
Peer-to-Peer and Grid Computing

Chapter 5: Performance and Reliability of
Peer-to-Peer Systems

Kangasharju: Peer-to-Peer Networks 2

Chapter Outline

n Cover performance and reliability issues in P2P systems
n Evaluation of DHT performance

n Pure DHT performance issues

n Performance of DHT-based applications

n Reliability issues in P2P systems
n Main focus on availability

n Theoretical models of reliability
n How does replication improve reliability?

n How many copies do we need?

n Load balancing issues with block-based systems

Kangasharju: Peer-to-Peer Networks 3

DHT Performance Issues

n DHTs provide useful abstractions to programmers
n What is the cost?
n DHTs need to maintain overlay structure

n Additional communication needed

n How should the parameters of a DHT be tuned?
n Number of successors, base, frequency of updates, etc.

n Do DHTs maintain correctness in “normal” conditions?
n Most DHTs not evaluated against dynamic nodes

nWhat happens when lot of nodes join and leave?

Kangasharju: Peer-to-Peer Networks 4

DHT Performance

n How do DHTs cope with changes in membership?
n How to compare different DHTs?

n How to figure out fundamental differences?
n Most evaluations are about lookup latency or size of

routing table in static networks
n Keeping large amount of state gives good results here!
n No penalty for large amount of state!

n In normal conditions, periodic maintenance messages
maintain overlay structure
n Compare DHTs in terms of how they maintain overlay
n Also include lookup performance

n Comparisons done by Chord group at MIT
n Keep this in mind when looking at results!

Kangasharju: Peer-to-Peer Networks 5

Cost vs. Performance

n Cost often measured as per-node state
n More important metric: How to keep state up-to-date

n Up-to-date state avoids timeouts

n Also, need to find nearby neighbors

n Cost metric: Number of bytes sent to network
n Network usually more limiting than CPU or memory

n Performance metric: Lookup latency
n Dead nodes assumed to be detected quickly

n DHT retries other nodes after dead node

n Failed lookups converted to high latencies

- Fair comparison?

Kangasharju: Peer-to-Peer Networks 6

Comparison

n Compare 4 DHTS: Tapestry, Chord, Kademlia, and Kelips
n Here we look at Chord and Tapestry only
n Different parameters:
Tapestry

n Base, stabilization interval, backup nodes

Chord
n Number of successors, finger base

Kangasharju: Peer-to-Peer Networks 7

Evaluation Parameters

n 1024 nodes in network

n Only key lookup, no data

retrieval

n Nodes request random keys

n Exponentially, mean 10

mins

n Nodes join and leave

n Exponentially, mean 1 hour

n 6 hours simulated time

n Nodes keep IP and ID

n Many parameter

combinations

n No single best choice

n Many optimal choices

n Best points on convex hull of

all points

Kangasharju: Peer-to-Peer Networks 8

Overall Results

n All 4 DHTs shown
n Chord is “best”

n Kademlia uses iterative
routing, recursive appears
to be better

n Any DHT can be below
250ms latency
n Some need lot of bandwidth

n Chord uses bandwidth
efficiently
n Finger tables not needed
n Successor pointers

maintain correctness, low
bandwidth required

n Other DHTs have no good
correctness mechanisms

Kangasharju: Peer-to-Peer Networks 9

Tapestry: Effects of Parameters

n As base decreases, less bandwidth is needed
n Less entries in neighbor map, hence less traffic

n All bases can achieve same latency
n Latency dominated by last hop, base can be small

n Stabilization can run frequently
n Small increase in bandwidth, big reduction in latency

Kangasharju: Peer-to-Peer Networks 10

Chord: Effect of Parameters

n Chord only base is shown
n Base is base of ID space

n No single best choice
n Convex hull is created by bases 2

and 8

n 72 second successor update
interval is best (not shown)
n Higher update wastes bandwidth

n Lower update has more timeouts

n Finger update interval affects only

performance, can pick suitable value

Kangasharju: Peer-to-Peer Networks 11

DHT Performance: Summary

n 4 different DHTs evaluated with different parameters
n Cost of maintaining overlay vs. lookup latency

n If tuned correctly, all 4 are about the same
n Hard to tune correctly

n Parameters may interact

n Same parameter has different effects in different DHTs

n Some parameters are irrelevant

Kangasharju: Peer-to-Peer Networks 12

Performance of DHT-Based Applications

n Above results show that we can configure a DHT to give
us “decent” performance at “reasonable” cost

n Question: Is “decent” good enough for real applications?
n In other words, how does a DHT-based P2P application

compare against a client/server-application?
n Recall: Performance of CFS storage system in local

network was about the same as FTP in wide area
n How about other kinds of applications?
n Let’s take Domain Name System (DNS) as example

n Fundamental Internet-service

n Very much a client/server application

Kangasharju: Peer-to-Peer Networks 13

P2P DNS

n Domain Name System (DNS) very much client-server
n Ownership of domain = responsibility to serve its data
n DNS concentrates traffic on root servers

n Up to 18% of DNS traffic goes to root servers

n Lot of traffic also due to misconfigurations

n P2P DNS puts expertise in the system
n No need to be an expert administrator

n P2P DNS shares load more equally
n P2P DNS has much, much higher latencies :(

Kangasharju: Peer-to-Peer Networks 14

DNS: Overview

n DNS organized in zones (domain)
n Actual data in resource records (RR)

n Several types of RRs: A, PTR, NS, MX, CNAME, …

n Administrator of zone responsible for setting up a server
for that zone (+ redundant servers at other domains)

n Queries resolved hierarchically, starting from root
n Owner of a zone is responsible for serving zone’s data
n DNS shortcomings:

n Need skill to configure name server

n No security (but added-on later to some degree)

n Queries can take very long in worst case

Kangasharju: Peer-to-Peer Networks 15

DNS: Example

n Client wants to resolve www.foo.com
n Replies to queries have additional information (IP address + name)
n Queries can be iterative (here) or recursive

Client

a.root-servers.net

ns.something.com

ns.foo.com

NS com.
ns.something.com

NS foo.com. ns.foo.com

A www.foo.com.

192.168.125.54

http://www.foo.com
http://www.foo.com.

Kangasharju: Peer-to-Peer Networks 16

How to Do P2P DNS?

n Put DNS resource records in a DHT
n Key is hash of domain name and query type

n For example, SHA1(www.foo.com, A)

n Values replicated on some replicas (~ 5-7)
n Can be built on any DHT, works the same way
n All resource records must be signed

n Some overhead for key retrieval

n For migration, put P2P DNS server on local machine
n Configure normal DNS to go through P2P DNS

n No difference to applications

Kangasharju: Peer-to-Peer Networks 17

P2P DNS: Performance

n Current DNS has median latency of 43 ms
n Measured at MIT

n Some queries can take a long time
n Up to 1 minute (due to default timeouts)

n P2P DNS has median latency of 350 ms!
n Simulated on top of Chord

n P2P is much, much worse
n But extremely long queries cannot happen

Kangasharju: Peer-to-Peer Networks 18

Why (Not) P2P DNS?

Pros

n Simpler administration

n Most problems in current DNS are

misconfigurations

n DNS servers not simple to configure well

n P2P DNS robust against lost network

connectivity

n Only outgoing link cut -> maybe not able

to find own name

n No risk of incorrect delegation

n Subdomains can be easily established

n Signatures confirm

Cons

n All queries must be anticipated in

advance

n Not possible to set e.g. mail server

for whole domain easily

n Current DNS can tailor requests to

client

n Widely used in content distribution

networks and load balancing

n Might be possible to implement

above in client software

Kangasharju: Peer-to-Peer Networks 19

Future of DHT-Based Applications?

n DHT-based applications have to make several RPCs
n 1 million node Chord = 20 RPCs, Tapestry 5 RPCs

n Experiments with DNS show even 5 is too much
n Current DNS usually needs 2 RPCs

n DNS puts lot of knowledge at the top of the hierarchy

- Root servers know about millions of domains

n Many RPCs is main weakness of DHTs

n DHT-based applications have all their features on clients
n New feature -> install new clients

n Some kind of an “active” network as a solution?

Kangasharju: Peer-to-Peer Networks 20

Reliability of P2P Storage

n Example case: P2P storage system
n Each object replicated in some peers

n Peers can find where objects should be

- Typically DHT-based, but DHT is not absolutely required

n No concern of consistency
n Read-only storage system

Questions:
1. How many copies are needed for a given level of reliability?

n Unconstrained system with infinite resources

2. What is the optimal number of copies?
n System with storage constraints

Kangasharju: Peer-to-Peer Networks 21

Reliability of Data in DHT-Storage

n Storage system using a distributed hash table (DHT)
n Peer A wants to store object O

n Create k copies on different peers
n k peers determined by DHT for each object (k closest)

n Later peer B wants to read O
nWhat can go wrong?

n Simple storage system: Object created once, read many
times, no modifications to object

n Question: What is the value of k needed to achieve e.g.,
99.9% availability of O?
n Remember: Only probabilistic guarantees possible!

Kangasharju: Peer-to-Peer Networks 22

Assumptions

n Assume I peers in the DHT
n Each peer has unlimited storage capacity

n Peer is up with probability p
n Peers are homogeneous, i.e., all peers have same up-probability

n Peers uniformly distributed in hash space
n Makes mathematical analysis tractable

n New peers can join the network
n Peers never permanently leave

n User may need to access several objects to complete one user-
level action
n For example, resolve path name to file

Kangasharju: Peer-to-Peer Networks 23

What Can Go Wrong?

1. All k peers are down when B reads
• Object is not available in any on-line peer

2. Real k closest peers were down when A wrote and are
up when B reads

3. At least k peers join and become new closest peers
• In above two cases, object is (maybe) still available in the

peers where A wrote it

4. All k peers have permanently left the network
• Assumed not to happen

n We look at only the first three cases
n What are the probabilities of each one of them?

Kangasharju: Peer-to-Peer Networks 24

Probabilities of Loss

1. All k peers are down when B reads

2. Real k closest peers were down when A wrote and are up when
B reads

3. N peers join and at least k peers become new closest peers

pl3 =
N
i











i=k

N

∑ 1
Ii

pl2 ≈
(1− p)I

i











p(1− p)
I









i

i=k

(1−p)I

∑

pl1 = (1− p)k

Kangasharju: Peer-to-Peer Networks 25

Numerical Values for Loss

n First case (green) dominates clearly
n In above tables, k = 5

n For cases 2 and 3 also applies:

Search more than k nodes to find object

Kangasharju: Peer-to-Peer Networks 26

How to Improve?

n Maintain storage invariant à O always at k closest
n Needs additional coordination

n Possible if down-events controlled

n Crashà others need to detect crash (before they crash)

n Guarantees availability as long as invariant maintained

n Possibly wastes storage if copies are not removed when

peers come back into the system

n This approach taken by PAST storage system

n Increase k
n Create more copies, simple to implement

nWastes storage capacity?

n Not good for changing objects (consistency)

Kangasharju: Peer-to-Peer Networks 27

What the User Sees?

n Suppose: User’s action needs to access several objects
n For example, resolve path names of files one level at a time

n For each object: ps = 1 – pl1 = 1 – (1 – p)k

n If we need to access 2 objects?

n Success for user: pt = (1 – (1 – p)k)2

n Solving for k:

n In general for n objects: pt = (1 – (1 – p)k)n

k =
log(1− pt)

log(1− p)

Kangasharju: Peer-to-Peer Networks 28

How Large Should k Be?

n Define target pt

n This is what user sees

n Failures temporary

n When peers mostly up,
k small

n Increase in ptà small
increase in k

Kangasharju: Peer-to-Peer Networks 29

Replication Summary

n Replication in read-only system helps availability
n Main cause of unavailability is peers going down
n Create k copies of each object

n If peers mostly up, k quite small (< 10)
n Maintaining actively copies in right peers helps

n Above analysis assumes all objects equally popular or
important
n Not always true
n Recall: Zipf-distribution for object popularities
n Also, some objects may require higher availability

n How should objects be replicated in this case?

Kangasharju: Peer-to-Peer Networks 30

P2P Content Management

nGroup of peers access a set of files
nSome files are more popular than others

nHow many copies of each file should we have?
nWhere should the copies be placed?
nAssumptions:

nDHT-based system for determining responsible nodes
nSet of files is static
nFile popularities Zipf-distributed

nP2P communities

Kangasharju: Peer-to-Peer Networks 31

Abstract Community Model

Up node
Down node

Community

Outside
repository

Miss

Response

• Examples of communities: Campus, distribution engine
• Assume good bandwidth within community
• Goal: Satisfy requests from within community

Kangasharju: Peer-to-Peer Networks 32

Replication Issues

n How many copies of each object in community?

n Which peers in community have copies?

n Is there an algorithm that is:
n simple

n decentralized

n adaptively replicates objects

n provides near-optimal replica profile?

n What does “optimal replica profile” mean?

Kangasharju: Peer-to-Peer Networks 33

Replication Theory

n J objects, I peers

n object j

n requested with probability qj

n size bj

n peer i

n up with probability pi

n storage capacity Si

n decision variable

n xij = 1 if a replica of j is put in i; 0 otherwise

n Goal: maximize hit probability in community (availability)

n Extension to byte hit probability is possible

Kangasharju: Peer-to-Peer Networks 34

Optimization Problem

Minimize

subject to

Can be reduced to Integer programming problem: NP

xij ∈ {0,1}, i =1,K,I, j =1,K,J

bjxij

j=1

J

∑ ≤ Si, i =1,K,I

qj

j=1

J

∑ (1− pi)xij

i=1

I

∏

Kangasharju: Peer-to-Peer Networks 35

Homogeneous Up Probabilities

nSuppose pi = p

nLet = number of replicas of object j

nLet S = total group storage capacity

nMinimize

nsubject to:

Can be solved by
dynamic programming

nj = xij

i=1

I

∑

qj(1− p)nj

j=1

J

∑

b jn j ≤ S
j=1

J

∑

Kangasharju: Peer-to-Peer Networks 36

Replication vs. Up Probability

up prob = .9
up prob = .5

up prob = .2

Hit probabilities
are different:
0.6, 0.4, 0.3

Kangasharju: Peer-to-Peer Networks 37

Problems with Optimal Solutions

n Don’t know a priori up/down probabilities

n Don’t know a priori object request rates

n Object request rates are changing over time

n New objects are being introduced

n Need efficient adaptive algorithms!

Kangasharju: Peer-to-Peer Networks 38

Assumptions & Goals

Assume

n Each object has a unique

name (e.g., URN)

n Each peer in community

has shared and private

storage

n Each peer can access a

DHT that gives current up

winners for any object o

Goals

n Replicate while satisfying

requests (no extra work)

n Adaptive, decentralized,

simple

n High availability: mimics

optimal performance

Kangasharju: Peer-to-Peer Networks 39

DHT: Winners

n Hash functions map each object name j into a
“random” ordering of the nodes:

hash(j) ð [ij(1), ij(2),…, ij(I)]

n Each object j has a current “first-place winner,”
“second-place winner,” etc.

n Winners are current up winners

n Any DHT can be modified to provide the winners

Kangasharju: Peer-to-Peer Networks 40

Adaptive Algorithm: Simple Version

Suppose X is a node that wants object o.

1) X uses DHT to find 1st-place up node i for o
2) X asks i for o
3) If i doesn’t have o, i retrieves o from the “outside” and stores a copy

in its shared storage.
4) i sends o to X, which puts o in its private storage.

Each node uses LRU replacement policy in shared storage

Kangasharju: Peer-to-Peer Networks 41

Adaptive Algorithm

up node

down node

X

i

outside

LRU

Each object o has “attractor
nodes”

Object o tends to get
replicated in its attractor
nodes.

Queries for o tend to be
sent to attractor nodes.

è tend to get hits
Problem: Can miss even though
object is in an up node in the
community

Kangasharju: Peer-to-Peer Networks 42

Top-K Algorithm

n If i doesn’t have o, i pings top-K winners.

n i retrieves o from one of the top-K if present.

n If none of the top-K has o, i retrieves o from outside.

top-K up node

ordinary up node

down node

X

i

Kangasharju: Peer-to-Peer Networks 43

Simulation

n Adaptive and optimal algorithms

n 100 nodes, 10,000 objects

n Zipf = 0.8, 1.2

n Storage capacity 5-30 objects/node

n All objects the same size

n Up probs 0.2, 0.5, and 0.9

n Top K with K = {1, 2, 5}

Kangasharju: Peer-to-Peer Networks 44

Hit-Probability vs. Node Storage

p = P(up)
= .5

Zipf = .8

Kangasharju: Peer-to-Peer Networks 45

Number of Replicas

p = P(up)
= .5

15 objects
per node

K = 1

Zipf = .8

Kangasharju: Peer-to-Peer Networks 46

General observations

n Community improves

performance significantly

n LRU is lets unpopular objects

linger in peers

n Top-K algorithm is needed to find

object in aggregate storage (see

right)

How can we do better?

Kangasharju: Peer-to-Peer Networks 47

Most Frequently Requested (MFR)

n Each peer estimates local request rate for each object

n denote λo(i) for rate at peer i for object o

n Peer only stores the most requested objects

n packs as many objects as possible

Suppose i receives a request for o:

n i updates λo(i)

n If i doesn’t have o & MFR says it should:

i retrieves o from the outside

Kangasharju: Peer-to-Peer Networks 48

Most-Frequently-Requested Top-K Algorithm

top-K up node

ordinary up node

down node

X

i1

outside

i2
i3

i4

I should
have o

MFR combines replacement and admission policies

Kangasharju: Peer-to-Peer Networks 49

Hit-Probability vs. Node Storage

p = P(up)
= .5

MFR: K=1

Zipf = .8

Kangasharju: Peer-to-Peer Networks 50

Replica Profile

p = P(up)
= .5

15 objects
per node

K = 1

Zipf = .8

Replica
profile
almost
optimal

Kangasharju: Peer-to-Peer Networks 51

Summary: MFR Top-K Algorithm

Implementation
n Layers on top of location substrate
n Decentralized
n Simple: each peer keeps track of a local MFR table
Performance
n Provides near-optimal replica profile

Kangasharju: Peer-to-Peer Networks 52

Optimality of MFR

n Recall basic idea of MFR:

n Each peer estimates local request rate for each object

n Analytical procedure for MFR Top-I: (all nodes)

n Init: λj = qj/bj, j = 1, ..., J, and Ti = Si, i = 1, ..., I

1. Find file j with largest λ j

2. Sequentially examine winners for j until Ti bj and xij = 0

- Set xij = 1

- Set λ j = λ j(1-pi)

- Set Ti = Ti – bj

- If no such node, remove file j from consideration

3. If still files to be considered go to step 1, otherwise stop.

Kangasharju: Peer-to-Peer Networks 53

Evaluation

n Suppose all files are same size
n Suppose no ties in step 1 (λj)
n Then Top-I MFR converges to previous procedure
à Faster way to evaluate performance

n Comparing Top-I MFR to true optimal solution:
n Almost always gives optimal result (95%)

n Simple counter-example: Top-I MFR optimal

Kangasharju: Peer-to-Peer Networks 54

Top-I MFR and Non-Optimality

n Assume 2 nodes and 4 objects
n Each node can store 2 objects, both up prob. 0.5

n Assume request probabilities and winners as shown:

n What does Top-I MFR do and what is optimal?

12/134

23/133

23/132

15/131

1st WinnerReq. Prob.Object

Kangasharju: Peer-to-Peer Networks 55

Solution

n Top-I MFR places objects in the order of popularity
n Object 1 --> Node 1, Object 2 --> Node 2, Object 3 --> Node 2

n Next would be Object 1 again (reduced request rate 5/13 * 1/2)

n But only node 1 has space and there is already copy of 1 there

n Hence, Top-I MFR puts Object 4 --> Node 1

n Optimal solution is:
n Object 1 --> Node 1 and 2, Object 2 --> Node 1, Object 3 --> Node 2

n As mentioned above, similar cases appear even in bigger communities
n But problem typically “1 copy too much for object X and 1 copy too little for

object Y”

Kangasharju: Peer-to-Peer Networks 56

Continuous Optimal

Let yj = bjnj, and treat yj as continuous variable.

Minimize

subject to

where fj(yj) = qj(1− p)y /bj

yj
j=1

J

∑ = S yj ≥ 0, j =1,K,J

fj(yj)
j=1

J

∑

Kangasharju: Peer-to-Peer Networks 57

(1) Order objects according to qj/bj

(2) There is an L such that n*j = 0 for all j > L.

(3) For j <= L , “logarithmic replication rule”:

Continuous Optimal (2)

Logarithmic replication rule

= K1 + K 2ln(qj /bj)

nj
* =

S
BL

+
bl ln(ql /bl)

l=1

L∑
BL ln(1− p)

+
ln(qj /bj)

ln(1/(1− p))

Kangasharju: Peer-to-Peer Networks 58

Continuous Optimal vs. Discrete

n Continuous gives

upper bound

n Bound usually

tight

n Differences are

due to discrete

being constrained

to integer values

Kangasharju: Peer-to-Peer Networks 59

Replication Summary

n Adaptive replication in communities
n Peers in community download content

n Content always available in “outside repository”

n Model of optimal replication of content
nWhich peers should hold which objects

n Model as an integer programming problem (NP-complete)

n Approximation with “homogeneous case”
n Optimal solution with dynamic programming

n Several different algorithms for comparison
n Simple LRU

n Top-K LRU

n MFR (best performance)

Kangasharju: Peer-to-Peer Networks 60

Replication: General Comments

n Studied two cases:
n Static replication, all files equally important

n Dynamic, on-the-fly replication, some files more popular

n Different goals in the two cases
n Highest possible availability, no storage constraints

n Provide high hit-rate, only limited storage

n For first case, adding a storage constraint would limit
number of files that can be stored
n All the rest of the analysis and results remain unaffected

n What can we learn?

Kangasharju: Peer-to-Peer Networks 61

Replication: Lessons

n When peers mostly up, we need about 5-10 copies
n Applies in both cases

n Implication: P2P storage system with N GB of capacity can store about

N/5 or N/10 GB of data

n Maintenance cost of reliable file server vs. extra hard disk?

n When peers mostly down, we need >> 100 copies for high availability
n This is more realistic for global P2P network (in today’s world)

n For example, if you donate 100 GB to network, you can store:

- 100 000 emails, OR

- 1000 digital photos, OR

- 300 MP3 files, OR

- 1 movie (DivX) files (or ~0.25 movie in DVD quality)

n Not efficient at all…

Kangasharju: Peer-to-Peer Networks 62

Replication: Future

n What are the implications for P2P storage systems?
n “No problem” in corporate environments

n Lot of computers with good resources and high uptime

n Cost of reliable file servers very high

n P2P storage comes “for free”

n Wide area storage?
n Most of analysis assumes no additional coordination

n Storage invariants can reduce number of copies

n Must have additional coordination to make system attractive

n Is factor-of-10 reduction in capacity acceptable to users?

- Most home users don’t care about reliability, don’t take backups

- Most home users wouldn’t see benefits?

Kangasharju: Peer-to-Peer Networks 63

Load Balancing

n What if the first place winner for a popular object is
(almost) always up?

n Problem: How to balance the load between the peers in
the community?

n In fact, what is the goal of a load balancing algorithm?
1. Make everyone do the same amount of work?

n But: Peers might be heterogeneous

2. Allow individual peers to determine their own load?
n Problem: Too much refused traffic hurts performance

n Two approaches:
n Fragmentation

n Overflow

Kangasharju: Peer-to-Peer Networks 64

Load Balancing: Solutions

n Fragmentation
n Idea: Divide each object into chunks, store chunks individually

n One chunk is much smaller than a file, hence load is balanced better,

since chunks are stored on different peers

n Achieves overall load balancing (goal 1 from above)

n Overflow
n Idea: Allow peers to refuse requests

n Request passed on to the next winner (eventually to outside)

n Allows a peer to decide how much traffic to handle

n Achieves goal number 2 from above

n Fragmentation + Overflow
n Use both approaches

Kangasharju: Peer-to-Peer Networks 65

Load Balancing: Fragmentation

Peer up probability

N
or

m
al

iz
ed

 lo
ad

n 90-percentile

load for Zipf

parameter 1.2

n K = number of

chunks

n Load normalized

to “fair share”

n Seems to work

quite well for

large number of

chunks

n Large files -->

many chunks

Kangasharju: Peer-to-Peer Networks 66

Load Balancing: Overflow

Peer up probability

Ad
di

ti
on

al
 l

oa
d

pe
r

pe
er

n Overflow
with 1 chunk

n Different
amounts of
refused
traffic

n Worst case:
5%
additional
load for
each peer

Kangasharju: Peer-to-Peer Networks 67

Fragmentation + Overflow

Peer up probability

Ad
di

ti
on

al
 l

oa
d

pe
r

pe
er

n Same as

above, but

with 30

chunks per

file

n Additional

load less than

0.5% in all

cases

Kangasharju: Peer-to-Peer Networks 68

Overflow: Refused Traffic

n When large number of traffic is refused, it goes to the
outside, thus reducing hit-rate

n How much is hit-rate affected?
n Rough rule of thumb: Proportion of reduced traffic reduces

overall storage capacity by the same proportion
n Example: If 50% of peers are refusing 50% of the traffic,

then overall storage capacity is reduced by 25%

Kangasharju: Peer-to-Peer Networks 69

Load Balancing: Summary

n Without any load balancing mechanism, load is severely
unbalanced

n Fragmentation approach works well for achieving a
uniform load on all peers

n Pure overflow approach allows individual peers to reduce
their load at a cost of increased load to others

n Overflow with fragmentation works best
n Refused traffic ends up effectively reducing the overall

amount of storage offered by the community

Kangasharju: Peer-to-Peer Networks 70

Chapter Summary

n Performance evaluation of P2P systems
n DHT performance under heavy load

n Evaluate effects of different parameters

n Evalute DHT-based applications

n Storage systems
n Unconstrained system

- Provide target availability

n Constrained system, P2P community

- Maximize hit-rate

n Load balancing

