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Object model

We consider collections of objects, each containing a class label
and a vector of features.
Class labels and features are categorical.

O = (C ,F1,F2, . . . ,Fk) = (C ,F).

Objects are drawn i.i.d. from a generative distribution P(O).

P(O) = P(C ,F) = P(C )P(F|C ).
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A simple and well-known model

Remember: P(O) = P(C )P(F|C ).

F has k feature variables.
A simple (Naive Bayes) model results if we assume (conditionally)
independent features

P(F|C ) =
k∏

i=1

P(Fi |C ).
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Estimation from training data

We are given some objects on, assumed to be drawn from P(O).
Assume the Naive Bayes model: estimating the parameter becomes
a sequence based estimation problem.
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Sequences and probabilities

Symbols: Consider a finite alphabet X of m letters and a
sequence xn over that alphabet.

Parameters: Assume that this sequence is generated by an i.i.d.
source with probabilities P(x) = θx .

Counts: n(x ; xn) gives the number of times x occurs in xn.

P(xn) =
n∏

i=1

θxi =
∏
x∈X

θ
n(x ;xn)
x .

Dirichlet:

PE(xn) =
Γ(m2 )

Γ(12)m

∏
x∈X Γ(n(x ; xn) + 1/2)

Γ(n + m
2 )
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Nice property of PE

If X n is generated by and i.i.d. source then

Pr

{
lim
n→∞

1

log n
log

P(X n)

n
m−1
2 PE(X n)

= 0

}
= 1.

So, for the ratio of probabilities holds approximately

log
P(X n)

PE(X n)
≈ m − 1

2
log n.

This difference (log regret) is linear in the alphabet size!
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Unknown probabilities

For a collection on we can now estimate the probability P(on)
under the naive Bayes model assumption as

P̂(on) = PE(cn) ·
k∏

i=1

PE(f ni |cn).

Assume for example binary features and two classes and the Naive
Bayes model, then

log
P(on)

P̂(on)
≈ 1

2
log n + 2k

1

2
log n.

Amir Jalalirad and Tjalling Tjalkens Dependent, redundant, and irrelevant features



The fully dependent model

The Naive Bayes assumption is not realistic.
All object probabilities can be described by the fully dependent
model P(F|C ).
However this results in a very large log regret.
Again assuming binary features and two classes, we now find

log
P(on)

P̂(on)
≈ 1

2
log n + 2

2k − 1

2
log n.
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Less naive Bayes model

A meaningful extention to this model is to assume partial
independence.
E.g.

P(F|C ) = P(F1|C )P(F2,F4|C ) . . . .

With unknown probabilities this becomes

P̂(on) = PE(cn)PE(f n1 |cn)PE(f n2 , f
n
4 |cn) . . . .

Here PE(f n2 , f
n
4 |cn) is calculated assuming that (f2, f4) is a symbol

from a “super alphabet”.
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Unknown model

But what if we don’t know the partial dependencies?
Example: If k = 3 we find the following models:

P(F1|C )P(F2|C )P(F3|C ) (1)(2)(3)

P(F1,F2|C )P(F3|C ) (1, 2)(3)

P(F1,F3|C )P(F2|C ) (1, 3)(2)

P(F2,F3|C )P(F1|C ) (2, 3)(1)

P(F1,F2,F3|C ) (1, 2, 3)
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Bayesian mixture (evidence) calculation

We propose to calculate P̂(on) assuming a ‘Bayesian’ prior over
the models.

PBM(on) =
∑

M∈M
P(M)P(on|M).

If the source parameters, probabilities, are also unknown we use

P̂BM(on) =
∑

M∈M
P(M)PE(on|M).

(We actually focus on the P(fn|cn) part only.)
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Computational complexity

Assume that all ‘partial’ probabilities P(f ni , . . . , f
n
j |cn) are

computed and we wish to calculate the model probabilities.
After some combinatorial analysis we find that we need

Bk+1 − 2Bk = O(

(
k

log k

)k

) multiplications

Bk − 1 = O(

(
k

log k

)k

) additions
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Network method
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We get the following equations

P1 = PE(f n1 |cn) idem f2 and f3

N12 = PE(f n1 , f
n
2 |cn) + P1 · P2 = P12 + P1P2 idem N13 and N23

N123 = PE(f n1 , f
n
2 , f

n
3 |cn) + N12P3 + N13P2 + N23P1

= P123 + P12P3 + P13P2 + P23P1 + 3P1P2P3

So, contributions from all 5 possible models, with implicit
non-uniform weighting (prior).
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Bayesian mixture calculation revisited

3k − 2k+1 + 1

2
vs. O(

(
k

log k

)k

) multiplications and additions.

Amir Jalalirad and Tjalling Tjalkens Dependent, redundant, and irrelevant features



Simpler network

If we assume that the features are ordered such that only
consecutive features can be in a dependent set then we cannot
describe all models as before.

P(F1|C )P(F2|C )P(F3|C ) (1)(2)(3)

P(F1,F2|C )P(F3|C ) (1, 2)(3)

P(F1,F3|C )P(F2|C ) (1, 3)(2)

P(F2,F3|C )P(F1|C ) (2, 3)(1)

P(F1,F2,F3|C ) (1, 2, 3)
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New network
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We get the following final equation

N123 = P123 + P12P3 + P23P1 + 2P1P2P3

as compared to

N123 = P123 + P12P3 + P13P2 + P23P1 + 3P1P2P3
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Bayesian mixture calculation revisited

(k − 1)k(k + 1)

6
vs. (k − 1)2k−2 multiplications

(k − 1)k(k + 1)

6
vs. 2k−1 − 1 additions
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Probability comparison
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Model selection

M∗ = arg max
M∈M

P(on|M)
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Solution

Use the Network, but now take the maximum of the terms instead
of the sum.

N123 = max{P123,N12P3,N13P2,N23P1}

No computational complexity change.
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Detecting independence

Let (X ,Y )n be random variables drawn i.i.d. from a probability
P(X ,Y ).
We can prove that for sufficiently large n it is very likely that
(almost surely)

if P(X ,Y ) = P(X )P(Y ) then PE(xn, yn) < PE(xn)PE(yn), and
if P(X ,Y ) 6= P(X )P(Y ) then PE(xn, yn) > PE(xn)PE(yn).
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Probability that chosen model is correct
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Model and feature selection
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Goal

Irrelevant: A group of features F is irrelevant if they are
independent of the class,

P(F|C ) = P(F).

Redundant: A group of features F is redundant if, given another
group of features G, they are independent of the
class,

P(F|G,C ) = P(F|G).

Use a modified maximizing network method.

Convergence proof is available.
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Computations

Unordered features

Network Direct computation

k multipl. comp. multipl. comp.

O
(
3k
)

O
(
3k
)
≥ O

((
k

log k

)k)
≥ O

((
k

log k

)k)
5 450 296 269 201

20 8.71109 5.23109 3.081015 4.751014

50 1.791024 1.081024 4.841049 3.261048

Ordered features

Network Direct computation

k multipl. comp. multipl. comp.
O
(
k3
)

O
(
k3
)

≈ O
(
k2.6k

)
≈ O

(
2.6k

)
5 100 70 122 88

50 1.04105 6.37104 1.231022 5.731020

100 8.33105 5.05105 1.991043 4.541041
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Wrap up

I The computational gain in the network, like in the CTW,
stems from recursive locality of behaviour.

I The Bayes mixing approach follows an MDL principle.

I Other sequence based probability estimation approaches can
be used as these are completely independent from the mixing.

I Using the partial dependency model class we can actually get
useful information about the structure of data.
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