


Chapter Outline

Using DHTs to build more complex systems
How DHT can help?
What problems DHTs solve?
What problems are left unsolved?

P2P storage basics, with examples
Splitting into blocks (CFS)
Wide-scale replication (OceanStore)
Modifiable filesystem with logs (Ivy)

Future of P2P filesystems

Kangasharju: Peer-to-Peer Networks



Recall: DHT maps keys to values
Applications based on DHTs must need this functionality
Or: Must be designed in this way!
Possible to design an application in several ways
Keys and values are application specific
For filesystem: Value = file
For email: Value = email message
For distributed DB: Value = contents of entry, etc.
Application stores values in DHT and uses them

Simple, but a powerful tool

Kangasharju: Peer-to-Peer Networks



Problems Solved by DHT

DHT solves the problem of mapping keys to values in the
distributed hash table
Efficient storage and retrieval of values
Efficient routing
Robust against many failures
Efficient in terms of network usage

Provides hash table-like abstraction to application

Kangasharju: Peer-to-Peer Networks



iy,
|

Problems NOT Solved by DHT

Everything else except what is on previous slide...
In particular, the following problems
Robustness

No guarantees against big failures

Threat models for DHTs not well-understood yet
Availability

Data not guaranteed to be available

Only probabilistic guarantees (but possible to get high prob.)
Consistency

No support for consistency

Data in DHT often highly replicated, consistency is a

problem
Version management

No support for version management

Might be possible to support this to some degree

Kangasharju: Peer-to-Peer Networks



- P2P FS: Introduction

P2P filesystems (FS) or P2P storage systems were the
first applications of DHTSs
Fundamental principle:

Different kinds of systems
Storage for read-only objects
Read-write support
Stand-alone storage systems
Systems with links to standard filesystems (e.g., NFS)

Kangasharju: Peer-to-Peer Networks



P2P FS: Current State

Only examples of P2P filesystems come from research
Research prototypes exist for many systems
No wide-area deployment

Experiments on research testbeds

No examples of real deployment and real usage in wide-area
After initial work, no recent advances?

At least, not visible advances

Three examples:
Cooperative File System, CFS
OceanStore

vy

Kangasharju: Peer-to-Peer Networks



wWhy build P2P filesystems?
Light-weight, reliable, wide-area storage
At least in principle...

Distributed filesystems not widely deployed either...
Were studied already long time ago

Gain experience with DHT and how DHTs could be used
In real applications
DHT abstraction is powerful, but it has limitations
Understanding of the limitations is valuable

Kangasharju: Peer-to-Peer Networks



N
2> S

hy 0

P2P FS: Basic Techniques

Three fundamental basic technigues for building
distributed storage systems

For now: Simple analysis of advantages and

disadvantages and three examples

Detailed performance analysis in Chapter 5
For blocks and replication

Kangasharju: Peer-to-Peer Networks



Splitting Files into Blocks

Why: Files are of different sizes and peers storing large
files have to serve more data

Dividing files into equal-sized blocks and storing blocks on

different peers can achieve load balance
If different files share blocks, we can save on storage

Instead of needing one peer online, all peers with all
blocks must be online (see below)

Need metadata about blocks to be stored somewhere
Granularity tradeoff: Small blocks -> Good load balance,
but lots of overhead and vice versa

Kangasharju: Peer-to-Peer Networks

10



Why: If file (or block) is stored only on one peer and that
peer is offline, data is not available

Replicating content to multiple peers significantly
Increases content availability

High availability and reliability
But only probabilistic guarantees

How to coordinate lots of replicas?

Especially important if content can change
Unreliable network requires high degree of replication for
decent availability

“Wastes” storage space

Kangasharju: Peer-to-Peer Networks 11



Logs

Why: If we want to change the stored files, we need to
modify every stored replica

Keep a log for every file (user, ...) which gives information
about the latest version

Changes concentrated in one place
Anyone can figure out what is the latest version

How to keep the log available?
By replicating it? ;-)

Kangasharju: Peer-to-Peer Networks 12



N
2> S

by N

P2P FS: Overview

Three examples of P2P filesystems
CFS (blocks and replication)
Basic, read-only system
Based on Chord
OceanStore (replication)
Vision for a global storage system
Based on Tapestry
lvy (logs)
Read-write, provide NFS semantics
Based on Chord

Kangasharju: Peer-to-Peer Networks

13



CFS = Cooperative File System
Developed at MIT, by same people as Chord

CFS based on the Chord DHT
Read-only system, only 1 publisher

CFS stores blocks instead of whole files
Part of CFS is a generic block storage layer
Features:
Load balancing
Performance equal to FTP
Efficiency and fast recovery from failures

Kangasharju: Peer-to-Peer Networks

14



CFS Properties

Decentralized control
Scalability (comes from Chord)
Availability

In absence of catastrophic failures, of course...

Load balance

Load balanced according to peers’ capabilities
Persistence

Data will be stored for as long as agreed
Quotas

Possibility of per-user quotas
Efficiency

As fast as common FTP in wide area

Kangasharju: Peer-to-Peer Networks

15



L CFS: Layers, Clients, and Servers

FS
DHash > DHash > DHash
Chord > Chord > Chord
Client Server Server

provide filesystem API, interpret blocks as files
Provides block storage
DHT layer, slightly modified
Clients access files, servers just provide storage

Kangasharju: Peer-to-Peer Networks 16



Chord Layer in CFS

Chord layer is slightly modified from basic Chord
Instead of 1 successor, each node keeps track of r
successors

Finger tables as before
Also, try to reduce lookup latency

Nodes measure latencies to other nodes
Report measured latencies to other nodes

Kangasharju: Peer-to-Peer Networks

17



8 DHash L ayer

DHash stores blocks as opposed to whole files
Better load balancing
More network query traffic, but not really significant

Each block replicated k times, with r = k

Two kinds of blocks:
Content block, addressed by hash of contents
Signed blocks (= root blocks), addressed by public key
Signed block is the root of the filesystem
One filesystem per publisher

Blocks are cached in network
Most of caching near the responsible node
Blocks in local cache replaced according to least-recently-
used
Consistency not a problem, blocks addressed by content
Root blocks different, may get old (but consistent) data

Kangasharju: Peer-to-Peer Networks 18



8 DHash API

DHash provides following API to clients:

Put_h(block) Store block
Put_s(block, pubkey) Store or update signed block
Get(key) Fetch block associated with key

Filesystem starts with root (= signed) block
Block under publisher’s public key and signed with private key

For clients, read-only, publisher can modify filesystem by inserting a

new root block
Root block has pointers to other blocks
Either piece of a file or filesystem metadata (e.g., directory)
Data stored for an agreed-upon finite interval

Kangasharju: Peer-to-Peer Networks

19



!. ! CFS Filesystem Structure

Public  Root block  H(D)
key //

H(F)

Root block identified by publisher’s public key

P

H(B1)

Each publisher has its own filesystem
Different publishers are on separate filesystems

Other blocks identified based on hash of contents
Other blocks can be metadata or pieces of file

Kangasharju: Peer-to-Peer Networks

Bl

H(B2)

B2

20



Load Balancing and Quotas

Different servers have different capabilities

One real server can run several

Number of virtual servers depends on the capabilities
“Big” servers run more virtual servers

CFS operates at virtual server level
Virtual nodes on a single real node know each other

Possible to use short cuts in routing

Quotas can be used to limit storage for each node
Quotas set on a per-IP address basis

Better quotas require central administration

Some systems implement “better” quotas, e.g., PAST

Kangasharju: Peer-to-Peer Networks 21



= Updates in CFS

Only publisher can change data in filesystem

CFS will store any block under its content hash
Highly unlikely to find two blocks with same SHA-1 hash
No explicit protection for content blocks needed

Root block is signed by publisher
Publisher must keep private key secret

No explicit delete operation

Data stored only for agreed-upon period

Publisher must refresh periodically if persistence is needed

Kangasharju: Peer-to-Peer Networks 22



OceanStore

OceanStore developed at UC Berkeley
Runs on Tapestry DHT
Supports object modification

Vision of ubiquitous computing:
Intelligent devices, transparently in the environment
Highly dynamic, untrusted environment
Question: Where does persistent information reside?
OceanStore aims to be the answer
OceanStore’s target:
1010 users, each with 10000 files, i.e., 1014 files total

Kangasharju: Peer-to-Peer Networks

23



OceanStore: Basics and Goals

Users for the storage service
Several companies can provide services together
Two goals:
Untrusted infrastructure
Everything is encrypted, infrastructure unreliable
However, assume that “most servers are working correctly
most of the time”
One class of servers trusted to follow protocol (but not
trusted with data)
Nomadic data
Anytime, anywhere
Introspection used to tune system at run-time

Kangasharju: Peer-to-Peer Networks 24



OceanStore Applications

OceanStore suitable for many kinds of applications
Storage and sharing of large amounts of data

Data follows users dynamically
Groupware applications

Concurrent updates from many people

For example, calendars, contact lists, etc.

In particular, email and other communication applications
Streaming applications

Also for sensor networks and dissemination

Here we concentrate on storage

Kangasharju: Peer-to-Peer Networks 25



System Overview

Each object has globally unique identifier (GUID)
Obijects replicated and migrated on the fly
Replicas located in two ways

Probabilistic, fast algorithm tried first

Slower, but deterministic algorithm used if first one fails

Obijects exist in two forms, active and archival
Active is the latest version with handle for updates
Archival is a permanent, read-only version
Archive versions encoded with erasure codes with lot of redundancy

Only a global disaster can make data disappear

Kangasharju: Peer-to-Peer Networks

26



N
-2 e
. N

by h
\ =

l Naming and Access Control

Self-certifying object names

Hash of the object’s owners key and human readable name
Allows directories
System has no root, but user can select her own root(s)

Restricting readers
All data is encrypted, can restrict readers by not giving key
Revoke read permission by re-encrypting everything
Restricting writers

All writes must be signed and compared against ACL

Kangasharju: Peer-to-Peer Networks 27



Locating Objects

OceanStore uses two mechanisms for locating objects
Probabilistic algorithm
Frequently accessed objects likely to be nearby and easily found
This algorithm finds them fast
Uses attenuated Bloom filters
See below for more details
Deterministic algorithm
OceanStore based on Tapestry
Deterministic routing is Tapestry’s routing
Guaranteed to find the object
See Chapter 3 for the details

Kangasharju: Peer-to-Peer Networks

28



Sidenote: Bloom Filters

Bloom filters are “a space-efficient probabilistic data
structure that is used to test whether or not an element is
a member of a set”

False positives are possible

False negatives are NOT possible
Bloom filter is an array of k bits

Also need m different hash functions, each maps key to a bit
To insert, calculate all m hash functions and set bits to 1
To check, calculate all m hash functions and if all bits are
1, key is “probably” in the set

If any bit is O, then it is definitely not in

Kangasharju: Peer-to-Peer Networks 29



Sidenote: Bloom Filters

To insert or check for an item, Bloom filters take average O(m) time
Fixed constant! Independent of number of entries
No other data structure allows for this (hash table is close)

Attenuated Bloom filter of depth D is same as an array of D normal
Bloom filters

First filter is for locally stored objects at current node

The ith Bloom filter is the union of all Bloom filters at distance i through

any path from current node
Attenuated Bloom filter for each network edge
Queries routed on the edge where the distance to object is shortest

Kangasharju: Peer-to-Peer Networks 30



[ ] Neighbor filter

11100

11011

Probabilistic Query Process

11010 | — X }

00011 ’

Node n, wants to find object X, X hashes to bits 0, 1, 3
Node n, does not have 0, 1, and 3 in local filter

Neighbor filter for n, has them, forward query to n,

Node n, does not have them in local filter

Filter for neighbor n; has them, forward to n,

Node n; has object

Kangasharju: Peer-to-Peer Networks

31



Update Model

Update model in OceanStore based on
Update semantics
Each update has a list of predicates with associated actions
Predicates evaluated in order
Actions for first true predicate are atomically applied (
If no predicates are true, action

Update is logged in both cases

Kangasharju: Peer-to-Peer Networks

)

32



Update Model: Predicates

List of predicates is short
Untrusted environment limits what predicates can do
Available predicates:
Compare-version (metadata comparison, easy)
Compare-size (same as above)
Compare-block (easy if encryption is position-dependent
block cipher)
Search (possible to search ciphertext, get boolean result)

Kangasharju: Peer-to-Peer Networks 33



Available Operations

Four operations available
Replace-block
Insert-block
Delete-block
Append
If position-dependent cipher, Replace-block and Append
are easy operations
For Insert-block and Delete-block:
Two kinds of blocks: Index and data blocks
Index blocks can contain pointers to other blocks
To insert a block, we replace old block with an index block
which points to old block and new block
Actual blocks are appended to object
May be susceptible to traffic analysis

Kangasharju: Peer-to-Peer Networks 34



Serializing Updates

Replicas divided into two tiers
Primary tier is trusted to follow protocol

Secondary tier is everyone else
Primary tier cooperate in a Byzantine agreement protocol

Secondary tier communicates with primary tier and
secondary via epidemic algorithms

Reason for two tiers:
Fault-tolerant protocols possible with only a small number of

replicas, protocols communication-intensive
Primary tier is well-connected and small

Kangasharju: Peer-to-Peer Networks 35



Byzantine Generals Problem

Several divisions of the Byzantine army surround an enemy
city. Each division is commanded by a general.
The generals communicate only through messenger

Need to arrive at a common plan after observing the enemy
Some of the generals may be traitors

Traitors can send false messages
Required: An algorithm to guarantee that

All loyal generals decide upon the same plan of action,
irrespective of what the traitors do.

A small number of traitors cannot cause the loyal generals to
adopt a bad plan.

If no more than m generals out of n =3m + 1 are traitors,
everybody will follow the orders

Kangasharju: Peer-to-Peer Networks

36



! Path of an Update

Update is sent to primary tier and to random replicas in
secondary tier for that object

Kangasharju: Peer-to-Peer Networks

37



! Path of an Update

Primary tier performs Byzantine agreement
Secondary tier propagates update epidemically

Kangasharju: Peer-to-Peer Networks

38



!.! Path of an Update

When primary tier has finished agreement protocol, the
update is sent over multicast to all secondary replicas

Kangasharju: Peer-to-Peer Networks 39



Deep Archival Storage

Archival mechanism uses erasure codes
Reed-Solomon, Tornado, etc.
Generate redundant data fragments
Created by the primary tier
If there are enough fragments and they are spread widely,
then it is likely that we can retrieve the data
Archival copies are created when objects are changed
Every version is archived

Can be tuned to be done less frequently

Kangasharju: Peer-to-Peer Networks 40



lvy developed at MIT
Based on Chord
Provides NFS-like semantics
At least for fully connected networks

Any user can modify any file
lvy handles everything through logs

lvy presents a conventional filesystem interface

Kangasharju: Peer-to-Peer Networks

41



N
2> S

by N

Problems for Distributed Read/Write

Multiple distributed writers make it difficult to maintain
consistent metadata
Unreliable participants make locking unattractive
Locking could help maintain consistency
Participants cannot be trusted
Machines may be compromised
Need to be able to undo
Distributed filesystem may become partitioned
System must remain operational during partitions
Help applications repair conflicting updates made during
partitions

Kangasharju: Peer-to-Peer Networks

42



!! Solution: Logs

Each participant maintains log of its changes
Logs maintain filesystem data and metadata
Participant has private snapshot of logs of others

Logs stored in DHash (see under CFS for details)

Participant writes to its own log, reads all others
Log-head points to most recent log record
Version vectors impose order on log records from multiple logs

View block Log head

[ & ==
A EEEE

o /
hd

Log records

Kangasharju: Peer-to-Peer Networks 43



lvy: Views

Each user writing to a filesystem has its own log
Participants agree on a

View is a set of logs that comprise the filesystem
View block is immutable (“root”)
View block has log heads for all participants

Kangasharju: Peer-to-Peer Networks

44



Combining Logs

How to determine order of modifications from logs?
Order should obey causality
All participants should agree on the order

Each new log record has a sequence number and a version vector
Sequence number increasing (managed locally)
Version vector has sequence numbers from other logs in view
Version vector summarizes knowledge about log

Log records ordered by comparing version vectors
Vectors u and v comparable ifu<v,v<u,orv=u
Otherwise concurrent

Simultaneous operations result in equal or concurrent vectors
Ordered by public keys of participants

May need special actions to return to consistency (overlapping modifications)

Kangasharju: Peer-to-Peer Networks



lvy: Snapshots

Private snapshots avoid traversing whole filesystem
Snapshot contains the entire state
Each participant has own snapshot
Contents of snapshots mostly the same for all participants
DHash will store them only once
To create snapshot, node:
Gets all logs recent than current snapshot
Write new snapshot
New user must either build from scratch or take a trusted
shapshot

Kangasharju: Peer-to-Peer Networks 46



P2P FS: General Problems

Built on top of unreliable nodes and network
How to achieve reliability?
Replication gives reliability (see Chapter 5)
Replication makes maintaining consistency difficult
Nodes cannot be trusted in the general case
Must encrypt all data
Hard to do content-based conflict resolution (e.g., diff)
Performance
Distributed filesystems have much lower performance

Kangasharju: Peer-to-Peer Networks a7



What does future hold for P2P filesystems?
What is right area of application?

Trusted environment, high bandwidth
Possibly easy to deploy?

Need to make a product first?

Lots of untrusted peers, widely distributed
All the problems from above
Can take off as a “hobby” project?

P2P filesystems are a total waste of time?

Kangasharju: Peer-to-Peer Networks

48



. P2P FS: Future

Do we need a P2P FS to build useful applications?
, they allow efficient distributed storage
Working storage system is the basic building block of a useful
application
, DHT is enough
Several examples of P2P applications directly on top of a DHT

Fully reliable P2P FS would make network into one virtual
computer

Modulo performance issues

Building P2P apps would be like building normal apps

Kangasharju: Peer-to-Peer Networks

49



P2P FS: Real-World Examples

Microsoft has done lot of research in this area
Even built prototypes
Why no products on the market?

Below some wild speculation

P2P FS would compete with traditional file servers?
P2P needs to be built in to the OS, would kill server market?
Impossible to build a “good enough” P2P FS?
Theoretically doable, but too slow and weak in practice?
P2P filesystem can be done, but has no advantages?
Possibly to build a useful system, but it costs as much as a
server-based system?

Kangasharju: Peer-to-Peer Networks 50



Chapter Summary

How to build applications with DHTs
Basic technologies of distributed storage
As examples, 3 P2P filesystems
CEFS
Read-only
OceanStore
Modifications allowed, global vision
vy
NFS-like semantics, traditional filesystem interface
Discussion about the future of P2P filesystems

Kangasharju: Peer-to-Peer Networks 51



