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@ 3 chain CDR3 TCR repertoire sequenced from CD4 spleen
cells.

e unimmunised mice
o ‘early’ immunised mice (5,7 and 14 days) immunised with
Complete Freund's Adjuvant (CFA) or ovalbumin (OVA) with

CFA
o Isolate CD4 cells, amplify (NO barcoding, multiplex) and
sequence on HiSeq

@ Can we detect OVA vs. no-OVA from the sequences collected?

@ Can we detect from a sample of T-cell sequences if an animal
has been exposed to a pathogen?

Bar
code A4 CDR3 J C

Shawe-Taylor Fisher Features



Nice picture
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@ Immune reaction occurs by T-cells binding to the antigen and
then becoming amplified

Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A,
Friedman N, Shawe-Taylor J, Chain B. Tracking global changes induced in the
CD4 T-cell receptor repertoire by immunization with a complex antigen using

short stretches of CDR3 protein sequence. Bioinformatics. 2014
:30(22):3181-8.
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@ Immune reaction occurs by T-cells binding to the antigen and
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@ Single sequence signatures are not present

@ Immune reaction of each mouse is different to the same
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@ Immune reaction occurs by T-cells binding to the antigen and
then becoming amplified

@ Single sequence signatures are not present
@ Immune reaction of each mouse is different to the same
antigen

@ Reaction appears to be distributed: i.e. many different T-cells
are amplified

Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A,
Friedman N, Shawe-Taylor J, Chain B. Tracking global changes induced in the
CD4 T-cell receptor repertoire by immunization with a complex antigen using
short stretches of CDR3 protein sequence. Bioinformatics. 2014
:30(22):3181-8.
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Aim of this talk

@ Introduce Fisher kernels as a method of identifying features
for solving this problem

Shawe-Taylor Fisher Features



Aim of this talk

@ Introduce Fisher kernels as a method of identifying features
for solving this problem

@ Show how feature selection learning algorithms are effective in
identifying useful sets of features

Shawe-Taylor Fisher Features



Aim of this talk

@ Introduce Fisher kernels as a method of identifying features
for solving this problem

@ Show how feature selection learning algorithms are effective in
identifying useful sets of features

@ Explore how we can search large feature sets efficiently

Shawe-Taylor Fisher Features



Aim of this talk

@ Introduce Fisher kernels as a method of identifying features
for solving this problem

@ Show how feature selection learning algorithms are effective in
identifying useful sets of features

@ Explore how we can search large feature sets efficiently

@ Consider searching feature sets that are not a priori computed

Shawe-Taylor Fisher Features



Aim of this talk

Introduce Fisher kernels as a method of identifying features
for solving this problem

@ Show how feature selection learning algorithms are effective in
identifying useful sets of features

Explore how we can search large feature sets efficiently

Consider searching feature sets that are not a priori computed

Results support biological hypothesis that short protein
sequences are critical to the T-cell function
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Kernels from Probabilistic Models

o If we consider learning a representation as a pre-processing
stage, it is natural to consider modelling the data with a
probabilistic model
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Kernels from Probabilistic Models

o If we consider learning a representation as a pre-processing
stage, it is natural to consider modelling the data with a
probabilistic model

@ There are then two main methods of defining kernels from
probabilistic models:

o Averaging over a model class - i.e. each model gives one

feature:
K(x,2) = Y P(x|m)P(z|m)Pu(m)
meM

also known as the marginalisation kernel.
o Fisher kernels for cases where the model is determined by a
real parameter vector
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Kernels from Probabilistic Models

o If we consider learning a representation as a pre-processing
stage, it is natural to consider modelling the data with a
probabilistic model

@ There are then two main methods of defining kernels from
probabilistic models:

o Averaging over a model class - i.e. each model gives one

feature:
K(x,2) = Y P(x|m)P(z|m)Pu(m)
meM

also known as the marginalisation kernel.
o Fisher kernels for cases where the model is determined by a
real parameter vector

e Give a quick (tutorial) example of the Fisher kernel
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Fisher kernels

@ We assume the model is parametrised according to some
parameters: consider the simple example of a 1-dim Gaussian
distribution parametrised by p and o:

_ _ 1 _(X_M)2 Cp— 2
M P(x|0) \/%exp BTy 10 =(p,0) e R 5.
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Fisher kernels

@ We assume the model is parametrised according to some
parameters: consider the simple example of a 1-dim Gaussian
distribution parametrised by p and o:

_ _ 1 _(X_M)2 Cp— 2
M P(x|0) \/%exp BTy 10 =(p,0) e R 5.

@ The Fisher score vector is the derivative of the log likelihood
of an input x wrt the parameters:

(x — p)?
202

1
log L(,,0) (x) = — ~ 35 log (270) .
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Fisher kernels

@ Hence the score vector is given by:

B (¢°.x) - ((X o) Lol ) |

of g 200
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Fisher kernels

@ Hence the score vector is given by:

B (¢°.x) - ((X o) Lol ) |

of g 200

@ Taking o = 0 and og = 1 the feature embedding is given by:
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Fisher kernels
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String kernels as Fisher kernels

@ We can consider a Markov model of generating text
conditioned on the previous k — 1-characters The probability
of a string d being generated by the model is therefore

|d|

P(d) = de[jfk+1:j71]ﬁdj7
j=k

Shawe-Taylor Fisher Features



String kernels as Fisher kernels

@ We can consider a Markov model of generating text
conditioned on the previous k — 1-characters The probability
of a string d being generated by the model is therefore

|d|
P(d) = de[jfk+1:j71]ﬁdj7
j=k

@ Taking the uniform distribution model gives the class of string
kernels - but these can now be learned based on a corpus

Shawe-Taylor Fisher Features



String kernels as Fisher kernels

@ We can consider a Markov model of generating text
conditioned on the previous k — 1-characters The probability
of a string d being generated by the model is therefore

|d|
P(d) = de[jfk+1:j71]ﬁdj7
j=k
@ Taking the uniform distribution model gives the class of string
kernels - but these can now be learned based on a corpus

@ can extend to probabilistic Finite State Automata learned
from the corpus

Shawe-Taylor Fisher Features



String kernels as Fisher kernels

@ We can consider a Markov model of generating text
conditioned on the previous k — 1-characters The probability
of a string d being generated by the model is therefore

|d|
P(d) = de[jfk+1:j71]ﬁdj7
j=k
@ Taking the uniform distribution model gives the class of string
kernels - but these can now be learned based on a corpus

@ can extend to probabilistic Finite State Automata learned
from the corpus

@ results competitive with tfidf BoWs on Reuters, with some
improvements in average precision

* C. Saunders, J. Shawe-Taylor and A. Vinokourov (2003) String Kernels,
Fisher Kernels and Finite State Automata, NIPS 15.
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Finite State Automata Fisher Kernels

@ The generation is now over the transitions: the probability of
a string d being generated by the model is therefore

|d|
P(d) = Hpsj‘,1~>5ja
Jj=1

where s; is the state of the automata after reading symbol d;.
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Finite State Automata Fisher Kernels

@ The generation is now over the transitions: the probability of
a string d being generated by the model is therefore

|d|
P(d) = Hpsj‘,1~>5ja
Jj=1

where s; is the state of the automata after reading symbol d;.

o Note that the state s; will be indexed by some suffix of d[1 : j]
and the transition probabilities from any state sum to 1.

@ The structure of the FSA and the transition probabilities can
be learned from data in order to tune the model to a
particular application

@ Using uniform transition probabilities corresponds to the string
kernel
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Creating Fisher Features

@ We use the Fisher kernel to create a set of features: these
correspond to particular transitions in the probabilistic model,
eg particular subsequence counts in the string kernel or the
subsequence corresponding to a given transition in the FSA.
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Creating Fisher Features

@ We use the Fisher kernel to create a set of features: these
correspond to particular transitions in the probabilistic model,
eg particular subsequence counts in the string kernel or the
subsequence corresponding to a given transition in the FSA.

@ Our hypothesis for our particular application is that the
immune reaction will be characterised by a small subset of
short sequences.

@ We will use a 1-norm regularised learning algorithm to
perform feature selection.

@ this has the advantage of performing feature selection, but
also of being able to learn effectively in the presence of large
numbers of features.
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@ Rademacher complexity gives an alternative measure of
function class complexity:

2 m
Rm(H) = EsEqeq_1,41ym [m sup ; Uih(Xi)]
where we assume the class H is closed under negation.

@ Rademacher complexity is not increased by taking the convex
closure of H:

Rum(BC(H)) < BRm(H)  for

C(H) = {Z ajhi b € H, |lalli = 1}
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Generalization error for linear classifiers

Using this definition we can bound the generalisation in terms of
the margin distribution as with SVMs

- log(1/9)
lizati < i + BR, 2\ ————=
generalization error < ;—1 & + BRm(H) + o

where H is the class of weak learners with range [—1, 1] and

A
B =3 i
Note the &; are the margin slack variables computed as

N
= 1=y > ahi(x)
=1

+
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Linear programming machine

@ Note that Rademacher complexity of N feature indicators is
bounded by 1/m + 4In(Nm)/\/m

@ The bound suggests an optimisation similar to that of SVMs.

@ seeks linear function in a feature space defined explicitly.

@ For example using the 1-norm it seeks w to solve
minwpe  [lwlli+ C37, &

subject to y; ((w,x;) +b) > 1— &, & >0,
i=1,...,m.
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@ Can explicitly optimise margin with 1-norm fixed:

maXp,a,¢ p—DY " &

subject to yiHia>p—¢, & >0a >0

N
Zj:l aj =1
@ Dual has the following form:
ming I3

subject to >, uwiyiHi < B, j=1,...,N,
ST ui=1,0<u <D,

(Demiriz, Bennett and S-T, 2001)
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Linear programming boosting

initialise u; = 1/m,i=1,....,m, B =00, J =10
choose j* that maximises f(j) = > uiyiHj

if f(j*) < 3 solve primal restricted to J and exit
J=JU{*

Solve dual restricted to set J to give u;, 8

Go to 2

Note that u; is a distribution on the examples
Each j added acts like an additional weak learner
f(j) is simply the weighted classification accuracy
Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound

@ Guaranteed convergence and soft stopping criteria

S OlhW N
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Initial Results

o Applying the task of distinguishing OVA from non-OVA mice
Fisher features improve accuracy from around 0.70 to 0.74.
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Initial Results

o Applying the task of distinguishing OVA from non-OVA mice
Fisher features improve accuracy from around 0.70 to 0.74.

@ Using selected features in a Gaussian kernel with an SVM
increases accuracies to 0.72 for string features and 0.83 for
Fisher features.

@ The selection criterion for including features into the model is:
choose j* that maximises f(j) = > uiy;Hjj, where u are
current dual variables.

@ Suggests we may be more ambitious about including features
from larger sets
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Sequences of Transitions

o Consider features created by a sequence of transitions:

S1—>S...— Sk
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Sequences of Transitions

o Consider features created by a sequence of transitions:
S1—>S...— Sk
o If hs, s, is the feature corresponding to transition s; — s;11

then

k—1 m

m k—1
E Ui)’ig hsj»%sj-ﬂ E ujyih sj~>sj+1 E qj
-1 =1

j=1i=1
where g; is a weighting for each edge of the FSA,

so can use dynamic programming to efficiently find the
sequence of a specified length that should be selected.
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Results with sequences

Error bar plot of accuracy
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Sequences of Transitions

@ This method efficiently searches a potentially very large space
of features: eg 207 for the 5 transitions case
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Sequences of Transitions

@ This method efficiently searches a potentially very large space
of features: eg 207 for the 5 transitions case

@ but features correspond to sums of original features as
approach does not restrict the sequences to be contiguous

@ for interpretability would prefer to restrict to contiguous
features

@ this can be achieved by using the dynamic programming to
suggest pairs of features that might be useful and then
introduce a new state/transition to represent the contiguous
feature
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Adding states/transitions
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Results with adding states/transitions

Error bar plot of accuracy
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Average Size of the Final Graph

# edges | # nodes
String (from empty) 304 15
Fisher (from empty) 321 16
String 8208 410
String 8368 418
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Biological Conclusions

@ The OVA response is diverse and predominantly private at the
level of CDR37?
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Biological Conclusions

@ The OVA response is diverse and predominantly private at the
level of CDR37?

@ OVA expanded CDR37s have some sequence similarity

@ Amino acid triplets provide features which in combination
contribute to defining an OVA response

@ Each triplet has a well-defined position along the CDR3

@ Many selected triplets are found at the ends of the CDR3,
within the sequence coded by V or J region genomic
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Summary and Conclusions

@ Consider an intriguing application of machine learning to
analysing the immune system
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Summary and Conclusions

@ Consider an intriguing application of machine learning to
analysing the immune system

@ Consider the use of Fisher kernels as a method of generating
potential features

@ 1-norm regularisation combined with a hinge loss generates a
boosting style algorithm

@ Feature selection corresponds to weak learner selection: we
have introduced methods for achieving this efficiently in large
implicitly defined feature sets.
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