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Experiment

β chain CDR3 TCR repertoire sequenced from CD4 spleen
cells.

unimmunised mice
‘early’ immunised mice (5,7 and 14 days) immunised with
Complete Freund’s Adjuvant (CFA) or ovalbumin (OVA) with
CFA
Isolate CD4 cells, amplify (NO barcoding, multiplex) and
sequence on HiSeq

Can we detect OVA vs. no-OVA from the sequences collected?

Can we detect from a sample of T-cell sequences if an animal
has been exposed to a pathogen?
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Nice picture
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Observations

Immune reaction occurs by T-cells binding to the antigen and
then becoming amplified

Single sequence signatures are not present

Immune reaction of each mouse is different to the same
antigen

Reaction appears to be distributed: i.e. many different T-cells
are amplified

Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A,

Friedman N, Shawe-Taylor J, Chain B. Tracking global changes induced in the

CD4 T-cell receptor repertoire by immunization with a complex antigen using

short stretches of CDR3 protein sequence. Bioinformatics. 2014

;30(22):3181-8.
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Aim of this talk

Introduce Fisher kernels as a method of identifying features
for solving this problem

Show how feature selection learning algorithms are effective in
identifying useful sets of features

Explore how we can search large feature sets efficiently

Consider searching feature sets that are not a priori computed

Results support biological hypothesis that short protein
sequences are critical to the T-cell function
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Kernels from Probabilistic Models

If we consider learning a representation as a pre-processing
stage, it is natural to consider modelling the data with a
probabilistic model

There are then two main methods of defining kernels from
probabilistic models:

Averaging over a model class - i.e. each model gives one
feature:

κ(x , z) =
∑
m∈M

P(x |m)P(z |m)PM(m)

also known as the marginalisation kernel.
Fisher kernels for cases where the model is determined by a
real parameter vector

Give a quick (tutorial) example of the Fisher kernel
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Fisher kernels

We assume the model is parametrised according to some
parameters: consider the simple example of a 1-dim Gaussian
distribution parametrised by µ and σ:

M =

{
P(x |θ) =

1√
2πσ

exp

(
−(x − µ)2

2σ2

)
: θ = (µ, σ) ∈ R2

}
.

The Fisher score vector is the derivative of the log likelihood
of an input x wrt the parameters:

logL(µ,σ) (x) = −(x − µ)2

2σ2
− 1

2
log (2πσ) .
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Fisher kernels

Hence the score vector is given by:

g
(
θ0, x

)
=

(
(x − µ0)

σ20
,

(x − µ0)2

σ30
− 1

2σ0

)
.

Taking µ0 = 0 and σ0 = 1 the feature embedding is given by:
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Fisher kernels
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String kernels as Fisher kernels

We can consider a Markov model of generating text
conditioned on the previous k − 1-characters The probability
of a string d being generated by the model is therefore

P(d) =

|d |∏
j=k

pd [j−k+1:j−1]→dj ,

Taking the uniform distribution model gives the class of string
kernels - but these can now be learned based on a corpus

can extend to probabilistic Finite State Automata learned
from the corpus

results competitive with tfidf BoWs on Reuters, with some
improvements in average precision

? C. Saunders, J. Shawe-Taylor and A. Vinokourov (2003) String Kernels,

Fisher Kernels and Finite State Automata, NIPS 15.
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Finite State Automata Fisher Kernels

The generation is now over the transitions: the probability of
a string d being generated by the model is therefore

P(d) =

|d |∏
j=1

psj−1→sj ,

where sj is the state of the automata after reading symbol dj .

Note that the state sj will be indexed by some suffix of d [1 : j ]
and the transition probabilities from any state sum to 1.

The structure of the FSA and the transition probabilities can
be learned from data in order to tune the model to a
particular application

Using uniform transition probabilities corresponds to the string
kernel
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Creating Fisher Features

We use the Fisher kernel to create a set of features: these
correspond to particular transitions in the probabilistic model,
eg particular subsequence counts in the string kernel or the
subsequence corresponding to a given transition in the FSA.

Our hypothesis for our particular application is that the
immune reaction will be characterised by a small subset of
short sequences.

We will use a 1-norm regularised learning algorithm to
perform feature selection.

this has the advantage of performing feature selection, but
also of being able to learn effectively in the presence of large
numbers of features.
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L1 sparsity

Rademacher complexity gives an alternative measure of
function class complexity:

Rm(H) = ESEσ∈{−1,+1}m

[
2

m
sup
h∈H

m∑
i=1

σih(xi )

]

where we assume the class H is closed under negation.

Rademacher complexity is not increased by taking the convex
closure of H:

Rm(BC(H)) ≤ BRm(H) for

C(H) =

{∑
i

αihi : hi ∈ H, ‖α‖1 = 1

}
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Generalization error for linear classifiers

Using this definition we can bound the generalisation in terms of
the margin distribution as with SVMs

generalization error ≤
m∑
i=1

ξi + BRm(H) + 2

√
log(1/δ)

2m

where H is the class of weak learners with range [−1, 1] and
B =

∑T
i=1 αi .

Note the ξi are the margin slack variables computed as

ξi =

1− yi

N∑
j=1

αjhj(xi )


+
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Linear programming machine

Note that Rademacher complexity of N feature indicators is
bounded by 1/m + 4 ln(Nm)/

√
m

The bound suggests an optimisation similar to that of SVMs.

seeks linear function in a feature space defined explicitly.

For example using the 1-norm it seeks w to solve

minw,b,ξ ‖w‖1 + C
∑m

i=1 ξi

subject to yi (〈w, xi 〉+ b) ≥ 1− ξi , ξi ≥ 0,
i = 1, . . . ,m.
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Dual form

Can explicitly optimise margin with 1-norm fixed:

maxρ,a,ξ ρ− D
∑m

i=1 ξi

subject to yiHia ≥ ρ− ξi , ξi ≥ 0,aj ≥ 0∑N
j=1 aj = 1.

Dual has the following form:

minβ,u β

subject to
∑m

i=1 uiyiHij ≤ β, j = 1, . . . ,N,∑m
i=1 ui = 1, 0 ≤ ui ≤ D.

(Demiriz, Bennett and S-T, 2001)
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Linear programming boosting

1 initialise ui = 1/m, i = 1, . . . ,m, β =∞, J = ∅
2 choose j? that maximises f (j) =

∑m
i=1 uiyiHij

3 if f (j?) ≤ β solve primal restricted to J and exit
4 J = J ∪ {j?}
5 Solve dual restricted to set J to give ui , β
6 Go to 2

Note that ui is a distribution on the examples
Each j added acts like an additional weak learner
f (j) is simply the weighted classification accuracy
Hence gives ‘boosting’ algorithm - with previous weights
updated satisfying error bound
Guaranteed convergence and soft stopping criteria
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Initial Results

Applying the task of distinguishing OVA from non-OVA mice
Fisher features improve accuracy from around 0.70 to 0.74.

Using selected features in a Gaussian kernel with an SVM
increases accuracies to 0.72 for string features and 0.83 for
Fisher features.

The selection criterion for including features into the model is:
choose j? that maximises f (j) =

∑m
i=1 uiyiHij , where u are

current dual variables.

Suggests we may be more ambitious about including features
from larger sets
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Sequences of Transitions

Consider features created by a sequence of transitions:

s1 → s2 . . .→ sk

If hsj→sj+1 is the feature corresponding to transition sj → sj+1

then

m∑
i=1

uiyi

k−1∑
j=1

hsj→sj+1(i) =
k−1∑
j=1

m∑
i=1

uiyihsj→sj+1(i) =
k−1∑
j=1

qj

where qj is a weighting for each edge of the FSA,

so can use dynamic programming to efficiently find the
sequence of a specified length that should be selected.
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Results with sequences
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Sequences of Transitions

This method efficiently searches a potentially very large space
of features: eg 207 for the 5 transitions case

but features correspond to sums of original features as
approach does not restrict the sequences to be contiguous

for interpretability would prefer to restrict to contiguous
features

this can be achieved by using the dynamic programming to
suggest pairs of features that might be useful and then
introduce a new state/transition to represent the contiguous
feature
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Adding states/transitions
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Results with adding states/transitions
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Average Size of the Final Graph

# edges # nodes

String (from empty) 304 15
Fisher (from empty) 321 16
String 8208 410
String 8368 418
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Biological Conclusions

The OVA response is diverse and predominantly private at the
level of CDR3?

OVA expanded CDR3?s have some sequence similarity

Amino acid triplets provide features which in combination
contribute to defining an OVA response

Each triplet has a well-defined position along the CDR3

Many selected triplets are found at the ends of the CDR3,
within the sequence coded by V or J region genomic
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Summary and Conclusions

Consider an intriguing application of machine learning to
analysing the immune system

Consider the use of Fisher kernels as a method of generating
potential features

1-norm regularisation combined with a hinge loss generates a
boosting style algorithm

Feature selection corresponds to weak learner selection: we
have introduced methods for achieving this efficiently in large
implicitly defined feature sets.
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