

Chapter Outline

Cover performance and reliability issues in P2P systems
Evaluation of DHT performance
Pure DHT performance issues
Performance of DHT-based applications
Reliability issues in P2P systems
Main focus on availability
Theoretical models of reliability
How does replication improve reliability?
How many copies do we need?
Load balancing issues with block-based systems

Kangasharju: Peer-to-Peer Networks

N DHT Performance Issues

DHTSs provide useful abstractions to programmers

DHTs need to maintain overlay structure
Additional communication needed

Number of successors, base, frequency of updates, etc.

Most DHTs not evaluated against dynamic nodes
What happens when lot of nodes join and leave?

Kangasharju: Peer-to-Peer Networks

DHT Performance

How do DHTs cope with changes in membership?
How to compare different DHTS?
How to figure out fundamental differences?
Most evaluations are about lookup latency or size of
routing table in static networks
Keeping large amount of state gives good results herel!
No penalty for large amount of statel!
In normal conditions, periodic maintenance messages
maintain overlay structure
Compare DHTSs in terms of how they maintain overlay
Also include lookup performance
Comparisons done by Chord group at MIT
Keep this in mind when looking at results!

Kangasharju: Peer-to-Peer Networks

Cost vs. Performance

Cost often measured as per-node state
More important metric: How to keep state up-to-date
Up-to-date state avoids timeouts
Also, need to find nearby neighbors
Cost metric: Number of bytes sent to network
Network usually more limiting than CPU or memory
Performance metric: Lookup latency
Dead nodes assumed to be detected quickly
DHT retries other nodes after dead node
Failed lookups converted to high latencies

Fair comparison?

Kangasharju: Peer-to-Peer Networks

Comparison

Compare 4 DHTS: Tapestry, Chord, Kademlia, and Kelips
Here we look at Chord and Tapestry only
Different parameters:

Base, stabilization interval, backup nodes

Number of successors, finger base

Kangasharju: Peer-to-Peer Networks

Evaluation Parameters

1024 nodes in network

Only key lookup, no data

retrieval

Nodes request random keys
Exponentially, mean 10
mins

Nodes join and leave
Exponentially, mean 1 hour

6 hours simulated time

Nodes keep IP and ID

Kangasharju: Peer-to-Peer Networks

Many parameter

combinations

Many optimal choices
Best points on convex hull of
all points

-

L i

s i

avorage lnokup ;

L
() M N I

pvra e e mamdleoad®n Chey iestmente i

Kangasharju: Peer-to-Peer Networks

Overall Results

clips

All 4 DHTs shown

Chord is “best”
Kademlia uses iterative
routing, recursive appears
to be better

Any DHT can be below

250ms latency
Some need lot of bandwidth
Chord uses bandwidth
efficiently
Finger tables not needed
Successor pointers
maintain correctness, low
bandwidth required
Other DHTs have no good
correctness mechanisms

! Tapestry: Effects of Parameters

As base decreases, less bandwidth is needed

Less entries in neighbor map, hence less traffic
All bases can achieve same latency

Latency dominated by last hop, base can be small
Stabilization can run frequently

Small increase in bandwidth, big reduction in latency

i 5|
Tapsiz apweiry whabhe VOO0
i Lapess: T apoenery stabe T2
. Tapesley - apeary - wizhe 144000
wr il Taguesis E F e T TR N |
; L] BT e i
o | Tape q s s Lads
-':.' 41 =
x =
=S B o
2 o
| b | 5 f
2 2
B i 3
1
[3 1] I 3
r Bive DamduscEn | byview todes | ivernpe (v Bandealth (Boesmodes)
g] ¥ ;
Base Stabilization interval

Kangasharju: Peer-to-Peer Networks

Chord only base is shown
Base is base of ID space
No single best choice
Convex hull is created by bases 2
and 8

72 second successor update
interval is best (not shown)
Higher update wastes bandwidth
Lower update has more timeouts
Finger update interval affects only
performance, can pick suitable value

Kangasharju: Peer-to-Peer Networks

Chord: Effect of Parameters

10

DHT Performance: Summary

4 different DHTs evaluated with different parameters
Cost of maintaining overlay vs. lookup latency

If tuned correctly, all 4 are about the same
Hard to tune correctly
Parameters may interact
Same parameter has different effects in different DHTs

Some parameters are irrelevant

Kangasharju: Peer-to-Peer Networks

11

Performance of DHT-Based Applications

Above results show that we can configure a DHT to give
us “decent” performance at “reasonable” cost
Is “decent” good enough for real applications?

In other words, how does a DHT-based P2P application
compare against a client/server-application?

Performance of CFS storage system in local
network was about the same as FTP in wide area
How about other kinds of applications?
Let’'s take Domain Name System (DNS) as example

Fundamental Internet-service

Very much a client/server application

Kangasharju: Peer-to-Peer Networks

12

Domain Name System (DNS) very much client-server
Ownership of domain = responsibility to serve its data
DNS concentrates traffic on root servers

Up to 18% of DNS traffic goes to root servers
Lot of traffic also due to misconfigurations

P2P DNS puts expertise in the system
No need to be an expert administrator
P2P DNS shares load more equally
P2P DNS has much, much higher latencies :(

Kangasharju: Peer-to-Peer Networks 13

DNS: Overview

DNS organized in zones (= domain)

Actual data in resource records (RR)

Several types of RRs: A, PTR, NS, MX, CNAME, ...
Administrator of zone responsible for setting up a server
for that zone (+ redundant servers at other domains)
Queries resolved hierarchically, starting from root

Owner of a zone is responsible for serving zone’s data
DNS shortcomings:

Need skill to configure name server
No security (but added-on later to some degree)

Queries can take very long in worst case

Kangasharju: Peer-to-Peer Networks 14

!! DNS: Example

a.root-servers.net

L
LN
L0
"
L0
"~
L
L0
o
"~
tea,
L0
.
L0
L0
“
0
L0
“~
L0
L

ns.something.com

ns.foo.com

Client wants to resolve www.foo.com
Replies to queries have additional information (IP address + name)
Queries can be iterative (here) or recursive

Kangasharju: Peer-to-Peer Networks 15

http://www.foo.com
http://www.foo.com.

How to Do P2P DNS?

Put DNS resource records in a DHT
Key is hash of domain name and query type
For example, SHA1(www.foo.com, A)

Values replicated on some replicas (~ 5-7)
Can be built on any DHT, works the same way

All resource records must be signed
Some overhead for key retrieval

For migration, put P2P DNS server on local machine
Configure normal DNS to go through P2P DNS

No difference to applications

Kangasharju: Peer-to-Peer Networks

16

N
2> S

by N

P2P DNS: Performance

Current DNS has median latency of 43 ms
Measured at MIT

Some queries can take a long time
Up to 1 minute (due to default timeouts)

P2P DNS has median latency of 350 ms!
Simulated on top of Chord

P2P is much, much worse

But extremely long queries cannot happen

Kangasharju: Peer-to-Peer Networks 17

Simpler administration
Most problems in current DNS are
misconfigurations
DNS servers not simple to configure well
P2P DNS robust against lost network
connectivity
Only outgoing link cut -> maybe not able
to find own name
No risk of incorrect delegation
Subdomains can be easily established

Signatures confirm

Kangasharju: Peer-to-Peer Networks

= Why (Not) P2P DNS?

All queries must be anticipated in
advance
Not possible to set e.g. mail server
for whole domain easily
Current DNS can tailor requests to
client
Widely used in content distribution

networks and load balancing

Might be possible to implement

above Iin client software

18

“,. Future of DHT-Based ApplicationS?

DHT-based applications have to make several RPCs
1 million node Chord = 20 RPCs, Tapestry 5 RPCs
Experiments with DNS show even 5 is too much
Current DNS usually needs 2 RPCs
DNS puts lot of knowledge at the top of the hierarchy

Root servers know about millions of domains

DHT-based applications have all their features on clients
New feature -> install new clients

Some kind of an “active” network as a solution?

Kangasharju: Peer-to-Peer Networks 19

Reliability of P2P Storage

Example case: P2P storage system
Each object replicated in some peers
Peers can find where objects should be
Typically DHT-based, but DHT is not absolutely required
No concern of consistency
Read-only storage system

How many copies are needed for a given level of reliability?
Unconstrained system with infinite resources

What is the optimal number of copies?
System with storage constraints

Kangasharju: Peer-to-Peer Networks

20

Reliability of Data in DHT-Storage

Storage system using a distributed hash table (DHT)

Peer A wants to store object O
Create k copies on different peers
k peers determined by DHT for each object (k closest)

Later peer B wants to read O
What can go wrong?

Simple storage system: Object created once, read many

times, no modifications to object
Question:

Remember: Only probabilistic guarantees possible!

Kangasharju: Peer-to-Peer Networks 21

Assumptions

Assume | peers in the DHT

Each peer has unlimited storage capacity
Peer is up with probability p

Peers are homogeneous, i.e., all peers have same up-probability
Peers uniformly distributed in hash space

Makes mathematical analysis tractable

New peers can join the network
Peers never permanently leave

User may need to access several objects to complete one user-
level action
For example, resolve path name to file

Kangasharju: Peer-to-Peer Networks 22

What Can Go Wrong?

All k peers are down when B reads
Object is not available in any on-line peer
Real k closest peers were down when A wrote and are
up when B reads
At least k peers join and become new closest peers
In above two cases, object is (maybe) still available in the
peers where A wrote it
All k peers have permanently left the network
Assumed not to happen
We look at only the first three cases

Kangasharju: Peer-to-Peer Networks 23

Probabilities of Loss

1. All k peers are down when B reads

pn=(1- p)"

2. Real k closest peers were down when A wrote and are up when
B reads

"' L- p)lGp(L- p)d
p'”ag S | o

3. N peers join and at least k peers become new closest peers

aNol
pl3—agl

gl

Kangasharju: Peer-to-Peer Networks

-

Numerical Values for Loss

I

102

l”:'-{

107

fj'-!':x e

10—

10—

10—2Y

i, == (for given I and p)

I Py =
0.99 | 10"
0.9 108
0.5 0.03
0.3 0.17

() 0 O O
1D—" [10="
10— 10— 1a=4
10— 10—° 10—

In above tables, k=5

First case (green) dominates clearly

For cases 2 and 3 also applies:

Kangasharju: Peer-to-Peer Networks

25

How to Improve?

Maintain storage invariant & O always at k closest
Needs additional coordination
Possible if down-events controlled
Crash a others need to detect crash (before they crash)
Guarantees availability as long as invariant maintained
Possibly wastes storage if copies are not removed when
peers come back into the system
This approach taken by PAST storage system

Increase k
Create more copies, simple to implement
Wastes storage capacity?
Not good for changing objects (consistency)

Kangasharju: Peer-to-Peer Networks

26

What the User Sees?

Suppose: User’s action needs to access several objects
For example, resolve path names of files one level at a time
For each object: p,=1-p,;=1-(1-p)

If we need to access 2 objects?

Success for user: p, = (1 — (1 — p)¥)?

Solving for k:
 _ log- \/py)
log(1- p)

In general for n objects: p, = (1 — (1 — p)¥)"

Kangasharju: Peer-to-Peer Networks

27

How Large Should k Be?

200 i ‘
...... P = 99%
180+ e P,=99.9% |
— p.=99.99% .
1600 T b =soo0ev | Define target p,
1401] This i1s what user sees
120} Zoom | Failures

oo
(=}

When peers mostly up,

Number of copies needed, r
=
o
z
|

60" k small

a0l

200 :~-I..:...:;;-::;;7_-._7:. ________ Increase in p, & small
8oz 03 07 o5 <; 6-.0‘7- 08 09 1 increase in k

Individual peer up probability, p

Kangasharju: Peer-to-Peer Networks 28

Replication Summary

Replication in read-only system helps availability
Main cause of unavailability is peers going down
Create k copies of each object

If peers mostly up, k quite small (< 10)
Maintaining actively copies in right peers helps

Above analysis assumes all objects equally popular or

Important
Not always true
Recall: Zipf-distribution for object popularities
Also, some objects may require higher availability

Kangasharju: Peer-to-Peer Networks 29

P2P Content Management

Group of peers access a set of files
Some files are more popular than others
How many copies of each file should we have?
Where should the copies be placed?
Assumptions:
DHT-based system for determining responsible nodes
Set of files is static
File popularities Zipf-distributed
P2P communities

Kangasharju: Peer-to-Peer Networks 30

Abstract Community Model

@ Up node
@ Down node

Outside
| repository

Community

« Examples of communities: Campus, distribution engine
e Assume good bandwidth within community
e Goal: Satisfy requests from within community

Kangasharju: Peer-to-Peer Networks

Replication Issues

How many copies of each object in community?
Which peers in community have copies?

Is there an algorithm that is:
simple
decentralized
adaptively replicates objects

provides near-optimal replica profile?

Kangasharju: Peer-to-Peer Networks

32

Replication Theory

J objects, | peers
object j
requested with probability g
size b,
peer i
up with probability p;
storage capacity S,
decision variable

X; = 1 if areplica of j is putin i; O otherwise

Goal: maximize hit probability in community (availability)
Extension to byte hit probability is possible

Kangasharju: Peer-to-Peer Networks

33

Optimization Problem
o X __
Minimize @ diO@- pi)*
j=1 =1
S
subjectto A bixi £Si, 1=1K,l
j=1

xil {03, i=1K,, j=1K,J

Can be reduced to Integer programming problem: NP

Kangasharju: Peer-to-Peer Networks

34

Homogeneous Up Probabilities

Suppose p,=p
|

Let ni=a xi = number of replicas of object |
=1

Let S = total group storage capacity

Minimize ,
a qid- p)"™
j=1
subject to:
J
é binj £ S

=1

Kangasharju: Peer-to-Peer Networks

35

"‘ Replication vs. Up Probability

25

Object replicas — Zipf 0.8 - Storage 15 objects

20

—
o
T
O
O

—L
o
T

Number of copies

[T
1] O (I
0o o [TNNTRIID
0 oooam [T

Object popularity rank

Kangasharju: Peer-to-Peer Networks

o Upprob. .8

o Upprob. .5
o Upprob. .2

= Up prob =.9
= yp prob=.5
" up prob =.2

Hit probabilities
are different:;
0.6,04, 0.3

36

Problems with Optimal Solutions

Don’t know a priori up/down probabilities
Don’t know a priori object request rates
Object request rates are changing over time

New objects are being introduced

Kangasharju: Peer-to-Peer Networks

37

Assumptions & Goals

Each object has a unique
name (e.g., URN)

Each peer in community
has shared and private
storage

Each peer can access a
DHT that gives current up
winners for any object o

Kangasharju: Peer-to-Peer Networks

Replicate while satisfying
requests (no extra work)
Adaptive, decentralized,
simple

High availability: mimics

optimal performance

38

DHT: Winners

Hash functions map each object name j into a
“random” ordering of the nodes:

hash() & [i(1), i(2),..., i(1)]

Each object | has a current “first-place winner,”
“second-place winner,” etc.

Winners are

Any DHT can be modified to provide the winners

Kangasharju: Peer-to-Peer Networks 39

Adaptive Algorithm: Simple Version

1) X uses DHT to find 1st-place up node i for o

2) X asksiforo
3) If i doesn’t have o, i retrieves o from the “outside” and stores a copy

In its shared storage.
4) | sends o to X, which puts o in its private storage.

Kangasharju: Peer-to-Peer Networks

40

Adaptive Algorithm

Kangasharju: Peer-to-Peer Networks

@® up node

@ down node

Each object o has “attractor
nodes”

Object o tends to get
replicated in its attractor
nodes.

Queries for o tend to be
sent to attractor nodes.
e tend to get hits

41

‘ Top-K Algorithm

@ top-K up node
@ ordinary up node

@ down node

If i doesn’t have o, i pings top-K winners.
| retrieves o from one of the top-K if present.
If none of the top-K has o, i retrieves o from outside.

Kangasharju: Peer-to-Peer Networks

42

Simulation

Adaptive and optimal algorithms
100 nodes, 10,000 objects
Zipf=0.8, 1.2

Storage capacity 5-30 objects/node
All objects the same size

Up probs 0.2, 0.5, and 0.9

Top Kwith K={1, 2, 5}

Kangasharju: Peer-to-Peer Networks

43

‘ Hit-Probability vs. Node Storage

Zipf 0.8 — Up probability 0.5

1 I I I
—— Op’[lma| _
08¢ — |RU, K =5 7 p _ P(up)
—= LRU,K=2 - -5
0 8 [—%— LRU, K. - 1 7
; —+— Non-collaborative
0.7f] Zipf = .8
0.6F _
X
2 5] _
=
0.4 _
0.3F _
0.2F _
0.1 I +r_ ST, e |
0 | | I I I I
0 5 10 15 o0 . " |

Per-node storage capacity (in objects)

Kangasharju: Peer-to-Peer Networks

‘ Number of Replicas

Obiject replicas - Zipf 0.8 — Storage 15 objects - Up prob 0.5 - LRU -K =1

8 - : —— —
+ Optimal
O Average in simulation
7r + + —
6 ceeee -

w
T

R —

Number of copies

o 0O g
3 OOOQ
O

2
1k
0 1

a 1
10 10

QObject popularity rank

Kangasharju: Peer-to-Peer Networks

= P(up)
=.5

©
I

15 objects
per node

45

Community improves

performance significantly

LRU is lets unpopular objects

linger in peers

Top-K algorithm is needed to find
object in aggregate storage (see
right)

Kangasharju: Peer-to-Peer Networks

0.08

e e e
o o o
< 5 =

Fraction of unnecessary misses
(-]
(=]
oy

General observations

Objects missed - Zipf 0.8 - Up prob. 0.5

$ ¢

5 10 15 20 25 30
Per-node storage capacity (in objects)

35

46

Most Frequently Requested (MFR)

Each peer estimates local request rate for each object
denote | (i) for rate at peer i for object o
Peer only stores the most requested objects

packs as many objects as possible

| updates | (i)
If i doesn’t have 0 & MFR says it should:

| retrieves o from the outside

Kangasharju: Peer-to-Peer Networks

47

‘ Most-Frequently-Requested Top-K Algorithm

outside

@ top-K up node

@ ordinary up node

@ down node

MFR combines replacement and admission policies

Kangasharju: Peer-to-Peer Networks

Hit-Probability vs. Node Storage

Zipf 0.8 - Up probability 0.5

1 T T

—— Optimal
09+ MFR | p=P(up)
LRU K=5 = 5
0sl —&— LRU,K =2 1 o
: —— LRU, K =1
—+— Non-collaborative
0.7+ 4+ MFR: K=1
0861 i _
> Zipf = .8
T 05 B
=
0.4 .
031 .
0.21 .
01f // |
0 | |

0 5 10 15 20 25 30 35
Per-node storage capacity (in objects)

Kangasharju: Peer-to-Peer Networks

‘ Replica Profile

|
Object replicas — Zipf 0.8 - Storage 15 objects - Up prob 0.5 - MFR - K = 1
9] i L I | ! i | S I N L B | i T [T i e B | 1 I
(t) g\?:irr:gzle in simulation p = P(up)
ol . - =5
TR I 15 objects
S . ! per node
o O
Ss5f o K=1
©
&l _
= Zipf = .8
=
3 [
Replica
2 .
profile
WL almost
optimal
(?IOD 10] 102

Object popularity rank

Kangasharju: Peer-to-Peer Networks

Summary: MFR Top-K Algorithm

Layers on top of location substrate
Decentralized
Simple: each peer keeps track of a local MFR table

Provides near-optimal replica profile

Kangasharju: Peer-to-Peer Networks

51

Optimality of MFR

Recall basic idea of MFR:
Each peer estimates local request rate for each object
Analytical procedure for MFR Top-I: (all nodes)
Init: /j = qj/bj, j=1,..,J,and T,=S,i=1, ..., |
Find file] with largest /
Sequentially examine winners for j until T, 2 b, and x; =0
Setx; =1
Set/ ; =1 1-p)
SetT,=T,-b,
If no such node, remove file j from consideration

If still files to be considered go to step 1, otherwise stop.

Kangasharju: Peer-to-Peer Networks 52

Evaluation

Suppose all files are same size

Suppose no ties instep 1 (/)

Then Top-I MFR converges to previous procedure
a Faster way to evaluate performance

Comparing Top-1 MFR to true optimal solution:

Almost always gives optimal result (95%)
Simple counter-example: Top-I MFR # optimal

Kangasharju: Peer-to-Peer Networks

53

Assume 2 nodes and 4 objects
Each node can store 2 objects, both up prob. 0.5

Assume request probabilities and winners as shown:

Top-I MFR and Non-Optimality

Object Req. Prob. 1st Winner
1 5/13 1
2 3/13 2
3 3/13 2
4 2/13 1

What does Top-I MFR do and what is optimal?

Kangasharju: Peer-to-Peer Networks

54

Solution

Top-1 MFR places objects in the order of popularity
Object 1 --> Node 1, Object 2 --> Node 2, Object 3 --> Node 2
Next would be Object 1 again (reduced request rate 5/13 * 1/2)
But only node 1 has space and there is already copy of 1 there
Hence, Top-I MFR puts Object 4 --> Node 1
Optimal solution is:
Object 1 --> Node 1 and 2, Object 2 --> Node 1, Object 3 --> Node 2

As mentioned above, similar cases appear even in bigger communities

But problem typically “1 copy too much for object X and 1 copy too little for
object Y”

Kangasharju: Peer-to-Peer Networks 55

‘ Continuous Optimal

Lety, = bjn;, and treat y; as continuous variable.

J
Minimize a fi(yi)
j=1

subject to ayi=s yj?0j=1K,J

=1

where Ti(yi) = qi(1- p)’"™

Kangasharju: Peer-to-Peer Networks

56

‘ Continuous Optimal (2)

(1) Order objects according to gy/b,
(2) There is an L such that n* = 0 for all j > L.
(3) For j <=L, “logarithmic replication rule”:

o

L
S alzlblln(CII/bl)_l_ In(q; /b)

nj =—+

BL BIn(1- p) Inl/(1- p))

=K1+ Kz2In(qj/bj)

Kangasharju: Peer-to-Peer Networks

57

. Continuous Optimal vs. Discrete
1a Object replicas - Zipf 0.8 - Storage 5 objects - Up prob 0.2 COﬂtanOUS gIVGS
o Logarithmic rule
18k + Dynamic programming || upper bound
§
14+ i
? ’ Bound usually

.5 12r ¢ i t|ght
o
310t |
Ha -
o Differences are
o 8r]
E .
= due to discrete

B |

being constrained
4“ Bl .
to integer values

2+ |

O 0 = TN SR N R 1 L e | II n A

10 10 10 10 10

Qbject popularity rank

Kangasharju: Peer-to-Peer Networks 58

Replication Summary

Adaptive replication in communities

Peers in community download content

Content always available in “outside repository”
Model of optimal replication of content

Which peers should hold which objects

Model as an integer programming problem (NP-complete)
Approximation with “homogeneous case”

Optimal solution with dynamic programming
Several different algorithms for comparison

Simple LRU

Top-K LRU

MFR (best performance)

Kangasharju: Peer-to-Peer Networks 59

N
-2 e
. N

by h
N

< Replication: General Comments

Studied two cases:
Static replication, all files equally important
Dynamic, on-the-fly replication, some files more popular
Different goals in the two cases
Highest possible availability, no storage constraints
Provide high hit-rate, only limited storage
For first case, adding a storage constraint would limit
number of files that can be stored
All the rest of the analysis and results remain unaffected

Kangasharju: Peer-to-Peer Networks 60

-~ Replication: Lessons

When peers mostly up, we need about 5-10 copies
Applies in both cases
Implication: P2P storage system with N GB of capacity can store about
N/5 or N/10 GB of data
Maintenance cost of reliable file server vs. extra hard disk?
When peers mostly down, we need >> 100 copies for high availability
This is more realistic for global P2P network (in today’s world)
For example, if you donate 100 GB to network, you can store:
100 000 emails, OR
1000 digital photos, OR
300 MP3 files, OR
1 movie (DivX) files (or ~0.25 movie in DVD quality)
Not efficient at all...

Kangasharju: Peer-to-Peer Networks 61

Replication: Future

What are the implications for P2P storage systems?
“No problem” in corporate environments
Lot of computers with good resources and high uptime
Cost of reliable file servers very high
P2P storage comes “for free”
Wide area storage?
Most of analysis assumes no additional coordination
Storage invariants can reduce number of copies
Must have additional coordination to make system attractive
|s factor-of-10 reduction in capacity acceptable to users?
Most home users don't care about reliability, don’t take backups

Most home users wouldn’t see benefits?

Kangasharju: Peer-to-Peer Networks 62

. Load Balancing

What if the first place winner for a popular object is
(almost) always up?

Problem: How to balance the load between the peers in
the community?
In fact, what is the goal of a load balancing algorithm?
Make everyone do the same amount of work?

But: Peers might be heterogeneous
Allow individual peers to determine their own load?

Problem: Too much refused traffic hurts performance

Fragmentation

Overflow

Kangasharju: Peer-to-Peer Networks 63

Load Balancing: Solutions

Fragmentation
|Idea: Divide each object into chunks, store chunks individually

One chunk is much smaller than a file, hence load is balanced better,
since chunks are stored on different peers
Achieves overall load balancing (goal 1 from above)

Overflow

Idea: Allow peers to refuse requests
Request passed on to the next winner (eventually to outside)

Allows a peer to decide how much traffic to handle

Achieves goal number 2 from above
Fragmentation + Overflow

Use both approaches

Kangasharju: Peer-to-Peer Networks

64

!.! Load Balancing: Fragmentation |
90-percentile
a5 T T T T]
im0 s load for Zipf
oD
parameter 1.2
aL e]
i e K = number of
ge! g W
S " chunks
e e 1 Load normalized
N -~
= _ to “fair share”
S 2t vl -l
= o b
4 Er Seems to work
i g p e " 1 quite well for
TN) - At large number of
1L ' L - - : * chunks
(K} (5 e G4 QLB oE 1
Peer up probability Large files -->

many chunks

Kangasharju: Peer-to-Peer Networks 65

!.! Load Balancing: Overflow

IpF 1.2 1 ragmeart
0L : ; ¥
TG per . PG TellEe — +
10P% ped . 10P6 reflse =
S0 poaT . B refLEs @
S pea. 10Ps refLss 1
CLoS
| -
8 .
Qo4
= S
ot 3
R
S oo A
o Pk
I Y
o oo S //
= -
© v .-"".
2 S
0.0 : i
L i
= i
|:| h- o - i I .:'- 1 [[
o [o4 e ag

Peer up probability

Kangasharju: Peer-to-Peer Networks

Overflow

with 1 chunk

Different
amounts of
refused
traffic

Worst case:

5%
additional
load for
each peer

66

L CaZe

L OIS

i

0L CaCr

(EE

Additional load per peer

Q.00

Fragmentation + Overflow

dpf 1.2 30 ragments
ToPe pesr, B Teliee | '
108 pear. 100 refss - ©
S0Fs poar. Q0% refiuse ®
S0 el 10F: efuss
."FF.
—
. ____.-""-
il }-"f
:. ___.-'--_'___
. '.__. — i o "J- ey | 1
oz o4 (21 og

Peer up probability

Kangasharju: Peer-to-Peer Networks

Same as
above, but
with 30
chunks per
file

67

Overflow: Refused Traffic

When large number of traffic is refused, it goes to the
outside, thus reducing hit-rate

How much is hit-rate affected?

Rough rule of thumb: Proportion of reduced traffic reduces
overall storage capacity by the same proportion

Example: If 50% of peers are refusing 50% of the traffic,
then overall storage capacity is reduced by 25%

Kangasharju: Peer-to-Peer Networks 68

Load Balancing: Summary

Without any load balancing mechanism, load is severely
unbalanced

Fragmentation approach works well for achieving a
uniform load on all peers

Pure overflow approach allows individual peers to reduce
their load at a cost of increased load to others

Overflow with fragmentation works best

Refused traffic ends up effectively reducing the overall
amount of storage offered by the community

Kangasharju: Peer-to-Peer Networks

69

Chapter Summary

Performance evaluation of P2P systems
DHT performance under heavy load
Evaluate effects of different parameters
Evalute DHT-based applications
Storage systems
Unconstrained system
Provide target availability
Constrained system, P2P community
Maximize hit-rate

Load balancing

Kangasharju: Peer-to-Peer Networks

70

