT often highly replicated, consistency is a

problem
n Version management

n No support for version management
n Might be possible to support this to some degree



Kangasharju: Peer-to-Peer Networks 6

P2P FS: Introduction

n P2P filesystems (FS) or P2P storage systems were the
first applications of DHTs

n Fundamental principle:
Key = filename, Value = file contents

n Different kinds of systems
n Storage for read-only objects

n Read-write support

n Stand-alone storage systems

n Systems with links to standard filesystems (e.g., NFS)



Kangasharju: Peer-to-Peer Networks 7

P2P FS: Current State

n Only examples of P2P filesystems come from research
n Research prototypes exist for many systems
n No wide-area deployment

n Experiments on research testbeds

n No examples of real deployment and real usage in wide-area

n After initial work, no recent advances?
n At least, not visible advances

n Three examples:
n Cooperative File System, CFS

n OceanStore

n Ivy



Kangasharju: Peer-to-Peer Networks 8

P2P FS: Why?

n Why build P2P filesystems?
n Light-weight, reliable, wide-area storage

n At least in principle…

n Distributed filesystems not widely deployed either…
nWere studied already long time ago

n Gain experience with DHT and how DHTs could be used
in real applications
n DHT abstraction is powerful, but it has limitations

n Understanding of the limitations is valuable



Kangasharju: Peer-to-Peer Networks 9

P2P FS: Basic Techniques

n Three fundamental basic techniques for building
distributed storage systems

1. Splitting files into blocks
2. Replicating files (or blocks!)
3. Using logs to allow modifications

n For now: Simple analysis of advantages and
disadvantages and three examples

n Detailed performance analysis in Chapter 5
n For blocks and replication



Kangasharju: Peer-to-Peer Networks 10

Splitting Files into Blocks

n Why: Files are of different sizes and peers storing large
files have to serve more data

Pro:
n Dividing files into equal-sized blocks and storing blocks on

different peers can achieve load balance
n If different files share blocks, we can save on storage
Con:
n Instead of needing one peer online, all peers with all

blocks must be online (see below)
n Need metadata about blocks to be stored somewhere
n Granularity tradeoff: Small blocks -> Good load balance,

but lots of overhead and vice versa



Kangasharju: Peer-to-Peer Networks 11

Replication

n Why: If file (or block) is stored only on one peer and that
peer is offline, data is not available

n Replicating content to multiple peers significantly
increases content availability

Pro:
n High availability and reliability

n But only probabilistic guarantees
Con:
n How to coordinate lots of replicas?

n Especially important if content can change
n Unreliable network requires high degree of replication for

decent availability
n “Wastes” storage space



Kangasharju: Peer-to-Peer Networks 12

Logs

n Why: If we want to change the stored files, we need to
modify every stored replica

n Keep a log for every file (user, …) which gives information
about the latest version

Pro:
n Changes concentrated in one place
n Anyone can figure out what is the latest version
Con:
n How to keep the log available?

n By replicating it? ;-)



Kangasharju: Peer-to-Peer Networks 13

P2P FS: Overview

n Three examples of P2P filesystems
n CFS (blocks and replication)

n Basic, read-only system

n Based on Chord

n OceanStore (replication)
n Vision for a global storage system

n Based on Tapestry

n Ivy (logs)
n Read-write, provide NFS semantics

n Based on Chord



Kangasharju: Peer-to-Peer Networks 14

CFS

n CFS = Cooperative File System
n Developed at MIT, by same people as Chord

n CFS based on the Chord DHT
n Read-only system, only 1 publisher

n CFS stores blocks instead of whole files
n Part of CFS is a generic block storage layer

n Features:
n Load balancing

n Performance equal to FTP

n Efficiency and fast recovery from failures



Kangasharju: Peer-to-Peer Networks 15

CFS Properties

n Decentralized control
n Scalability (comes from Chord)
n Availability

n In absence of catastrophic failures, of course…

n Load balance
n Load balanced according to peers’ capabilities

n Persistence
n Data will be stored for as long as agreed

n Quotas
n Possibility of per-user quotas

n Efficiency
n As fast as common FTP in wide area



Kangasharju: Peer-to-Peer Networks 16

CFS: Layers, Clients, and Servers

n FS: provide filesystem API, interpret blocks as files
n DHash: Provides block storage
n Chord: DHT layer, slightly modified
n Clients access files, servers just provide storage

ChordChord Chord

DHash DHashDHash

FS

Client Server Server



Kangasharju: Peer-to-Peer Networks 17

Chord Layer in CFS

n Chord layer is slightly modified from basic Chord
n Instead of 1 successor, each node keeps track of r

successors
n Finger tables as before

n Also, try to reduce lookup latency
n Nodes measure latencies to other nodes

n Report measured latencies to other nodes



Kangasharju: Peer-to-Peer Networks 18

DHash Layer

n DHash stores blocks as opposed to whole files
n Better load balancing
n More network query traffic, but not really significant

n Each block replicated k times, with r k
n Two kinds of blocks:

n Content block, addressed by hash of contents
n Signed blocks (= root blocks), addressed by public key

- Signed block is the root of the filesystem
- One filesystem per publisher

n Blocks are cached in network
n Most of caching near the responsible node
n Blocks in local cache replaced according to least-recently-

used
n Consistency not a problem, blocks addressed by content

- Root blocks different, may get old (but consistent) data



Kangasharju: Peer-to-Peer Networks 19

DHash API

n DHash provides following API to clients:

n Filesystem starts with root (= signed) block
n Block under publisher’s public key and signed with private key

n For clients, read-only, publisher can modify filesystem by inserting a

new root block

n Root block has pointers to other blocks

- Either piece of a file or filesystem metadata (e.g., directory)

n Data stored for an agreed-upon finite interval

Fetch block associated with keyGet(key)

Store or update signed blockPut_s(block, pubkey)

Store blockPut_h(block)



Kangasharju: Peer-to-Peer Networks 20

CFS Filesystem Structure

n Root block identified by publisher’s public key
n Each publisher has its own filesystem
n Different publishers are on separate filesystems

n Other blocks identified based on hash of contents
n Other blocks can be metadata or pieces of file

B2

B1D F
Root block

Signature

H(D)
H(F) H(B1)

H(B2)

Public
key



Kangasharju: Peer-to-Peer Networks 21

Load Balancing and Quotas

n Different servers have different capabilities
n One real server can run several virtual servers
n Number of virtual servers depends on the capabilities

n “Big” servers run more virtual servers

n CFS operates at virtual server level
n Virtual nodes on a single real node know each other

n Possible to use short cuts in routing

n Quotas can be used to limit storage for each node
n Quotas set on a per-IP address basis

n Better quotas require central administration

n Some systems implement “better” quotas, e.g., PAST



Kangasharju: Peer-to-Peer Networks 22

Updates in CFS

n Only publisher can change data in filesystem
n CFS will store any block under its content hash

n Highly unlikely to find two blocks with same SHA-1 hash

n No explicit protection for content blocks needed

n Root block is signed by publisher
n Publisher must keep private key secret

n No explicit delete operation
n Data stored only for agreed-upon period

n Publisher must refresh periodically if persistence is needed



Kangasharju: Peer-to-Peer Networks 23

OceanStore

n OceanStore developed at UC Berkeley
n Runs on Tapestry DHT
n Supports object modification

n Vision of ubiquitous computing:
n Intelligent devices, transparently in the environment

n Highly dynamic, untrusted environment

n Question: Where does persistent information reside?
n OceanStore aims to be the answer
n OceanStore’s target:

n 1010 users, each with 10000 files, i.e., 1014 files total



Kangasharju: Peer-to-Peer Networks 24

OceanStore: Basics and Goals

n Users pay for the storage service
n Several companies can provide services together

n Two goals:
1. Untrusted infrastructure

n Everything is encrypted, infrastructure unreliable

n However, assume that “most servers are working correctly

most of the time”

n One class of servers trusted to follow protocol (but not

trusted with data)

2. Nomadic data
n Anytime, anywhere

n Introspection used to tune system at run-time



Kangasharju: Peer-to-Peer Networks 25

OceanStore Applications

n OceanStore suitable for many kinds of applications
n Storage and sharing of large amounts of data

n Data follows users dynamically

n Groupware applications
n Concurrent updates from many people

n For example, calendars, contact lists, etc.

n In particular, email and other communication applications

n Streaming applications
n Also for sensor networks and dissemination

n Here we concentrate on storage



Kangasharju: Peer-to-Peer Networks 26

System Overview

n Each object has globally unique identifier (GUID)
n Objects replicated and migrated on the fly
n Replicas located in two ways

n Probabilistic, fast algorithm tried first

n Slower, but deterministic algorithm used if first one fails

n Objects exist in two forms, active and archival
n Active is the latest version with handle for updates

n Archival is a permanent, read-only version

- Archive versions encoded with erasure codes with lot of redundancy

- Only a global disaster can make data disappear



Kangasharju: Peer-to-Peer Networks 27

Naming and Access Control

Object naming
n Self-certifying object names

n Hash of the object’s owners key and human readable name

n Allows directories
n System has no root, but user can select her own root(s)

Access control
n Restricting readers

n All data is encrypted, can restrict readers by not giving key

n Revoke read permission by re-encrypting everything

n Restricting writers
n All writes must be signed and compared against ACL



Kangasharju: Peer-to-Peer Networks 28

Locating Objects

n OceanStore uses two mechanisms for locating objects
1. Probabilistic algorithm

n Frequently accessed objects likely to be nearby and easily found

n This algorithm finds them fast

n Uses attenuated Bloom filters

n See below for more details

2. Deterministic algorithm
n OceanStore based on Tapestry

n Deterministic routing is Tapestry’s routing

n Guaranteed to find the object

n See Chapter 3 for the details



Kangasharju: Peer-to-Peer Networks 29

Sidenote: Bloom Filters

n Bloom filters are “a space-efficient probabilistic data
structure that is used to test whether or not an element is
a member of a set”
n False positives are possible

n False negatives are NOT possible

n Bloom filter is an array of k bits
n Also need m different hash functions, each maps key to a bit

n To insert, calculate all m hash functions and set bits to 1
n To check, calculate all m hash functions and if all bits are

1, key is “probably” in the set
n If any bit is 0, then it is definitely not in



Kangasharju: Peer-to-Peer Networks 30

Sidenote: Bloom Filters

n To insert or check for an item, Bloom filters take average O(m) time
n Fixed constant! Independent of number of entries

n No other data structure allows for this (hash table is close)

n Attenuated Bloom filter of depth D is same as an array of D normal
Bloom filters
n First filter is for locally stored objects at current node

n The ith Bloom filter is the union of all Bloom filters at distance i through

any path from current node

n Attenuated Bloom filter for each network edge

n Queries routed on the edge where the distance to object is shortest



Kangasharju: Peer-to-Peer Networks 31

Probabilistic Query Process

n Node n1 wants to find object X, X hashes to bits 0, 1, 3

n Node n1 does not have 0, 1, and 3 in local filter

n Neighbor filter for n2 has them, forward query to n2

n Node n2 does not have them in local filter

n Filter for neighbor n3 has them, forward to n3

n Node n3 has object

10101

n1

11100

n2

11010

n3

00011

n4

11100

11011
11010

00011

X

Node

Local filter

Neighbor filter



Kangasharju: Peer-to-Peer Networks 32

Update Model

n Update model in OceanStore based on conflict resolution
n Update semantics

n Each update has a list of predicates with associated actions

n Predicates evaluated in order

n Actions for first true predicate are atomically applied (commit)

n If no predicates are true, action aborts

n Update is logged in both cases



Kangasharju: Peer-to-Peer Networks 33

Update Model: Predicates

n List of predicates is short
n Untrusted environment limits what predicates can do
n Available predicates:

n Compare-version (metadata comparison, easy)

n Compare-size (same as above)

n Compare-block (easy if encryption is position-dependent

block cipher)

n Search (possible to search ciphertext, get boolean result)



Kangasharju: Peer-to-Peer Networks 34

Available Operations

n Four operations available
n Replace-block
n Insert-block
n Delete-block
n Append

n If position-dependent cipher, Replace-block and Append
are easy operations

n For Insert-block and Delete-block:
n Two kinds of blocks: Index and data blocks
n Index blocks can contain pointers to other blocks
n To insert a block, we replace old block with an index block

which points to old block and new block
- Actual blocks are appended to object

n May be susceptible to traffic analysis



Kangasharju: Peer-to-Peer Networks 35

Serializing Updates

n Replicas divided into two tiers
n Primary tier is trusted to follow protocol

n Secondary tier is everyone else

n Primary tier cooperate in a Byzantine agreement protocol
n Secondary tier communicates with primary tier and

secondary via epidemic algorithms
n Reason for two tiers:

n Fault-tolerant protocols possible with only a small number of

replicas, protocols communication-intensive

n Primary tier is well-connected and small



Kangasharju: Peer-to-Peer Networks 36

Byzantine Generals Problem

n Several divisions of the Byzantine army surround an enemy
city. Each division is commanded by a general.

n The generals communicate only through messenger
n Need to arrive at a common plan after observing the enemy

n Some of the generals may be traitors
n Traitors can send false messages

n Required: An algorithm to guarantee that
1. All loyal generals decide upon the same plan of action,

irrespective of what the traitors do.
2. A small number of traitors cannot cause the loyal generals to

adopt a bad plan.
Solution: (from L. Lamport)
n If no more than m generals out of n = 3m + 1 are traitors,

everybody will follow the orders



Kangasharju: Peer-to-Peer Networks 37

Path of an Update

n Update is sent to primary tier and to random replicas in
secondary tier for that object

1

1

1

1

2 2
2

2

2

2
2

2 2

2
2 2

2

2



Kangasharju: Peer-to-Peer Networks 38

Path of an Update

n Primary tier performs Byzantine agreement
n Secondary tier propagates update epidemically

1

1

1

1

2 2
2

2

2

2
2

2 2

2
2 2

2

2



Kangasharju: Peer-to-Peer Networks 39

Path of an Update

n When primary tier has finished agreement protocol, the
update is sent over multicast to all secondary replicas

1

1

1

1

2 2
2

2

2

2
2

2 2

2
2 2

2

2



Kangasharju: Peer-to-Peer Networks 40

Deep Archival Storage

n Archival mechanism uses erasure codes
n Reed-Solomon, Tornado, etc.

n Generate redundant data fragments
n Created by the primary tier

n If there are enough fragments and they are spread widely,
then it is likely that we can retrieve the data

n Archival copies are created when objects are changed
n Every version is archived

n Can be tuned to be done less frequently



Kangasharju: Peer-to-Peer Networks 41

Ivy

n Ivy developed at MIT
n Based on Chord
n Provides NFS-like semantics

n At least for fully connected networks

n Any user can modify any file
n Ivy handles everything through logs

n Ivy presents a conventional filesystem interface



Kangasharju: Peer-to-Peer Networks 42

Problems for Distributed Read/Write

1. Multiple distributed writers make it difficult to maintain
consistent metadata

2. Unreliable participants make locking unattractive
n Locking could help maintain consistency

3. Participants cannot be trusted
n Machines may be compromised

n Need to be able to undo

4. Distributed filesystem may become partitioned
n System must remain operational during partitions

n Help applications repair conflicting updates made during

partitions



Kangasharju: Peer-to-Peer Networks 43

Solution: Logs

n Each participant maintains log of its changes
n Logs maintain filesystem data and metadata
n Participant has private snapshot of logs of others

n Logs stored in DHash (see under CFS for details)
n Participant writes to its own log, reads all others

n Log-head points to most recent log record
n Version vectors impose order on log records from multiple logs

:
:

View block Log head

Log records



Kangasharju: Peer-to-Peer Networks 44

Ivy: Views

n Each user writing to a filesystem has its own log
n Participants agree on a view

n View is a set of logs that comprise the filesystem

n View block is immutable (“root”)
n View block has log heads for all participants



Kangasharju: Peer-to-Peer Networks 45

Combining Logs

n How to determine order of modifications from logs?

n Order should obey causality

n All participants should agree on the order

n Each new log record has a sequence number and a version vector

n Sequence number increasing (managed locally)

n Version vector has sequence numbers from other logs in view

n Version vector summarizes knowledge about log

n Log records ordered by comparing version vectors

n Vectors u and v comparable if u < v, v < u, or v = u

n Otherwise concurrent

n Simultaneous operations result in equal or concurrent vectors

n Ordered by public keys of participants

n May need special actions to return to consistency (overlapping modifications)



Kangasharju: Peer-to-Peer Networks 46

Ivy: Snapshots

n Private snapshots avoid traversing whole filesystem
n Snapshot contains the entire state
n Each participant has own snapshot

n Contents of snapshots mostly the same for all participants

n DHash will store them only once

n To create snapshot, node:
n Gets all logs recent than current snapshot

nWrite new snapshot

n New user must either build from scratch or take a trusted
snapshot



Kangasharju: Peer-to-Peer Networks 47

P2P FS: General Problems

n Built on top of unreliable nodes and network
n How to achieve reliability?

n Replication gives reliability (see Chapter 5)

n Replication makes maintaining consistency difficult

n Nodes cannot be trusted in the general case
n Must encrypt all data

n Hard to do content-based conflict resolution (e.g., diff)

n Performance
n Distributed filesystems have much lower performance



Kangasharju: Peer-to-Peer Networks 48

P2P FS: Future

n What does future hold for P2P filesystems?
n What is right area of application?
n Intranet?

n Trusted environment, high bandwidth

n Possibly easy to deploy?

- Need to make a product first?

n Global Internet?
n Lots of untrusted peers, widely distributed

n All the problems from above

n Can take off as a “hobby” project?

n Nowhere?
n P2P filesystems are a total waste of time?



Kangasharju: Peer-to-Peer Networks 49

P2P FS: Future

n Do we need a P2P FS to build useful applications?
n Yes, they allow efficient distributed storage

nWorking storage system is the basic building block of a useful

application

n No, DHT is enough
n Several examples of P2P applications directly on top of a DHT

n Fully reliable P2P FS would make network into one virtual
computer
n Modulo performance issues

n Building P2P apps would be like building normal apps



Kangasharju: Peer-to-Peer Networks 50

P2P FS: Real-World Examples

n Microsoft has done lot of research in this area
n Even built prototypes

n Why no products on the market?
n Below some wild speculation

n P2P FS would compete with traditional file servers?
n P2P needs to be built in to the OS, would kill server market?

n Impossible to build a “good enough” P2P FS?
n Theoretically doable, but too slow and weak in practice?

n P2P filesystem can be done, but has no advantages?
n Possibly to build a useful system, but it costs as much as a

server-based system?



Kangasharju: Peer-to-Peer Networks 51

Chapter Summary

n How to build applications with DHTs
n Basic technologies of distributed storage
n As examples, 3 P2P filesystems

n CFS

- Read-only

n OceanStore

- Modifications allowed, global vision

n Ivy

- NFS-like semantics, traditional filesystem interface

n Discussion about the future of P2P filesystems


