
Refined Core Relaxation for Core-Guided MaxSAT
Solving
Hannes Ihalainen !

HIIT, Department of Computer Science, University of Helsinki, Finland

Jeremias Berg !

HIIT, Department of Computer Science, University of Helsinki, Finland

Matti Järvisalo !

HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract
Maximum satisfiability (MaxSAT) is a viable approach to solving NP-hard optimization problems.
In the realm of core-guided MaxSAT solving—one of the most effective MaxSAT solving paradigms
today—algorithmic variants employing so-called soft cardinality constraints have proven very effective.
In this work, propose to combine weight-aware core extraction (WCE)—a recently proposed approach
that enables relaxing multiple cores instead of a single one during iterations of core-guided search—
with a novel form of structure sharing in the cardinality-based core relaxation steps performed in
core-guided MaxSAT solvers. In particular, the proposed form of structure sharing is enabled by
WCE, which has so-far not been widely integrated to MaxSAT solvers, and allows for introducing
fewer variables and clauses during the MaxSAT solving process. Our results show that the proposed
techniques allow for avoiding potential overheads in the context of soft cardinality constraint based
core-guided MaxSAT solving both in theory and in practice. In particular, the combination of WCE
and structure sharing improves the runtime performance of a state-of-the-art core-guided MaxSAT
solver implementing the central OLL algorithm.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Constraint and logic programming

Keywords and phrases maximum satisfiability, MaxSAT, core-guided MaxSAT solving

Digital Object Identifier 10.4230/LIPIcs.CP.2021.35

Supplementary Material Source code and experiment data are available at https://bitbucket.
org/coreo-group/cgss/

Funding Work financially supported by Academy of Finland under grants 322869 and 342145.

1 Introduction

Maximum satisfiability (MaxSAT) [8, 19] has in recent years developed into a noteworthy
declarative Boolean optimization paradigm, with successful applications in various NP-hard
industrial problem domains and artificial intelligence applications (see e.g. [8] and references
therein).

So-called core-guided MaxSAT algorithms form one of the most central MaxSAT solving
paradigms today [15, 26, 25, 28, 12, 18, 5, 27, 4]. The core-guided approach consists of
iteratively extracting unsatisfiable cores, i.e., inconsistent subsets of soft constraints, using a
Boolean satisfiability (SAT) solver, and at each iteration transforming the MaxSAT instance
to include knowledge of the new unsatisfiable cores. This transformation involves compiling
the cores into the instance via additional cardinality constraints. A key aspect in which the
various core-guided algorithm differ is how exactly the transformations are performed. The
use of so-called soft cardinality constraints [1, 28, 26] has recently proven to be a particularly
effective approach to core-guided MaxSAT solving [7, 6].

© Hannes Ihalainen, Jeremias Berg, Matti Järvisalo;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hannes.ihalainen@helsinki.fi
mailto:jeremias.berg@helsinki.fi
https://orcid.org/0000-0001-7660-8061
mailto:matti.jarvisalo@helsinki.fi
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.CP.2021.35
https://bitbucket.org/coreo-group/cgss/
https://bitbucket.org/coreo-group/cgss/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Refined Core Extraction for MaxSAT

In this work, we focus on improving and understanding core-guided MaxSAT algorithms
through fine-grained changes to the way the transformations at each iteration are performed
and realized. Here we focus in particular on realizing the proposed improvements and
understanding their effects in the context of OLL [26, 1], which gives one of the currently
most successful MaxSAT solving approaches through its implementation in the RC2 MaxSAT
solver [18], and arguably represents the current state of the art in complete core-guided
MaxSAT solving. That said, the techniques proposed in this work are also applicable in
the context of other current and foreseeable variants of the core-guided approach using soft
cardinality constraints; we will more shortly provide evidence on this with an implementation
of the PMRES [28] core-guided algorithm, in addition to OLL.

Our main contributions are centered around and build on the recently proposed approach
of weight-aware core extraction (WCE) [11]. In short, WCE enables relaxing multiple cores
instead of a single one during iterations of core-guided search by exploiting soft clause weights
in weighted MaxSAT instances, and can be viewed as an extension of work on computing
lower bounds for MaxSAT [16, 20].

As our main contribution, we propose a novel form of structure sharing in the cardinality-
based core transformation steps performed in core-guided MaxSAT solvers. The proposed form
of structure sharing is enabled by WCE. While WCE has so-far not been widely integrated
to MaxSAT solvers, its combination with the here proposed structure sharing approach
provides performance improvements to RC2, as we will empirically show. Syntactically,
the structure sharing approach allows for introducing fewer variables and clauses during
the MaxSAT solving process, which alleviates to an extent issues resulting from iteratively
performing core transformation steps which in turn results in the working formulas of the
algorithm increasing in size beyond the capabilities of modern SAT solvers. Here we note
that, while so-called incremental cardinality constraints have been proposed and are applied
in core-guided MaxSAT solvers [25, 24, 23] with the goal of keeping the working formulas
smaller by more carefully introducing necessary parts of cardinality constraint encodings,
the structure sharing approach we propose is a conceptually different technique. Structure
sharing focuses of sharing substructures of multiple cores extracted via WCE during a
single iteration of core-guided search. Furthermore, as we will show, shared substructures
obtained via structure sharing allow for a more careful introduction of equivalence in the
core transformations steps.

By a careful implementation on top of the state-of-the-art RC2 MaxSAT solver, we
demonstrate that structure sharing and refined equivalences, combined with WCE, improves
the runtime performance of RC2 on standard weighted MaxSAT benchmarks from MaxSAT
Evaluations. Complementing the main practical contributions, we also provide a theoretical
analysis of on the impact of integrating WCE into the OLL algorithm, more specifically on
the effect that WCE has on the number of core extractions needed for termination and the
sizes of cores extracted (as well as its potential drawbacks).

2 Maximum Satisfiability

A literal l is a Boolean variable x or its negation ¬x, the negation of a variable satisfies
¬¬x = x. A clause C is disjunction (or set) of literals and a CNF formula F is a conjunction
(or set) of clauses. A truth assignment τ maps Boolean variables to 0 (false) and 1 (true).
τ is extended to literals l, clauses C and formulas F , respectively, by τ(¬l) = 1 − τ(l),
τ(C) = max{τ(l) | l ∈ C} and τ(F) = min{τ(C) | C ∈ F}. An assignment τ is a model of
F if τ(F) = 1. A formula is satisfiable if it has model, and otherwise unsatisfiable.

H. Ihalainen, J. Berg, M. Järvisalo 35:3

A MaxSAT instance F consists of two CNF formulas, the set of hard clauses hard(F)
and the set of soft clauses soft(F), and a weight function w : soft(F) → N that assigns
a positive weight to each soft clause. An assignment τ is a solution to F if it satisfies
the hard clauses. The cost COST(F , τ) of τ is the sum of the weights of the soft clauses
it falsifies, i.e. COST(F , τ) =

∑
C∈soft(F)(1 − τ(C))w(C). A solution τ is optimal if

COST(F , τ) ≤ COST(F , τ ′) for all solutions τ ′ to F . The cost COST(F) of an instance
F is the cost of its optimal solutions. In the rest of this paper, we assume all MaxSAT
instances have solutions, i.e. that hard(F) is satisfiable. In practice, the implementations of
core-guided MaxSAT algorithms that we are aware off check this assumption by invoking a
SAT solver on the hard clauses prior to search.

To simplify the discussion we will assume that every Ci ∈ soft(F) is of form (¬bi) for a
variable bi. The assumption can be made without loss of generality since one can always
transform any soft clause C ∈ soft(F) into the hard clause C ∨ b and the soft clause (¬b)
with w((¬b)) = w(C). A variable b for which (¬b) ∈ soft(F) is a blocking variable. Let
B(F) be the set of all blocking variables of F . As setting b = 1 falsifies the soft clause
(¬b), we can refer to soft clauses and blocking variables interchangeably, and extend the
weight function w to blocking variables by w(b) = w((¬b)). The cost of a solution τ is then
COST(F , τ) =

∑
b∈B(F) τ(b)w(b). For a set B ⊂ B(F) we let minw(B) = min{w(b) | b ∈ B}

be the smallest weight of the variables in B.
A central concept in modern MaxSAT solving is that of a (an unsatisfiable) core. Given a

MaxSAT instance F , a set κ ⊆ soft(F) is a core if the formula hard(F)∧κ is unsatisfiable.
As each soft clause is a unit clause containing the negation of a blocking variable, this implies
that any solution to F sets b = 1 for at least one b ∈ B(F) for which (¬b) ∈ κ. Hence we
often view a core as a set of blocking variables (or a clause) {b | (¬b) ∈ κ} that is entailed by
hard(F). A core κ is minimal (an MUS) if hard(F) ∧ κs is satisfiable for all κs ⊂ κ.

I Example 1. Let n and r be two integers with 0 < r < n, and Fn,r a MaxSAT instance
such that hard(Fn,r) contains clauses equivalent to

∑n
i=1 bi ≥ r and B(Fn,r) = {b1, . . . , bn}.

In words, the clauses of Fn,r enforce that at least r soft clauses should be falsified (recall
that assigning a blocking variable b to 1 corresponds to falsifying a soft clause). Assuming
w(bi) = 1 for all i = 1 . . . n, any solution τ that sets exactly r variables in B(Fn,r) to 1 and
the rest to 0 is an optimal solution to Fn,r and has COST(Fn,r, τ) = COST(Fn,r) = r.
Any κ ⊂ B(Fn,r) that contains at least n− r+ 1 variables is a core. In order to see this note
that since r blocking variables need to be set to 1—or equivalently r soft clauses need to
be falsified—by any solution, it follows that any subset of blocking variables with at least
(n− r + 1) variables has to contain at least 1 that is set to 1 by any solution. The MUSes of
Fn,r are the subsets of B(Fn,r) that contain exactly n− r + 1 variables.

Unit propagation is the main form of constraint propagation applied in CDCL SAT
solvers. Consider a clause C = {l1, . . . , ln} and assume the value of li has been fixed to 0 for
all i = 1, . . . , n− 1. Then in order for C to be satisfied, the value of the literal ln needs to
be fixed to 1. We say that ln = 1 is (unit) propagated by the clause C and the assignments
li = 0 for i = 1, . . . , n−1. CDCL SAT solvers perform unit propagation whenever the current
partial assignment sets all but one literal from a clause to false (0).

3 MaxSAT by Soft Cardinality Constraints

Our main focus is on the OLL algorithm, which is one of the most successful core-guided
MaxSAT solving approaches using so-called soft cardinality constraints. Algorithm 1 repres-
ents a generic abstraction of the core-guided approach using soft cardinality constraints to

CP 2021

35:4 Refined Core Extraction for MaxSAT

Algorithm 1 CG, a generic view on core-guided MaxSAT solving with soft cardinality
constraints.

Input: A MaxSAT instance F
Output: An optimal solution τ to F

1 begin
2 F1 ← F
3 for i = 1, . . . do
4 (res, κ, τ)← Extract-Core(F i,B(F i))
5 if res=”satisfiable” then return τ

6 wκ ← minw(κ)
7 for b ∈ κ do
8 w(b)← w(b)− wκ

9 F i+1 ← F i ∪Relax(κ,wκ)

MaxSAT solving. When invoked on an instance F , the algorithm begins by initializing a
working instance F1 to F on Line 2. Then the main search loop (Lines 3-9) is started. In
each iteration of the loop, a core of the current working instance F i is extracted on Line 4
using the assumption interface of the underlying SAT solver [14]. In Algorithm 1 the use
of the SAT solver is abstracted into the function Extract-Core that takes as input the
current instance and its blocking variables (to use as assumptions). The function returns a
triple (res, κ, τ). If res = ”satisfiable” then τ is an assignment satifying hard(F i) that sets
τ(b) = 0 for each b ∈ B(F i). Such τ has COST(F i, τ) = 0 and will be optimal for both F i
and F , so Algorithm 1 terminates and returns it (Line 5).

If the SAT solver instead reports unsatisfiable, it will return a core κ of F i expressed as a
subset of B(F i) (i.e. as a clause over blocking variables). Next, the variables in κ are refined
(Lines 6-8). During refinement, the weight of each blocking variable b ∈ κ is lowered by
minw(κ). An important intuition here is that at least one of the variables in κ will have its
weight set to 0, and will thus not be treated as a blocking variable in subsequent iterations.
Refining the blocking variables essentially corresponds to clause cloning via assumptions
(see, e.g., [11, 3, 21]), a common way for core-guided MaxSAT solvers to take soft clause
weights into account.

After refining the blocking variables, the core κ is relaxed on Line 9 via the function
Relax. Core-guided MaxSAT algorithms differ mainly in the specifics of the Relax function.
For each κ of F i, at least one variable in κ needs to be assigned to 1 by any optimal solution
to F i. Essentially all instantiations of Relax we are aware of relax the instance by adding
new clauses and blocking variables to F that allow, in a controlled way, a single blocking
variable in κ to be set to 1 in subsequent iterations. In this work we focus especially on the
transformation used by the OLL core-guided MaxSAT algorithm [26, 1], defined as follows.

I Definition 2. Given (κ,w) = ({b1, . . . , bn}, w), OLL implements Relax by adding
O(n logn) new variables and O(n2) new clauses corresponding to (

∑n
k=1 bk ≥ (i+ 1))→ bκi

for i = 1, . . . , n− 1. Each bκi is a new blocking variable of weight w.

An informal argument for the correctness of OLL, i.e., the fact that the final assignment
returned by it will be an optimal solution to F , is as follows (a formal argument can be
found in [26]). Since κ is a core of F i, any optimal solution of F i will assign at least one
b ∈ κ to 1 (i.e., falsify at least one (¬b) ∈ κ on the clause-level). During refinement, at
least one blocking variable will have its weight lowered to 0 and will not be considered a

H. Ihalainen, J. Berg, M. Järvisalo 35:5

blocking variable in subsequent iterations. This means that the SAT solver is free to assign
it to 1 in subsequent iterations. At the same time, the clauses added by Relax (detailed
in Definition 2) enforce that for any k > 1 number of blocking variables in κ assigned to 1,
k − 1 of the new blocking variables will also be unit propagated to 1, thus incurring more
cost. In other words, the OLL relaxation allows one—but only one—of the blocking variables
in κ to incur cost "for free" in subsequent iterations.

In the rest of the paper we use the name OLL to refer to Algorithm 1 with Relax
instantiated as in Definition 2.

4 Structure Sharing for Improving Core-Guided MaxSAT Solvers

In this section we present structure sharing, the main contribution of this work. Structure
sharing is a technique that enables more compact core relaxation steps within the OLL
algorithm. In addition to requiring fewer clauses, we will also demonstrate that core
relaxation with structure sharing enables more propagation in the underlying SAT solver
during subsequent iterations.

We begin by discussing the totalizer encoding for cardinality constraints [9], a common
way of realizing the OLL algorithm, and weight-aware core extraction [11], a refinement to
the standard way in which OLL extracts cores. Both of these are central for understanding
structure sharing.

4.1 The Totalizer Encoding of Cardinality Constraints
For our purposes, a totalizer T (V) over a set V = {v1, . . . , vn} of variables is a satisfiable CNF
formula that defines a set O(V) = {o0, . . . , on−1} of output variables. Informally speaking,
the output variables count the number of input variables set to true by assignments satisfying
T (V). More precisely, if τ satisfies T (V), then τ(ok) = 1 if and only if

∑
v∈V τ(v) ≥ k + 1.

A common way of realizing the OLL algorithm—used for example in the state-of-the-art
solver RC2—is to relax a core κ by adding a totalizer T (κ) to the instance and treating the
output variables of T (κ) as blocking variables in subsequent iterations, i.e., setting bκi = oi.
T (κ) can be viewed as a tree with |κ| leaves each associated with a distinct variable

of κ. As an example, Figure 1 (left) gives the tree representation of the totalizer T (κ)
over κ = {b1, b2, b3, b4}. The root of the tree is associated with the output variables of the
totalizer, i.e., the new blocking variables added when relaxing κ. Notice that since that the
definition of a core implies that at least one variable in κ is set to true by any solution, the
output variable bκ0 of T (κ) is often omitted in realizations of OLL, including RC2.

The non-leaf internal nodes are associated with the so-called linking variables of T (κ) used
in the encoding of the semantics of the output variables. For an internal node D of a totalizer
T (κ), let S(D) ⊂ κ be the set of variables associated with the leaves of the subtree rooted
at D. The linking variables {dS(D)

0 , . . . , d
S(D)
|S(D)|−1} associated with D count the number of

variables of S(D) set to true by a satisfying assignment τ of T (κ). More precisely, if τ
satisfies T (κ), then τ(dS(D)

k) = 1 if and only if
∑
b∈S(D) τ(b) ≥ k+ 1. Essentially, the linking

variables of a totalizer can be viewed as the output variables of a sub-totalizer built over
S(D).

Consider a totalizer T (κ) and one of its output variable bκk . We say that the constraints
encoding

(∑
b∈κ b ≥ k + 1

)
→ bκk are the implication constraints of bκk . Analogously, we

say that the constraints encoding bκk →
(∑

b∈κ b ≥ k + 1
)
are the equivalence constraints

of bκk . The terminology is extended to linking variables dS(D)
k ; the implication constraints

CP 2021

35:6 Refined Core Extraction for MaxSAT

b1 b2 b3 b4

d
{b1,b2}
0 , d{b1,b2}

1 d
{b3,b4}
0 , d{b3,b4}

1

(bκ1
0), bκ1

1 , bκ1
2 , bκ1

3

b3 b4 b5 b6

e
{b3,b4}
0 , e{b3,b4}

1 e
{b5,b6}
0 , e{b5,b6}

1

(bκ2
0), bκ2

1 , bκ2
2 , bκ2

3

Figure 1 The structure of totalizers built when relaxing cores {b1, b2, b3, b4} (left) and
{b3, b4, b5, b6} (right).

b1 b2 b3 b4 b5 b6

d
{b1,b2}
0 , d{b1,b2}

1 d
{b3,b4}
0 , d{b3,b4}

1 d
{b5,b6}
0 , d{b5,b6}

1

(bκ1
0), bκ1

1 , bκ1
2 , bκ1

3 (bκ2
0), bκ2

1 , bκ2
2 , bκ2

3

b3 b2 b1 b4

d
{b3,b2}
0 , d{b3,b2}

1 d
{b1,b4}
0 , d{b1,b4}

1

(bκ1
0), bκ1

1 , bκ1
2 , bκ1

3

Figure 2 Left: The structure of totalizers when relaxing the cores {b1, b2, b3, b4} and {b3, b4, b5, b6}
with structure sharing. Right: An alternative totalizer for relaxing {b1, b2, b3, b4}.

of dS(D)
k encode

(∑
b∈S(D) b ≥ k + 1

)
→ d

S(D)
k and the equivalence constraints encode

d
S(D)
k →

(∑
b∈S(D) b ≥ k + 1

)
. The implication and equivalence constraints of the entire

T (κ) are then the implication and equivalence constraints of each of its output and linking
variables.

It is fairly straight-forward to show that for a realization of OLL that makes use of
totalizers, it is sufficient to add only the implication constraints of the totalizers that relax
cores. In fact—to the best of our understanding—most realizations of OLL that use totalizers
do not add equivalence constraints when relaxing cores at all. The motivation for leaving out
the equivalence clauses is to keep the size of the working instance smaller. While redundant in
the context of computing optimal solutions of MaxSAT instances, the equivalence constraints
of totalizers can however enable additional propagations in the SAT solver during subsequent
iterations.

I Example 3. Consider the two totalizer structures T (κ1) and T (κ2), depicted on the left
and right sides of Figure 1, respectively. Assume that we fix bκ1

1 = b5 = 1 and b2 = 0. The
implication clause (¬b5 ∨ e{b5,b6}

0) of T (κ2) then propagates e{b5,b6}
0 = 1. This is the the only

propagation that happens due to the implication constraints. The equivalence constraints of
T (κ1) additionally propagate d{b1,b2}

1 = 0 due to the clause (¬d{b1,b2}
1 ∨ b2) and d{b3,b4}

0 = 1
due to the clause (¬bκ1

1 ∨ d
{b1,b2}
1 ∨ d{b3,b4}

0).

4.2 Weight-Aware Core Extraction
Weight-aware core extraction (WCE) is an essential techniques towards structure sharing
as proposed in this work. Originally proposed for the PMRES [28] core-guided MaxSAT
algorithm in [11], WCE enables the extraction of multiple cores during a single iteration of
core-guided MaxSAT solving by using information on clause weights during core extraction.

Algorithm 2 details the generic abstraction CG discussed in Section 3 extended with
WCE. In short, the algorithm delays the core-relaxation steps as long as possible. When
a core κ is obtained, the blocking variables in κ are refined as before. However, instead of
immediately invoking Relax, CG+WCE instead stores (κ,minw(κ)) in a set K and invokes

H. Ihalainen, J. Berg, M. Järvisalo 35:7

Algorithm 2 CG+WCE: CG with WCE.

Input: A MaxSAT instance F
Output: An optimal solution τ to F

1 begin
2 F1 ← F
3 for i = 1, . . . do
4 K ← ∅
5 while true do
6 (res, κ, τ)← Extract-Core(F i,B(F i))
7 if res=”satisfiable” then break
8 wκ ← minw(κ)
9 for b ∈ κ do

10 w(b)← w(b)− wκ

11 K ← K ∪ {(κ,wκ)}
12 if K = ∅ then return τ

13 F i+1 ← F i ∪
⋃

(κ,wκ)∈KRelax(κ,wκ)

the SAT solver again. Recall that the weight of at least one of the blocking variables in κ
will be lowered to 0 during variable refinement so it will not be treated as a blocking variable
in subsequent iterations. In other words, the next call to Extract-Core is guaranteed to
either obtain a new core, or report the instance to be satisfiable. When no new cores can be
found (i.e. the solver reports satisfiable) the algorithm relaxes all cores stored in K before
reriterating. Termination occurs when no new cores can be found between two relaxation
steps, that is when K = ∅ on line 12.

While WCE was shown to be effective for PMRES in [11], currently we are unaware of
any implementations of OLL that would make use of WCE. However, as we will discuss next,
WCE is instrumental in enabling structure sharing.

4.3 Structure Sharing for OLL
With the necessary background on totalizers and WCE in place, we turn to detailing structure
sharing. In order to motivate structure sharing we consider what happens when several,
possibly overlapping, cores are extracted and relaxed by OLL. In particular, consider an
instance F with hard(F) = {(b1 ∨ b2 ∨ b3 ∨ b4), (b3 ∨ b4 ∨ b5 ∨ b6)}, B(F) = {b1, . . . , b6},
w(b1) = w(b2) = w(b5) = w(b6) = 1 and w(b3) = w(b4) = 2. The two cores of F that are
important for our discussion are κ1 = {b1, b2, b3, b4} and κ2 = {b3, b4, b5, b6}. Note that since
2 = w(b3) = w(b4) > minw(κ1) = minw(κ2) = 1, both cores can be extracted by OLL.
Figure 1 depicts two totalizers T (κ1) and T (κ2) that can be built when OLL relaxes κ1 and
κ2. A key motivation for structure sharing is that both of these trees contain an internal
node D for which S(D) = {b3, b4}. As a consequence, the working instance obtained after
relaxing both cores contains separate clauses defining the linking variables dS(D)

0 and dS(D)
1

and eS(D)
0 and eS(D)

1 , even though the semantics of them are exactly the same.
By structure sharing in this example, we refer to sharing the subtree with the leaves

{b3, b4} between both T (κ1) and T (κ2), resulting in the structure depicted in Figure 2
(left). Generally, correctness of structure sharing follows from the fact that it does not
alter the semantics of the new blocking variables added in core relaxation. In addition

CP 2021

35:8 Refined Core Extraction for MaxSAT

to decreasing the size of the working instance (for example, the structures depicted in
Figure 1 require in total 24 clauses while the equivalent single structure shown in Figure 2
(left) only requires 21) structure sharing can also both decrease the number of—essentially
unnecessary—propagations that the SAT solver does in subsequent iterations, as well as
increase the number of further propagations. For an example of the former, note that when
the two totalizers are disjoint (as in Figure 1), fixing one of the variables in {b3, b4} to 1
propagates both dS(D)

0 = 1 and eS(D)
0 = 1. In contrast, with structure sharing (Figure 2,

left) only the variable dS(D)
0 = 1 is propagated. For an example of the latter, consider the

following.

I Example 4. Consider the shared totalizer structure depicted in Figure 2 and assume again
the fixings bκ1

1 = b5 = 1 and b2 = 0. Similarly to Example 3, these propagate d{b5,b6}
0 =

d
{b3,b4}
0 = 1. However, in this structure, the implication clause (¬d{b3,b4}

0 ∨ ¬d{b5,b6}
0 ∨ bκ2

1)
also propagates bκ2

1 = 1. We emphasize that bκ2
1 = 1 can not be derived by unit propagation

alone in the disjoint structures depicted in Figure 1.

Recall that, while the implication constraints of totalizers are needed in order to compute
an optimal solution to a MaxSAT instance, the equivalence constraints are not. Instead,
there is an inherent-trade off between the number of equivalence clauses that are added,
and the number of additional propagations they enable. While extra propagations have
the potential of speeding up subsequent SAT solver calls, adding too many clauses may
instead end up slowing down the solver. Structure sharing seeks to limit the number of
equivalence clauses added by identifying which ones of them are most likely to result in
additional propagation. Example 4 offers some intuition on this. Note that propagating
bκ2

1 = 1 in the shared subtree does not require all of the equivalence constraints of the
structure. Instead, the equivalence constraints of all nodes except for the ones in the subtree
rooted at d{b3,b4}

0 , d
{b3,b4}
1 suffice. We detail the realization of structure sharing and the

selective addition of equivalence constraints in the next section.

I Remark 5. We shortly note the distinguishing featuers of structure sharing as proposed
to related recently proposed techniques from the literature. The iterative encoding of
totalizers [23] allows for extending a single totalizer with more inputs. While commonly
used in MaxSAT algorithms that extend cardinality constraints during search (such as
MSU3 [3, 22]), in constrast to structure sharing, the iterative encoding it is not applicable
to OLL or PMRES. The WPM3 core-guided MaxSAT algorithm [5] uses the semantics of
blocking variables introduced during core relaxations to maintain knowledge of the global
core structure in order to obtain a better encoding of any core containing blocking variables
introduced in previous relaxation steps. However, in contrast to structure sharing, WPM3
does not maintain knowledge of blocking variables potentially being found in multiple cores.
If a set of previously relaxed blocking variables are extracted as part of a core, the structure
introduced by WPM3 will be disjoint from the structure introduced when originally relaxing
the variables. In this sense structure sharing as we propose it here is orthogonal to the ideas
of WPM3. Indeed, structure sharing and WCE could be integrated into WPM3 as well and
appears interesting future work. The abstract cores technique proposed in the context of
the implicit hitting set (IHS) approach to MaxSAT [10] also aims to build totalizers with
variables that often appear in cores together being assigned to the same subtree. However,
the abstraction sets over which totalisers are built in the abstract cores technique are not
overlapping. In that sense, the way totalisers are used in the abstract cores technique
resembles more closely the incremental encoding. Finally, the idea of sharing structure with
the aim of obtaining more effective representations of weight rules (tightly connected to

H. Ihalainen, J. Berg, M. Järvisalo 35:9

pseudo-Boolean constraints) in the context of answer set programming was explored in [13].

4.4 Realizing Structure Sharing
Structure sharing is realized in an OLL algorithm making use of WCE with a greedy procedure.
Given a set K of cores to be relaxed, the procedure maintains a collection S of sets of blocking
variables initialized to K and proceeds iteratively. In each iteration the sets in S are compared
pairwise in order to find a maximal subset M of blocking variables shared by two sets in S.
After finding such M , the set S is refined by: i) adding a pointer s→M for each s ∈ S for
which M ⊆ s, ii) removing the variables of M from every set s ∈ S for which M ⊆ s and
iii) adding M to S. Finally, a totalizer is built for every set in S and linked following the
pointers, i.e., if there is a pointer a→ b for a, b ∈ S, then T (b) is linked as a subtree to T (a).

We note that the use of WCE is central in enabling structure sharing. This is due to the
fact that there are several possible totalizer structures for a core. Figure 2 (right) depicts
another possible structure of T (κ1) (from before) that does not include any subtrees that
can be shared with T (κ2) in Figure 1 (nor with any other possible structure of T (κ2)). The
existence of different choices of equivalent totalizer structures makes it very difficult—if not
impossible—to realize structure sharing without WCE. As an example, assume that OLL
without WCE is invoked on F and the core κ1 is extracted first. After refining the blocking
variables, a totalizer T (κ1) is built and added to the working instance. At this point, there is
no obvious reason to prefer either one of the structures depicted in Figure 1 left or Figure 2
(right) for building T (κ1); however, only the tree in Figure 1 enables structure sharing.

Selective Addition of Equivalences
After building shared totalizer structures for a set of cores, we next select which equivalence
constraints should be included in the working instance. Intuitively, the aim is to add—in
some sense—useful equivalence constraints that enable propagation without inflating the size
of the working instance beyond the capabilities of modern SAT solvers.

Example 4 provides more intuition. The additional propagation enabled by structure
sharing follows from the outputs of shared structures being propagated to 1. Furthermore, such
outputs are propagated to 1 due to either (i) the implication constraints of the substructure
itself (which have to be included anyway) or (ii) the equivalence constraints of the rest of
the structure.

More generally, we propose to selectively include equivalence constraints by looping over
the leaves of the structure—which are treated as roots of a subtree containing a single
node—and the roots of any shared subtrees. For each node two values are computed: 1) the
number of decisions needed before the equivalence constraints would propagate the shared
variable to true; the decisions are either setting some leaves outside the subtree to false, or
setting the output variables of the structure to true, and 2) the (estimated) total number of
equivalence clauses for the nodes outside of the subtree, which is quadratic in the number of
leaves in the structure outside of the subtree. If both of these numbers are below some user
given parameter, we include the equivalence constraints of all variables outside of the subtree.
Even in structures with shared subtrees both values are computed w.r.t. the totalizer tree
corresponding to a single core.

I Example 6. Consider the shared structure in Figure 2 and the root of the shared subtree
corresponding to the variables d{b3,b4}

0 , d
{b3,b4}
1 . Assume that OLL has managed to derive

the unit clause (bκ1
1), i.e. fix bκ1

1 = 1. This could happen for example via the so-called
core-exhaustion heuristic [18]. In order for the equivalence constraints of the structure

CP 2021

35:10 Refined Core Extraction for MaxSAT

corresponding to κ1 to propagate d{b3,b4}
0 = 1 one more decision is needed, either b1 = 0,

b2 = 0 or bκ1
2 = 1. Similarly, in order for the equivalence constraints to propagate d{b3,b4}

1 = 1
two additional decisions are needed, one of the following four sets of alternatives: (i)
b1 = b2 = 0, (ii) bκ1

2 = 1 ∧ b1 = 0, (iii) bκ1
2 = 1 ∧ b2 = 0, or (iv) bκ1

2 = bκ1
3 = 1. As for the the

estimated number of equivalence clauses for the nodes outside of the subtree; in this case
there are two leaves outside of the subtree (b1, b2) so the estimate is 4 constraints.

Similarly, in order for the equivalence constraints of the structure corresponding to
κ2 to propagate d{b3,b4}

0 = 1, two decisions are needed. One of the following four sets of
alternatives: (i) b5 = b6 = 0, (ii) bκ2

1 = 1∧ b5 = 0, (iii) bκ2
1 = 1∧ b6 = 0, or (iv) bκ2

1 = bκ2
2 = 1.

For propagating d{b3,b4}
1 = 1 three decisions are needed, one of the following four sets of

alternatives: (i) b5 = b6 = 0∧ bκ2
1 = 1, (ii) bκ2

1 = bκ2
2 = 1∧ b5 = 0, (iii) bκ2

1 = bκ2
2 = 1∧ b6 = 0,

(iv) bκ2
1 = bκ2

2 = bκ2
3 = 1. This structure also has two leaves outside of the shared tree (b5, b6),

so the estimated number of added equivalence constraints is again 4.

5 Empirical Evaluation

We evaluate the impact of WCE and structure sharing on OLL. For the evaluation, we
extending the state-of-the-art RC2 MaxSAT solver [18] implementation of OLL with WCE
and structure sharing, using the RC2 version that performed best in MaxSAT Evaluation 2020.
The implementation is available online at: https://bitbucket.org/coreo-group/cgss/.

More specifically, we compare the following solvers:
RC2: the original RC2 solver from MaxSAT Evaluation 2020.
RC2*: our RC2 refactorization with a reimplementation of totalizers i geared towards
implementing WCE and structure sharing (SS).
RC2*+WCE: RC2* extended with WCE.
RC2*+WCE+SS: RC2*+WCE extended with SS and selective addition of equival-
ences.

In the implementation of SS, we stop the greedy procedure for computing shareable struc-
tures once the set M containing overlapping blocking variables has |M | < 16. Furthermore,
for RC2*+WCE+SS we only add equivalence constraints of a node in a shared subtree if
doing so adds at most 50 clauses and at most 50 decisions are needed in order for the variable
to be propagated to 1. All of these parameter values were chosen based on preliminary
experimentation.

As benchmarks we used the combined set of 1033 weighted MaxSAT instances from
the complete tracks of MaxSAT Evaluation 2019 and 2020. The experiments were run
single-threaded using 2.6-GHz Intel Xeon E5-2670 processors. A per-instance time limit of
3600 seconds and a memory limit of 32GB was enforced.

Figure 3 (top) shows the effect of WCE and structure sharing on RC2. First, we observe
that our refactorization RC2* actually improves on the performance of RC2, improving on
the number of solved instances from 745 to 752. Employing WCE and SS allows for solving
the greatest number of 761 instances (RC2*+WCE+SS). The marginal impact of SS is
significant, as employing WCE alone allows for solving 756 instances (RC2*+WCE) (As a
side-note, to the best of our understanding, this is the first time that WCE is integrated to
OLL and shown to provide performance improvements).

For more details on impact of SS and in particular the idea of selective addition of
equivalences, consider Figure 3 (bottom). First recall that RC2*+WCE+SS employs
selective addition of equivalence. Now, RC2*+EQ, RC2*+WCE+EQ correspond to
RC2* and RC2*+WCE, respectively, which add all equivalence constraints of each totalizer

https://bitbucket.org/coreo-group/cgss/

H. Ihalainen, J. Berg, M. Järvisalo 35:11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 690 700 710 720 730 740 750 760

Ti
m

e
 (

s)

Number of solved instances

RC2
RC2*
RC2*+WCE
RC2*+WCE+SS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 690 700 710 720 730 740 750 760

Ti
m

e
 (

s)

Number of solved instances

RC2*+EQ
RC2*+WCE+EQ
RC2*+WCE+SS+EQ
RC2*+WCE+SS

Figure 3 Top: The effect of WCE and structure sharing (SS) on OLL.
Bottom: Effect of equivalence constraints on the different variants of OLL.

when relaxing cores. The solver RC2*+WCE+SS+EQ corresponds the modification of
RC2*+WCE+SS that adds all equivalence constraints of each totalizer. Somewhat
surprisingly, adding all equivalence constraints to the totalizers in RC2* actually increases
performance in our evaluation: RC2*+EQ solves 756 instances. In contrast, including all
equivalence constraints into RC2*+WCE degrades performance, RC2*+WCE+EQ solves
754 instances. Furthermore, RC2*+WCE+SS+EQ exhibits slightly weaker performance
than RC2*+WCE+SS, solving in total 760 instances.

Further detailed results are provided in Table 1. Here we detail for each of the 63
benchmark domains within the benchmark set, the number of instances solved and the
PAR-2 score (i.e. cumulative runtimes, with timeouts penalized by a factor of 2) of RC2*,
RC2*+WCE and RC2*+WCE+SS. We observe that RC2*+WCE+SS solves the
greatest number of instances in 5 domains and obtains the best (lowest) PAR-2 score in
22 further domains, achieving overall a PAR-2 score that is ∼ 98% of the PAR-2 score of
RC2*+WCE and ∼ 96% of the PAR-2 score of RC2*.

Figure 4 demonstrates the relative number of variables and clauses added during the
solving process. In more detail, Figure 4 (top) provides a comparison of the the relative
of implication constraints added during solving by RC2*+WCE and RC2*+WCE+SS.
Here the height of the bar at a x-axis value p gives the number of instances for which the
number of implication constraints introduced by RC2*+WCE+SS was p% of the number
of implication constraints introduced by RC2*+WCE. We observe that structure sharing

CP 2021

35:12 Refined Core Extraction for MaxSAT

Table 1 Detailed comparison of RC2*, RC2*+WCE and RC2*+WCE+SS per benchmark domain.

Benchmark family RC2* RC2*+WCE RC2*+WCE+SS
solved PAR-2 solved PAR-2 solved PAR-2

wpms 3 18.12 3 19.68 3 18.18
dalculus 27 21.15 27 21.50 27 21.26
MLIC 5 58737.43 5 57821.14 5 57885.03
causal-discovery 18 62988.31 18 61955.50 19 56543.76
relational-inference 5 26912.08 5 27023.60 5 26886.39
tcp 20 23698.21 20 26803.44 19 30008.36
protein_ins 11 738.45 11 697.47 11 564.86
staff-scheduling 2 74402.74 2 74108.37 2 73207.89
planning 4 1.69 4 1.85 4 1.82
scSequencing 19 80608.19 19 80678.55 19 80650.86
ParametricRBAC 32 59118.70 32 59603.27 32 59639.39
InterpretableClassifiers 7 36057.44 7 36062.51 7 36056.42
auc_paths 8 910.97 8 310.29 8 396.19
csg_2020 30 231.39 30 277.10 30 230.93
scp 10 953.63 10 610.38 10 496.72
preference_planning 16 236.30 16 372.53 16 403.98
pseudoBoolean 8 7201.04 8 7201.07 8 7201.07
lisbon-wedding 6 131107.84 6 131112.42 6 133287.46
frb 19 175.57 19 1501.58 19 2168.53
qcp 9 5.04 9 5.05 9 5.05
log 3 43204.83 3 43202.23 3 43201.83
miplib 2 43294.76 2 43320.13 2 43297.22
warehouses 8 217.34 8 154.79 8 69.18
haplotyping-pedigrees 29 691.74 29 733.20 29 668.02
min-width 8 240055.37 8 238353.95 8 237878.82
drmx-atmostk 17 516.92 17 675.43 17 443.45
upgradeability 19 111.14 19 126.34 19 110.18
correlation-clustering 10 96843.58 11 89478.17 11 90682.68
maxcut 0 43200.00 0 43200.00 0 43200.00
packup 5 30.83 5 30.59 5 28.12
abstraction-refinement 11 9251.50 11 10153.65 11 8655.52
railroad_sc 0 43200.00 0 43200.00 0 43200.00
security-witness 30 10481.58 30 9973.36 30 9291.70
rna-alignment 23 99.31 23 133.67 23 100.90
drmx-cryptogen 17 2432.11 17 2541.40 17 2456.42
CSG 10 294.89 10 315.85 10 329.77
css-refactoring 11 179.67 11 243.71 11 166.37
Security-CriticalCyber 39 232.85 39 262.01 39 235.87
ramsey 2 93978.71 2 94221.14 3 89300.00
railroad_scheduling 0 57600.00 0 57600.00 0 57600.00
wcsp 21 7.39 21 6.95 21 7.07
set-covering 9 14668.38 9 14795.22 9 14719.04
max-realizability 25 47187.54 26 40544.80 26 40382.86
MinWeightDomSet 0 50400.00 0 50400.00 0 50400.00
BTBNSL 7 123625.64 8 118890.94 8 118397.70
auc_regions 6 9280.05 6 9315.44 7 1749.98
mpe 24 38815.48 26 23566.10 27 17579.18
max-prob-min-cuts 30 113.40 30 131.24 30 114.82
hs-timetabling 2 83441.11 2 82579.77 2 83541.69
metro 27 3971.78 27 3713.86 27 3833.46
timetabling 14 60924.14 15 56410.41 15 55920.20
spot5 8 22237.25 9 15141.17 8 21657.60
wcnf_gz 8 64828.57 8 64847.09 8 64841.45
up-up98 6 15.90 6 16.55 6 14.97
scpnr 0 14400.00 0 14400.00 0 14400.00
dimacs_mod 1 86516.74 1 86589.22 1 86609.38
af-synthesis 17 59316.18 15 65557.61 15 66009.69
railway-transport 2 23206.20 1 28971.47 1 28948.40
RBAC 9 154220.94 7 166452.75 8 160087.41
shiftdesign 16 6726.73 16 8060.46 16 6949.01
auctions 11 34949.24 13 21297.08 15 4909.61
binaryNN 4 12465.98 4 12696.34 4 12413.52
dir 2 8171.10 2 7317.87 2 7373.82
SUM 752 2169531.16 756 2135809.26 761 2097451.06

H. Ihalainen, J. Berg, M. Järvisalo 35:13

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160N
u
m

b
e
r

o
f

in
st

a
n
ce

s

Relative number of clauses in totalizers (%)

 130
 140

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160N
u
m

b
e
r

o
f

in
st

a
n
ce

s

Relative number of variables in totalizers (%)

 300
 310

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160N
u
m

b
e
r

o
f

in
st

a
n
ce

s

Relative number of clauses in totalizers (%)

 300
 310

Figure 4 Impact of structure sharing on the number of implication clauses (top) and the number
of variables (middle); impact of selective addition of equivalences on the number of equivalence
constraints (bottom).

indeed decreases the number of implication constraints added on a significant number of
instances. At times RC2*+WCE+SS adds less than 20% of the implication constraints
added by RC2*+WCE. Figure 4 (middle) analogously provides the relative number of
variables introduced. We again observe that for many benchmark instances the working
instance of RC2*+WCE+SS contains fewer variables than the one of RC2*+WCE.
Finally, Figure 4 (bottom) provides the relative number of equivalence constraints introduced
by RC2*+WCE+SS and RC2*+WCE+SS+EQ. We observe that selective addition of
equivalences introduces fewer clauses in many instances, which together with the runtime
results presented in Figure 3 (bottom) suggests that the technique achieves the desideratum of
introducing fewer equivalence clauses without sacrificing the potential benefits (for example,
in the form of additional propagations).

Finally, we note that structure sharing is a general technique and not limited to the OLL
algorithm. In order to demonstrate this, we reimplemented the PMRES algorithm in the
same framework as RC2 (based on PySAT [17]). Figure 5 demonstrates the effect of WCE
and structure sharing on the PMRES algorithm. We observe that both WCE and SS have a
significant positive impact on the performance of PMRES, improving from 674 instances
solved by the base algorithm to 679 when extended with WCE and further improving the
number of solved instanced to 693 when extended by SS.

CP 2021

35:14 Refined Core Extraction for MaxSAT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 620 630 640 650 660 670 680 690 700

Ti
m

e
 (

s)

Number of solved instances

PMRES
PMRES+WCE
PMRES+WCE+SS

Figure 5 The effect of WCE and structure sharing (SS) on PMRES

6 Analysis on the Impact of WCE on OLL

Finally, complementing the empirical observations on the impact of WCE on OLL, we provide
theoretical insights into the effects of weight-aware core extraction on the OLL algorithm.
In particular, while the original paper proposing WCE [11] demonstrated its effectiveness
on the PMRES algorithm in practice, it did not provide insight into the effect that WCE
can have on core-guided MaxSAT algorithms on a theoretical level. In this section, we show
that WCE can both decrease, and increase the number of iterations required by the OLL
algorithm, depending on the instance. (We note that these observations extend to PMRES
in a relatively straightforward way.)

In the following, let OLL be Algorithm 1 with Relax instantiated according to Defini-
tion 2 and OLL+WCE the OLL algorithm extended with WCE.

The following observation will be useful in the analysis.

I Observation 7. Invoke Algorithm 1 on instance F . Assume that (κ1, . . . , κn) is the sequence
of cores extracted after n iterations. Then

∑n
i=1 minw(κi) ≤ COST(F). Furthermore,

equality holds only if Algorithm 1 terminates after relaxing all of the cores.

In other words, cores extracted by Algorithm 1 provide a lower bound on the optimal cost,
and the algorithm terminates only when that lower bound equals the optimal cost.

Observation 7 forms the basis for a heuristic that is employed by most implementations
of core-guided MaxSAT solvers that we are aware of. We say that Algorithm 1 uses bounds
if it maintains a lower bound LB—computed using Observation 7—on the optimal cost of
the instance F being solved. As soon as any solution τ is obtained, its cost COST(F , τ) is
compared to the lower bound. If LB = COST(F , τ), the algorithm immediately terminates,
without invoking Relax. In our setting, intermediate solutions are only obtained by
OLL+WCE. In practice, implementations of OLL also obtain non-optimal solutions during
search via the so-called stratification [2] heuristic.

WCE can allow Algorithm 1 using bounds to terminate without relaxing any cores.
Consider an instance Fn with B(Fn) = {b1, . . . , bn+3} that contains the clauses (bi ∨ bn+2)
for i = 1 . . . n + 1 and (bn+1 ∨ bn+3). Assume that w(bi) = 1 for i = 1 . . . (n + 1), (n + 3)
and w(bn+2) = n + 2. This instance has one optimal solution τ of cost COST(Fn, τ) =
COST(Fn) = n+ 1 that sets τ(bi) = 1 for i = 1 . . . (n+ 1) and τ(bn+2) = τ(bn+3) = 0.

I Proposition 8. Algorithm 1 extracts n+ 1 cores when computing an optimal solution to
Fn.

H. Ihalainen, J. Berg, M. Järvisalo 35:15

b1
1 b1

2 . . . bn1 bn2

bx

Figure 6 Structure of Fn in Observations 12 and 13. The ellipses and rectangles illustrate the
clauses.

Proof. (Sketch.) The result follows from the fact that any core κ extracted by Algorithm 1
on Fn must have minw(κ) = 1. This by Observation 7 implies that termination occurs only
after n+ 1 cores have been extracted. J

I Proposition 9. OLL+WCE using bounds can terminate without relaxing any cores when
invoked on Fn.

Proof. Let the first core extracted be {bn+1, bn+2}. The weight of both bn+1 and bn+2 is
then lowered by 1 before invoking the SAT solver again. In the second iteration, the set
B(F1) contains {b1, . . . , bn, bn+2, bn+3}. Assume that the algorithm continues in a similar
manner, iteratively extracting a core of the form {bi, bn+2} for each i = 1 . . . (n+ 1). Each
extracted core κ will have minw(κ) = 1, so at this point LB = n+ 1. In the next SAT solver
call B(F1) = {bn+2, bn+3} so the solver is invoked assuming bn+2 = bn+3 = 0. The instance is
satisfied by an assignment τ that sets τ(bi) = 1 for i = 1 . . . (n+1) and τ(bn+2) = τ(bn+3) = 0.
This solution has COST(Fn, τ) = n+ 1 = LB so OLL+WCE terminates without invoking
the function Relax. J

We thereby arrive at the following.

I Theorem 10. There is a family of MaxSAT instances Fn with |B(Fn)| = O(n) on which
OLL using bounds is guaranteed to relax n cores, while OLL+WCE using bounds can
terminate without relaxing any cores.

In other words, there are instances on which the core relaxation steps of Algorithm 1 are
redundant. In addition to (unnecessarily) increasing the size of the working instance, the
redundant core relaxation steps can also increase the size of the MUSes of the working
instance.

I Observation 11. Invoke OLL on Fn and assume that the first core extracted is κ =
{bn+1, bn+2}, (the same as in the proof of Proposition 9). After refining the set of blocking vari-
ables and relaxing κ, the next working instance F2 has B(F2) = {b1, . . . , bn, bn+2, bn+3, b

κ
1},

where bκ1 is the new blocking variable introduced by Relax. The set {b1, bn+3, b
κ
1} is an MUS

of F2 of size 3, i.e., larger than any of the MUSes of Fn. Note that all MUSes of Fn are of
size 2 and that Algorithm 1 only extracts MUSes of Fn in the proof of Proposition 9.

So far we have shown that WCE can lower the number invocations of Relax of Al-
gorithm 1, thus decreasing the complexity of the working instance which alleviates a main
bottleneck of core-guided MaxSAT solvers. However, we can also identify that WCE
may also increase the number iterations. In the following, consider the instance Fn with
hard(Fn) = {(bi1 ∨ bi2), (bi1 ∨ bx), (bi2 ∨ bx) | i = 1 . . . n} ∪ {(b1

1 ∨ b1
2 ∨ b2

1 ∨ b2
2 ∨ · · · ∨ bn1 ∨ bn2)},

CP 2021

35:16 Refined Core Extraction for MaxSAT

B(Fn) = {bx} ∪ {bi1, bi2 | i = 1 . . . n} and w(bi1) = n, w(bi2) = n+ 1 for i = 1 . . . n as well as
w(bx) = n. The optimal cost of the instance is COST(Fn) = n2 + n and an example of an
optimal solution τ sets τ(b1

1) = τ(b2
1) = . . . = τ(bn1) = τ(bx) = 1 and τ(bj2) = 0 for j = 1 . . . n.

The structure of Fn is shown in Figure 6.

I Observation 12. Invoke OLL using bounds on Fn. Assume that the first core extracted
is κ1 = {bi1, bi2 | i = 1 . . . n} with minw(κ1) = n. After the first invokation of Relax, the
working instance F2 has B(F2) = {bi2 | i = 1 . . . n}∪{bx}∪{bκ1

1 , . . . , bκ1
2n−1}. In the next n−1

iterations, the algorithm can extract and relax the cores κ2 = {bκ1
1 }, . . . , κn = {bκ1

n−1} and
finally the core κn+1 = {bκ1

n , bx}, all having minw(κi) = n. As
∑n
i=1 minw(κi) = n2 + n =

COST(Fn) the algorithm will terminate after relaxing all n+ 1 of these cores.

I Observation 13. Invoke OLL+WCE using bounds on Fn. Assume that the first core
extracted is κ1 = {bi1, bi2 | i = 1 . . . n} with minw(κ1) = n. After refining the blocking
variables, the instance will have B(F1) = {bi2 | i = 1 . . . n} ∪ {bx} with w(bi2) = 1 for all
i = 1 . . . n and w(bx) = n. There are still n more cores of the form κi = {bi2, bx} with
minw(κi) = 1 to extract before the Relax function is invoked. Notice that these cores can
be extracted in any order. At this point, n+ 1 cores (κ1, . . . , κn+1) have been extracted. Since∑n+1

i=1 minw(κi) = 2n < n2 + n (for n > 1), the algorithm does not terminate on the next
SAT solver call; in particular, the algorithm needs to extract more than n+ 1 cores before
terminating.

Thereby we arrive at the following.

I Theorem 14. For every n ∈ N, there is a MaxSAT instance Fn with |B(Fn)| = O(n),
and a core κ of Fn such that if κ is the first core extracted, then (i) OLL can terminate
after extracting and relaxing in total n+ 1 cores, while (ii) OLL+WCE has to extract at
least n+ 2 cores before terminating.

7 Conclusions

The exact details of the transformations steps, which compile a newly extracted unsatisfiable
core into the current working instance, are a key to efficient core-guided MaxSAT solving,
and this is also where the various existing core-guided MaxSAT algorithms differ. We
proposed a novel form of structure sharing that can be applied within the core extraction
steps, aiming at speeding up runtimes of the core-guided approach as well as avoiding
unnecessary introduction of additional variables and clauses to the working instances during
iterations of the algorithms. In contrast to earlier approaches to lowering the number of
introduced variables and clauses via incremental cardinality constraints, structure sharing is
an intrinsically different approach. In particular, it builds on weight-aware core extraction,
which allows for extracting multiple cores during a single iteration from weighted MaxSAT
instances, and exploits shared substructures among cores for structure sharing. Putting
structure sharing into practice in a state-of-the-art core-guided MaxSAT solver, we showed
that structure sharing in combinations with WCE provides empirical runtime improvements.
In addition to these main contributions, we also provided a theoretical analysis of the worst
and best case impact of WCE on the central OLL MaxSAT algorithm.

References
1 Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-

based optimization in CLASP. In Agostino Dovier and Vítor Santos Costa, editors, Technical

H. Ihalainen, J. Berg, M. Järvisalo 35:17

Communications of the 28th International Conference on Logic Programming, ICLP 2012,
September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs, pages 211–221. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.211.

2 Carlos Ansótegui, Maria Luisa Bonet, Joel Gabàs, and Jordi Levy. Improving SAT-based
weighted MaxSAT solvers. In Michela Milano, editor, Principles and Practice of Constraint
Programming - 18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86–101.
Springer, 2012. doi:10.1007/978-3-642-33558-7_9.

3 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT
through satisfiability testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiab-
ility Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 -
July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 427–440.
Springer, 2009. doi:10.1007/978-3-642-02777-2_39.

4 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013. doi:10.1016/j.artint.2013.01.002.

5 Carlos Ansótegui and Joel Gabàs. WPM3: an (in)complete algorithm for weighted partial
MaxSAT. Artificial Intelligence, 250:37–57, 2017. doi:10.1016/j.artint.2017.05.003.

6 Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins, editors. MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of
Computer Science Report Series B. Department of Computer Science, University of Helsinki,
Finland, 2020.

7 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation 2018: New devel-
opments and detailed results. Journal on Satisfiability, Boolean Modeling and Computation,
11(1):99–131, 2019. doi:10.3233/SAT190119.

8 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maximum Satisfiability, volume 336 of
Frontiers in Artificial Intelligence and Applications, chapter 24, pages 929–991. IOS Press BV,
2021. doi:10.3233/FAIA201008.

9 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3,
2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer,
2003. doi:10.1007/978-3-540-45193-8_8.

10 Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set
MaxSat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of
Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-
10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.
Springer, 2020. doi:10.1007/978-3-030-51825-7_20.

11 Jeremias Berg and Matti Järvisalo. Weight-aware core extraction in SAT-based MaxSAT
solving. In Christopher Beck, editor, Principles and Practice of Constraint Programming -
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September
1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 652–670.
Springer, 2017. doi:10.1007/978-3-319-66158-2_42.

12 Nikolaj Bjørner and Nina Narodytska. Maximum satisfiability using cores and correction sets.
In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 246–252. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/041.

13 Jori Bomanson, Martin Gebser, and Tomi Janhunen. Improving the normalization of weight
rules in answer set programs. In Eduardo Fermé and João Leite, editors, Logics in Artificial
Intelligence - 14th European Conference, JELIA 2014, Funchal, Madeira, Portugal, September
24-26, 2014. Proceedings, volume 8761 of Lecture Notes in Computer Science, pages 166–180.
Springer, 2014. doi:10.1007/978-3-319-11558-0_12.

CP 2021

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1016/j.artint.2013.01.002
https://doi.org/10.1016/j.artint.2017.05.003
https://doi.org/10.3233/SAT190119
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-319-66158-2_42
http://ijcai.org/Abstract/15/041
https://doi.org/10.1007/978-3-319-11558-0_12

35:18 Refined Core Extraction for MaxSAT

14 Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4):543–560, 2003. doi:10.1016/S1571-0661(05)
82542-3.

15 Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere
and Carla Gomes, editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of
Lecture Notes in Computer Science, pages 252–265. Springer, 2006. doi:10.1007/11814948_25.

16 Federico Heras, António Morgado, and João Marques-Silva. Lower bounds and upper bounds
for MaxSAT. In Youssef Hamadi and Marc Schoenauer, editors, Learning and Intelligent
Optimization - 6th International Conference, LION 6, Paris, France, January 16-20, 2012,
Revised Selected Papers, volume 7219 of Lecture Notes in Computer Science, pages 402–407.
Springer, 2012. doi:10.1007/978-3-642-34413-8_35.

17 Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A Python toolkit for
prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International Conference,
SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 428–437.
Springer, 2018. doi:10.1007/978-3-319-94144-8_26.

18 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient MaxSAT
solver. Journal on Satisfiability, Boolean Modeling and Computation, 11(1):53–64, 2019.
doi:10.3233/SAT190116.

19 Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, pages 613–631. IOS Press, 2009.
doi:10.3233/978-1-58603-929-5-613.

20 Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proceedings, The Twenty-First National Conference
on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence
Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 86–91. AAAI Press, 2006.
URL: http://www.aaai.org/Library/AAAI/2006/aaai06-014.php.

21 Vasco Manquinho, João Marques Silva, and Jordi Planes. Algorithms for weighted boolean
optimization. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 495–508. Springer,
2009. doi:10.1007/978-3-642-02777-2_45.

22 João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum satisfiabil-
ity. CoRR, abs/0712.1097, 2007. URL: http://arxiv.org/abs/0712.1097, arXiv:0712.1097.

23 Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. Incremental cardinality
constraints for MaxSAT. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 531–548. Springer,
2014. doi:10.1007/978-3-319-10428-7_39.

24 Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce. On using incremental
encodings in unsatisfiability-based MaxSAT solving. Journal on Satisfiability, Boolean Modeling
and Computation, 9(1):59–81, 2014. doi:10.3233/sat190102.

25 Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver.
In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT
2014 - 17th International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer
Science, pages 438–445. Springer, 2014. doi:10.1007/978-3-319-09284-3_33.

26 António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft
cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint

https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/978-3-642-34413-8_35
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.3233/SAT190116
https://doi.org/10.3233/978-1-58603-929-5-613
http://www.aaai.org/Library/AAAI/2006/aaai06-014.php
https://doi.org/10.1007/978-3-642-02777-2_45
http://arxiv.org/abs/0712.1097
http://arxiv.org/abs/0712.1097
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.3233/sat190102
https://doi.org/10.1007/978-3-319-09284-3_33

H. Ihalainen, J. Berg, M. Järvisalo 35:19

Programming - 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564–573. Springer,
2014. doi:10.1007/978-3-319-10428-7_41.

27 António Morgado, Federico Heras, Mark Liffiton, Jordi Planes, and João Marques-Silva.
Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints, 18(4):478–
534, 2013. doi:10.1007/s10601-013-9146-2.

28 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Carla Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages
2717–2723. AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8513.

CP 2021

https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/s10601-013-9146-2
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8513

	1 Introduction
	2 Maximum Satisfiability
	3 MaxSAT by Soft Cardinality Constraints
	4 Structure Sharing for Improving Core-Guided MaxSAT Solvers
	4.1 The Totalizer Encoding of Cardinality Constraints
	4.2 Weight-Aware Core Extraction
	4.3 Structure Sharing for OLL
	4.4 Realizing Structure Sharing

	5 Empirical Evaluation
	6 Analysis on the Impact of WCE on OLL
	7 Conclusions

