Core-Boosted Linear Search
for Incomplete MaxSAT

Jeremias Berg!, Emir Demirovi¢?, and Peter J. Stuckey®*

L HIIT, Department of Computer Science, University of Helsinki, Finland,
jeremias.berg@cs.helsinki.fi
2 University of Melbourne, Australia, emir.demirovic@unimelb.edu.au
3 Monash University, Australia, peter.stuckey@monash.edu
* Data61, CSIRO, Australia

Abstract. Maximum Satisfiability (MaxSAT), the optimisation exten-
sion of the well-known Boolean Satisfiability (SAT) problem, is a com-
petitive approach for solving NP-hard problems encountered in various
artificial intelligence and industrial domains. Due to its computational
complexity, there is an inherent tradeoff between scalability and guaran-
tee on solution quality in MaxSAT solving. Limitations on available com-
putational resources in many practical applications motivate the develop-
ment of complete any-time MaxSAT solvers, i.e. algorithms that compute
optimal solutions while providing intermediate results. In this work, we
propose core-boosted linear search, a generic search-strategy that com-
bines two central approaches in modern MaxSAT solving, namely linear
and core-guided algorithms. Our experimental evaluation on a prototype
combining reimplementations of two state-of-the-art MaxSAT solvers,
PMRES as the core-guided approach and LinSBPS as the linear algo-
rithm, demonstrates that our core-boosted linear algorithm often outper-
forms its individual components and shows competitive and, in certain
cases, superior results when compared to other state-of-the-art solvers
for incomplete MaxSAT solving.

Keywords: Maximum Satisfiability - MaxSAT - SAT-based MaxSAT -
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1 Introduction

Discrete optimisation problems are ubiquitous throughout society. When solving
a discrete optimisation problem, the goal is to find the best solution according to
a given objective function among a finite, but potentially large set of possibilities.
Examples of such problems include scheduling, routing, timetabling, and other
forms of management decision problems. The solution approaches to discrete
optimisation can be divided into complete and incomplete methods. The aim of
complete methods is to find the best possible solution and prove its optimality.
However, in many real world applications complete solving is a difficult, and in
many cases, a practically infeasible task. Hence, in practice, one might resort
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to incomplete solving, i.e. computing the best possible solution within a limited
time, rather than exclusively searching for an optimal solution.

There is a wide range of technologies available for discrete optimisation.
The focus of this work is on the Boolean optimisation paradigm of Maximum
(Boolean) Satisfiability (MaxSAT), the optimization extension of the well-known
Boolean satisfiability (SAT) problem. MaxSAT can be used to solve any NP-hard
discrete optimisation problem that can be formulated as minimising a linear ob-
jective over Boolean variables subject to a set of clausal constraints. Modern
MaxSAT solving technology builds on the exceptional performance improve-
ments of SAT solvers, starting in the late 90s [39, 49]. Most MaxSAT solvers used
in real-world applications are SAT-based, i.e. reduce the discrete optimisation
problem into a sequence of satisfiability queries of Boolean formulas conjunctive
normal form (CNF), and tackle the queries with SAT solvers. In the last decade,
MaxSAT solving technology has matured significantly, leading to successful ap-
plications of MaxSAT in a wide range of Al and industrial domains, such as
timetabling, planning, debugging, diagnosis, machine learning, and systems bi-
ology [22,3,10,20,51,24,19, 15, 36]. See [6, 5, 42] for more details.

SAT-based MaxSAT solvers can be roughly partitioned into linear [28,29],
core-guided [4,25,41,8,44,41], and implicit hitting-set-based [21, 45] algorithms.
The two most relevant ones for this work are the linear and core-guided al-
gorithms. Linear algorithms are upper bounding approaches that encode the
MaxSAT instance, along with its pseudo-Boolean objective function, into con-
Juctive normal form (CNF) and iteratively query a SAT solver for a solution
better than the current best one. In contrast, core-guided algorithms are lower-
bounding approaches that use a SAT solver to extract a series of unsatisfiable
cores, i.e. sets of soft constraints that cannot be simultaneously satisfied, and
reformulate the underlying MaxSAT instance to rule out each core as a source of
unsatisfiability. Both search strategies have shown strong performance in the an-
nual MaxSAT Evaluations, linear search is particularly effective for incomplete
solving while many of the best performing complete solvers are core-guided.

As our main contribution, we propose core-boosted linear search for incom-
plete MaxSAT solving, a novel search strategy that combines linear and core-
guided search with the aim of achieving the best of both worlds. A core-boosted
solver initially reformulates an input instance with a core-guided solver and then
solves the reformulated instance with a linear search solver. The exchange of
information from the core-guided phase to the linear phase tightens the gap be-
tween the lower and upper bound, allowing the use of a simpler pseudo-Boolean
encoding. As a result, the approach is often more effective than either a pure
linear or a pure core-guided search.

To demonstrate the potential of core-boosted linear search we report on an
experimental evaluation of a prototype solver that combines reimplementations
of two state-of-the-art MaxSAT solvers, PMRES [44] as the core-guided algo-
rithm and LinSBPS [14] as the linear algorithm. We compare core-boosted linear
search to its individual components on a standard set of benchmarks. Our results
indicate that core-boosted linear search is indeed more effective that either core-
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guided or linear search for incomplete solving. An in-depth look at the search
progression on three selected instances demonstrates the ability of core-boosted
linear search to both avoid the worst-case executions of its components, and
make use the information flow between them to more quickly find solutions of
higher quality.

The rest of the paper is organised as follows. After the preliminaries in Sec-
tion 2, we give a detailed discussion of core-guided and linear search methods for
MaxSAT in Section 3. Core-boosted linear search is then presented in Section 4.
We discuss related work in Section 5, after which we present our experimental
evaluation in Section 6. Lastly, we give concluding remarks in Section 7.

2 Preliminaries

For a Boolean variable x there are two literals, the positive x and the negative
—x. The negation —I of a literal [ satisfies ==l = [. A clause C' is a disjunction
(V) of literals (represented as a set of its literals), and a CNF formula F a
conjunction (A) of clauses (represented as a set of its clauses). The set VAR(F)
of the variables of F' contains all variables z s.t. x € C or -z € C for some
C € F. We assume familiarity with other logical connectives and denote by
CNF(¢) a set of clauses logically equivalent to the formula ¢. We also assume
without loss of generality, that the size of CNF(¢) is linear in the size of ¢ [47].

A truth assignment 7 is a function mapping Boolean variables to 1 (true)
or 0 (false). A clause C is satisfied by 7 (denoted by 7(C) = 1) if 7(I) = 1
for a positive or 7(I) = 0 for a negative literal [ € C, otherwise C' is falsified
by 7 (denoted 7(C) = 0). A CNF formula F' is satisfied by 7 (7(F) = 1) if 7
satisfies all clauses in the formula and falsified otherwise (7(F') = 0). If some
7 satisfies a CNF formula F', then F' is satisfiable, otherwise it is unsatisfiable.
The NP-complete Boolean Satisfiability problem (SAT) asks to decide if a given
CNF formula F is satisfiable [17].

A (weighted partial) MaxSAT instance F consists of two sets of clauses: the
hard HARD(F), the soft SOFT(F), and a function w” : SOFT(F) — N associating
a positive integral cost to each soft clause. The set VAR(F) of the variables of
F is VAR(HARD(F)) U VAR(SOFT(F)). An assignment 7 is a solution to F if
T(HARD(F)) = 1. The cost COST(F, 7) of a solution 7 to F is the sum of the
weights of the soft clauses it falsifies i.e. COST(F, 7) = Y ccsorr(F) w” (C)x(1—
7(C)). A solution 7 is optimal if COST(F, 1) < COST(F, 7') for all solutions 7’
to F. We denote the cost of the optimal solutions to F by COST(F). The NP-
hard (weighted partial) MaxSAT problem asks to compute an optimal solution
to a given instance F. In the rest of the paper we will assume that all MaxSAT
instances have solutions, i.e. that HARD(F) is satisfiable.

A central concept in many SAT-based MaxSAT algorithms is that of an
(unsatisfiable) core. For a MaxSAT instance F, a subset  C SOFT(F) of soft
clauses is an unsatisfiable core of F iff HARD(F) A & is unsatisfiable.
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Algorithm 1: LIN-SEARCH
Input: A MaxSAT instance F
Output: An optimal solution 7 to F
begin
n < [SOFT(F)|, 7 + INITIALSOLUTION(F)
R+ {ri,...,rn}, FE={CiVvr|C;€SorT(F),ri ¢ VAR(F)}
while true do
if Resource-Out then return 7*
PB <+ 3" w”(Ci) x r;i < COST(F,7%)
F,, + HARD(F) U F' U CNF(PB)
(res, 7) + SATSOLVE(Fy)
if res="satisfiable” then 7* < 7
else return 7*

3 Core-Guided and Linear Search for Incomplete
MaxSAT

We detail two abstract MaxSAT solving algorithms, LIN-SEARCH (Algorithm 1)
and CORE-GUIDED (Algorithm 2), representing linear and core-guided search,
respectively. Both use SAT-solvers to reduce MaxSAT solving into a sequence of
satisfiability queries. However, the manner in which the SAT solver is used dif-
fers significantly. We present both algorithms as complete any-time algorithms,
i.e. algorithms that, given enough resources, compute the optimal solution to a
MaxSAT instance while also providing intermediate solutions during search.

In the following descriptions of the MaxSAT algorithms, we abstract the
use of the SAT-solver into two functions. The function SATSOLVE represents
a basic SAT-solver query. Given a CNF formula F, the query SATSOLVE(F)
returns a tuple (res,7), where res denotes whether the formula is satisfiable
and 7 is a satisfying assignment to F' if one exists. The extended function
EXTRACT-CORE(HARD(F), SOFT(F)) takes as input the hard and soft clauses
of a MaxSAT instance F and returns a triplet (res, k,7), where res indicates if
HARD(F) A SOFT(F) is satisfiable, 7 is a satisfying assignment for HARD(F) A
SOFT(F) if one exists, and k C SOFT(F) is a core of F if HARD(F) A SOFT(F)
is unsatisfiable. Practically all SAT-solvers used in MaxSAT solving offer a so-
called assumption interface [43] that can be used to implement SATSOLVE and
EXTRACT-CORE.

The pseudocode of LIN-SEARCH, is detailed in Algorithm 1. When solving an
instance F, LIN-SEARCH refines an upper bound on COST(F) by maintaining
and iteratively improving a best known solution 7* to F. Initially, 7* is set to
any solution of F, for example by invoking the SAT solver on HARD(F). During
search, the existence of a solution 7 having cost less that 7* is checked by query-
ing the internal SAT solver. If no such solution is found, then 7* is optimal and
LIN-SEARCH terminates. Otherwise 7* is updated and the search continues. In
more detail, the existence of a solution 7 for which COST(F, 1) < COST(F,7*)
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Algorithm 2: CORE-GUIDED
Input: A MaxSAT instance F
Output: An optimal solution 7 to F
begin
7% < INITIALSOLUTION(F),  bST*AT « max{w” (C) | C € SoFT(F)}
FleF, i+1
while true do
if Resource-Out then return 7*

i

STRAT « {C | C € SoFT(F"),w” (C) > b*TRAT}
(res, k', 7) < EXTRACT-CORE(HARD(F'), STRAT)
if res="satisfiable” then

if COST(F,7) < COST(F,7*) then 7™ < 1

if STRAT = SoFT(F’) then return 7

else b5 max{w” (C) | C € SorT(F?), w”

else
F « REFORMULATE(F?, %)
L e+ i+1

i

(C) < bSTRAT}

is checked by querying the SAT-solver for the satisfiability of a working formula
F,, = HARD(F)U FRUCNF(PB) consisting of the hard clauses, the soft clauses
each extended with a unique relazation variable r; and a CNF-encoding of a
pseudo-Boolean (PB) constraint PB = """ | w” (C;) x r; < COST(F, 7*) that
is satisfied by an assignment 7 iff Y1, w” (C;) x 7(r;) < COST(F,7*). The
intuition underlying F,, is that setting a relaxation variable r; to true allows fal-
sification of the corresponding soft clause C;. Thus the PB constraint essentially
limits the sum of the weights of the soft clauses falsified by an assignment 7 to
be less than the current best known upper bound COST(F,7*) on COST(F).
In other words, F,, is satisfied by an assignment 7 iff 7 is a solution to F for
which COST(F, 1) < COST(F,7*).

Before proceeding with core-guided search, we make two observations regard-
ing the effectiveness of LIN-SEARCH that are important for understanding core-
boosted linear search. As the search in LIN-SEARCH is focused on decreasing the
best known upper bound, we expect it to be most effective for solving an instance
F when the difference between COST(F) and the cost COST(F, 7*) of the ini-
tial solution 7* is small. Thus, a high quality, i.e. low cost, initial solution can
have a significant impact on the overall performance of LIN-SEARCH. The sec-
ond observation concerns the PB constraint Y"1 | w” (C;) x r; < COST(F,7*).
Similar constraints are encountered in many different domains, as such a lot of
research has been put into developing efficient CNF encodings of them [46, 11,
27]. Even so, the PB constraint is arguably the main bottleneck of the overall
performance of LIN-SEARCH and we expect any further techniques that allow
the use of simpler, and more compact (encodings) PB constraints to improve the
overall performance of LIN-SEARCH.
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The pseudocode of CORE-GUIDED, basic core-guided search extended with
stratification [37,7], is detailed in Algorithm 2. Stratification is a heuristic de-
signed to steer the core extraction of CORE-GUIDED toward cores x for which
the minimum weight of the clauses in x is high. Stratification is a standard tech-
nique in modern core-guided solvers. Importantly for this work, stratification
allows us to treat core-guided search as an any-time method for MaxSAT.

When solving an instance F, CORE-GUIDED maintains a working instance
initialised to F and a stratification bound bSTRAT initialised to the highest weight
of the soft clauses in F. During iteration i of the main search loop, the SAT
solver is queried for a core k' of a subset of the current working instance JF*
containing all hard clauses and STRAT, all soft clauses with weight greater
than or equal to bSTRAT If no such core exists, an intermediate solution 7 is
obtained and compared to the best known solution 7*. If all soft clauses were
considered in the SAT call, the obtained solution is also optimal and the al-
gorithm terminates. If not, the bound »5TRAT is lowered and the search con-
tinues. When a core s is extracted, the working instance is updated by the
function REFORMULATE. Informally speaking, REFORMULATE reformulates JF*
in a way that rules out x* as a source of unsatisfiability and allows falsify-
ing one clause in x* without incurring cost. Most of the core-guided MaxSAT
solvers that fit the CORE-GUIDED abstraction [4, 25,41, 8,44,41] differ mainly
in the implementation of REFORMULATE. The correctness of such solvers is
often established by showing that F° is MaxSAT-reducible to F**! and that
VAR(F?) C VAR(FT1) [6]. While a precise treatment of MaxSAT-reducibility is
outside the scope of this work, the next proposition summarises the consequences
of it that are important for understanding core-boosted linear search.

Proposition 1. Let F be a MazSAT instance, x a core of F, w* = min{w” (C) |
C € k} and F® = REFORMULATE(F, k). Assume that F is MazSAT reducible
to F and that VAR(F) C VAR(FT). Then the following hold: (i) any solu-
tion T to F can be extended into a solution T to F st. COST(F,7) =
COST(FE 78) + w" and (ii) any solution 7 to FF is a solution to F for
which COST(FE ) = COST(F, %) — w".

An alternative intuition to core-guided search offered by Proposition 1 is thus a
search strategy that lowers the optimal cost of its working instance by extracting
cores that witness lower bounds and reformulating the instance s.t the cost of
every solution to the instance is lowered exactly by the identified lower bound.
Core-guided search terminates once the optimum cost of the working instance
has been lowered to 0.

Ezample 1. Let F be a MaxSAT instance having HARD(F) = {(z1 V z2), (23 V
z4)} and SOFT(F) = {(—z;) | i = 1...4} with w” ((-21)) = v ((-22)) = 1
and w” ((—z3)) = w” ((—x4)) = 2. We sketch one possible execution of the PM-
RES algorithm [44], an instantiation of CORE-GUIDED, when invoked on F.
First, the initial working formula F! is set to F and the stratification bound
BSTRAT is set to the highest weight of soft clauses, i.e. 2. Thus STRAT =
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{(=23), (—z4)} in the first iteration. The formula HARD(F*) ASTRAT is unsat-
isfiable, the only core obtainable at this point is k! = {(—x3), (~x4)}. Using the
PMRES algorithm, the next working instance 72 = REFORMULATE(F?, k') has
HARD(F?) = HARD(F') U {(—z3 V —r1),CNF(d; <> z4), (—24)}, SOFT(F?) =
{(—~z1), (~22), (-r1V—dy)} with w” (1) = w” (2) = 1 and w((—r1V-dy)) = 2.
The stratification bound is not altered so STRAT = {(—r; V —dy)} during the
next iteration. Now HARD(F?) ASTRAT is satisfiable so b5TRAT is lowered to 1.
In the next iteration STRAT = SOFT(F?) and the SAT solver obtains the core
k? = {(—x1), (—x2)}. The instance is again reformulated and the next working
instance F3 = REFORMULATE(F?, k%) has HARD(F?) = HARD(F?) U {(-21 V
_|’I‘2), (_\SCQ), CNF(d2 g 1‘2))} and SOFT(.FQ) = {(_‘TQ V _\d2)7 (_‘T‘l V _\dl)} with
wF ((-ry V =dy)) = 1 and w((—r1 V —dy)) = 2. In the final iteration STRAT =
SoFT(F?) and since HARD(F?3) U SOFT(F?) is satisfiable, CORE-GUIDED termi-
nates.

We conclude this section with a few observations regarding CORE-GUIDED
that are important for understanding core-boosted linear search. When solv-
ing an instance F, CORE-GUIDED focuses its search on the lower bound of
COST(F). Thus, we expect CORE-GUIDED to be effective if COST(F) is low
and, in particular, to not be significantly affected by the quality of the initial
solution. The main bottleneck of CORE-GUIDED is instead the increased com-
plexity of the core-extraction steps. Note that the core x! extracted during the
i:th iteration of CORE-GUIDED is a core of the i:th working instance ¢ and not
necessarily of the original instance F. While the effects of reformulation on the
complexity of the EXTRACT-CORE calls are not fully understood, it has been
shown that extracting a core of F* can be exponentially harder than extracting
a core of F [13].

4 Core-Boosted Linear Search for incomplete MaxSAT

In this section, we propose and discuss core-boosted linear search, the main con-
tribution of our work. The execution of a core-boosted (linear search) algorithm
is split into two phases. On input F, the algorithm begins search in a core-
guided phase by invoking CORE-GUIDED on F. If CORE-GUIDED is able to find
an optimal solution within the resources allocated to it, then the core-boosted al-
gorithm terminates. Otherwise CORE-GUIDED returns its final working instance
Fu along with the best solution 7* it found. The core-boosted algorithm then
moves on to its linear phase by invoking LIN-SEARCH on F,, using 7* as the
initial solution. The linear phase runs until either finding the optimal solution
to Fy, or running out of computational resources. By Proposition 1, the best
solution 7* to JF,, found by LIN-SEARCH is also a solution to F. Specifically, an
optimal solution of F,, is also an optimal solution to F implying the complete-
ness of core-boosted linear search for MaxSAT. We emphasize that the linear
component LIN-SEARCH of a core-boosted algorithm is invoked on F,, the final
working instance of CORE-GUIDED, and not on F, the initial input instance.



8 Berg et al.

As we discuss next and demonstrate in our experiments, this allows the linear
phase of core-boosted linear search to benefit from the core-guided phase in a
non-trivial manner.

The discussion on LIN-SEARCH and CORE-GUIDED in Section 3 serves as use-
ful basis for understanding the potential benefits of core-boosted linear search.
Since core-boosted linear search makes use of both core-guided and linear search,
we expect it to be effective both on the same instances as linear search, and
as core-guided search, or at least not significantly worse. For example, if the
instance F being solved has low optimal cost, then we expect a core-boosted
algorithm to be able to solve the instance effectively during its initial core-
guided phase. Similarly, if COST(F) is close to the cost COST(F,7*) of the
initial solution 7*, then COST(F,,) is also close to COST(F,,7*). Hence we
expect a core-boosted algorithm to be effective during its linear phase, even fac-
toring in the reformulations done during the core-guided phase. The potential
benefits of core-boosted linear search go beyond merely averaging out the per-
formance of core-guided and linear search. As discussed in the previous section,
one of the main drawbacks of core-guided search is the increased complexity
of core extraction over time. Thus stopping the core-guided phase and solv-
ing the working instance by linear search should be benficial. Further, the linear
phase can also benefit from the reformulation steps performed by the core-guided
phase. Specifically, such reformulations can decrease the size of the PB constraint
PB =" w"(C;)xr; < COST(F,7*) that needs to be encoded during linear
search. Depending on the specific encoding used, the number of clauses resulting
from encoding PB into CNF depends either on the magnitudes of the weights
of the soft clauses and the right-hand side [23] or on the number of unique sums
that can be created from those weights [27]. The reformulation steps performed
during the core-guided phase of a core-boosted algorithm can affect both of these
factors. By Proposition 1 COST(Fy,, 7*) < COST(F, 7*) which implies that the
magnitude of the weights in F,, and the initial right hand side COST(F,, 7*)
of PB are smaller in the reformulated F,, than in the original 7. On the other
hand, the core-guided phase can also decrease the number of soft clauses in the
instance. Notice that the second working instance of Example 1 has one less
soft clause than the first one. Finally, the so-called hardening rule [7] commonly
used in conjunction with core-guided search, can also decrease the number of
soft clauses of the instance, and thus allow the linear phase of a core-boosted
algorithm to use a more compact PB constraint

5 Related Work

We begin by detailing the instantiations of LIN-SEARCH and CORE-GUIDED that
we use in the prototype core-boosted linear search algorithm experimented with
in the next section. As the linear search component we use the basic LIN-SEARCH
extended with varying resolution and solution-based phase-saving in the style of
LinSBPS, the best performing solver of the incomplete 300s track of the 2018
MaxSAT evaluation [14]. Solution-based phase-saving is a heuristic designed



Core-Boosted Linear Search for Incomplete MaxSAT 9

to steer the search towards the currently best known solution by modifying
the branching heuristic of the internal SAT solver to always prefer setting the
polarity of a literal it branches on to equal its polarity in the currently best
known solution. Varying resolution is a heuristic designed to alleviate the issues
that LIN-SEARCH has with large PB constraints. When invoked on an instance
F a linear search algorithm using varying resolution starts its search by creating
a lower resolution version of F by dividing all weights of soft clauses by some
constant d and removing all clauses C € SOFT(F) for which |w(C)/d] = 0.
The low resolution version is then solved by standard linear search. When an
optimal solution is found, the value of d is decreased and the search continued in
higher resolution. Following LinSBPS, we used the generalized totalizer encoding
(GTE) [27] to convert the PB constraints to CNF. Given a set of input literals
L = {l,...,l,} and their corresponding weights W = {wi,...w,} the GTE
creates a set of output literals oq,...0 s.t. each o; corresponds to a sum s;
formable with the weights in W for which s; < s; if 4 < j. The sum of weights
of the literals in L set to true is then restricted to be less than s; with the unit
clause (—0;).

As the instantiation of CORE-GUIDED we use the PMRES algorithm [44]
extended with weight aware core extraction (WCE) [16] and the hardening rule.
Weight aware core extraction is a heuristic designed to allow CORE-GUIDED
to extract multiple cores before reformulating the instance and increasing its
complexity. When extracting a new core k PMRES with WCE first computes
w® = min{w” (C) | C € k}, then lowers the weight of all clauses in x by w"
(removing all clauses with weight 0). When no new cores can be extracted, the
REFORMULATE function is invoked on all of the found cores and the stratifica-
tion bound is reset. The search continues until no new cores can be found after a
reformulation step. This strategy corresponds to the S/to/WCE strategy of [16].
While an alternative strategy that prefers reformulating to lowering the strati-
fication bound was deemed more effective for complete MaxSAT solving in [16],
we found that S/to/WCE is more effective for incomplete solving. For lower-
ing the stratification bound, we use the diversity heuristic [7] that balances the
amount that wSTRAT is lowered with the number of new soft clauses introduced.

In the next section, we report on a comparison of core-boosted linear search
and all of the solvers that participated in the incomplete track of the 2018
MaxSAT Evaluation: LinSBPS, maxroster, SATLike, Open-WBO and Open-
WBO-Inc and their variations. Most of them implement variations of an ap-
proach where: i) a heuristic of some kind if used to find a good initial solution
to the instance being solved and ii) that solution is used to initialise a complete
any-time algorithm. In most cases, the complete algorithm is some variant of
LIN-SEARCH. The solver SATLike [30] deviates from this description and in-
stead uses local-search techniques in order to quickly traverse the search space
and look for solutions of increasing quality. A more detailed description of the
solvers can be found on the evaluation homepage [14].

For related work from the field of complete MaxSAT solving, the Primal-Dual
MaxSAT algorithm [18] extends PMRES with a second instance reformulation
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used to rule out solutions that falsify the same clauses as an intermediate so-
lution obtained during search. The main two differences between Primal-Dual
and core-boosted linear search are that Primal-Dual reformulates the instance
on each iteration, thus increasing the complexity of core extraction steps, and
that the reformulation only rules out solutions that falsify a particular set of
clauses. In contrast, lowering the bound on the PB constraint in LIN-SEARCH
rules out all solutions that have higher cost than the best known solution. The
WMSU3 [38] algorithm maintains a cardinality constraint over soft clauses sim-
ilar to LIN-SEARCH but only relaxes a soft clause C after extracting a core
k for which C' € k. The similar WPM3 [9] uses linear-search as a subroutine
within core-guided search in order to obtain tighter bounds on the cardinality
constraints.

In addition to core-guided and linear search, a third central approach to SAT-
based MaxSAT solving is based on implicit-hitting sets [21,45]. During solving,
such solvers maintain a set of cores of the input instance. During each iteration,
a minimum-cost hitting set over the set of cores is computed. The clauses in the
hitting set are then removed from the instance and the SAT solver invoked on
the remaining clauses. If the SAT solver reports satisfiable, the obtained solution
is optimal. Otherwise, a new core is obtained and the search continues. Finally,
MaxSAT solvers based on branch and bound have been shown to be effective
on random MaxSAT instances as well as challenging instances of smaller size.
Such instances are encountered for example in combinatorics [31, 33,1, 35, 2, 32,
48, 34].

6 Experimental Evaluation

Next we present the results on a experimental evaluation of a prototype core-
boosted linear search algorithm that combines the instantiations of LIN-SEARCH
and CORE-GUIDED discussed in Section 5. We refer to our implementation of
LIN-SEARCH extended with varying resolution and solution-guided phase saving
by Linear-Search. Similarly, we use Core-Guided to refer to our implementation
of PMRES extended with WCE. Finally, Core-Boosted-XXs is the core-boosted
algorithm that first runs Core-Guided until either XX seconds have passed or no
more cores can be found with the stratification bound set to 1, then reformulates
the instance and solves the reformulated instance with Linear-Search. The state
of the internal SAT solver of Core-Boosted-XXs is kept throughout the core-
guided phase, but reset (that is learned clauses are eliminated and activities of
all variables reset to 0) when execution is switched to the linear search phase
and whenever resolution is increased during the linear phase.

All three algorithms were implemented on top of the publicly available Open-
WBO system [40] using Glucose 4.1 [12] as the back-end SAT solver. The initial
solution of all three algorithms is obtained by invoking the SAT solver on the
hard clauses of the instance being solved. We emphasise that core-boosted linear
search is a general idea applicable with all implementations and extensions of
LIN-SEARCH and CORE-GUIDED that we are aware of. The goal of these ex-



Core-Boosted Linear Search for Incomplete MaxSAT 11

periments is to show that core-boosting can be used to improve performance
of modern core-guided and linear search solvers, not to evaluate every possible
instantiation and extension of CORE-GUIDED and LIN-SEARCH that has been
proposed.

Our experimental setup is similar to the 300s weighted incomplete track
of the 2018 MaxSAT evaluation [14]. In most of the experiments, we use the
172 benchmarks from the weighted incomplete track of the evaluation, available
from https://maxsat-evaluations.github.io/2018 /benchmarks.html. We enforce
a per-instance time limit of 300 seconds and memory limit of 32GB. All of
the experiments were run on the StarExec cluster (https://www.starexec.org)
that has 2.4-GHz Intel(R) Xeon(R) E5-2609 0 quad-core machines with 128-GB
RAM. As the metric for comparing solvers we use the same incomplete score as
the evaluation. For an instance F let BEST-COST(F) denote the lowest cost
found in 300 seconds by any of (the variants of) the solvers Linear-Search, Core-
Guided, Core-Boosted-XXs or the solvers that participated in the evaluation.
The score a solver S on F is defined as the ratio between BEST-COST(F)

and the cost of the best solution 7° to F found by S, i.e. SCORE(S,F) =

%w. In other words, the score of S is the ratio between the cost

of the solution of the virtual-best-strategy (VBS) among our methods and the
MaxSAT Evaluation 2018 solvers, and the cost obtained by S. Hence the score
difference between two solvers shows the percentage points by which the better
solver is closer to the VBS.

The first experiment we report on evaluates effect of different time limits on
the core-guided phase of Core-Boosted-XXs. As limits we chose 30s (10% of the
total time), 75s (25%), 150s (50%), 225s (75%) and 300s (100%), respectively.
An important fact to keep in mind is that the core-guided phase can end earlier
than the limit. For example, the solver Core-Boosted-150s runs its core-guided
phase until no more cores can be found with the stratification bound at 1 or
150s have elapsed.

Table 1 lists the average score obtained by the Core-Boosted-XXs (CB-XXs
in the table) solver for different values of XX. Overall we observe a decrease in
the average score when the time limit is increased, even if the effect is small in
most domains. A possible explanation for this behavior is offered by Figure 1
showing the duration of the core-guided phase of the Core-Boosted-300s solver
on all benchmarks. On 107 out of the 172 benchmarks, the core-guided phase
ended within 30 seconds and on 38 benchmarks Core-Boosted-300s did not enter
its linear search phase at all. In other words, on a clear majority of the bench-
marks, the duration of core-guided phase was either very short or very long,
which explains the good performance of Core-Boosted-30s. For the rest of the
experiments, we fix the time limit for the core-guided phase to 30 seconds. Ta-
ble 1 also lists the average score obtained by the two components of Core-Boosted
individually. The scores clearly demonstrate the potential of core-boosted linear
search. The average score of Core-Boosted-30s is at least equal to the score of
both Core-Guided (CG in the table), and Linear-Search (Lin in the table) on
all but 4 domains and clearly higher over all benchmarks. Figure 2 shows a
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Table 1: Average score obtained by Core-Boosted-XXs with different maximum times
for the core-guided phase as well as its core-guided and linear search components. In
the table CB-XXs refers to the Core-Boosted-XXs solver, Lin to the Linear-Search
solver and CG to the Core-Guided solver.

Domain (#benchmarks) |CB-30s|CB-75s|CB-150s|CB-225s|CB-300s|CG |Lin

BTBNSL (16) 0.996|, 0.995 0.996 0.995 0.965| 0.956| 0.959
abstraction-refinement (2) 1.000, 1.000/ 1.000 1.000, 1.000(1.000| 0.517
af-synthesis (19) 0.990]  0.990 0.990 0.990 0.990| 0.944/0.991
causal-discovery (14) 0.776| 0.776 0.799 0.803 0.795| 0.563| 0.454
cluster-expansion (20) 0.941| 0.941 0.941 0.941 0.941(0.941/0.941
correlation-clustering (12) 0.953| 0.956 0.953 0.953 0.953| 0.736| 0.675
hs-timetabling (13) 0.701 0.655 0.566 0.459 0.144| 0.076|0.717
lisbon-wedding (12) 0.582| 0.582 0.582 0.582 0.582| 0.544|0.582
maxcut (11) 0.892| 0.892 0.892 0.892 0.892] 0.594| 0.884
min-width (16) 0.961] 0.965 0.962 0.956 0.962| 0.825| 0.898
miplib (5) 0.587| 0.587 0.584 0.584 0.444] 0.309| 0.571
power-distribution (2) 0.704| 0.704 0.704 0.704 0.704| 0.497| 0.484
railway-transport (4) 0.927] 0.923 0.916 0.920 0.935| 0.708| 0.906
relational-inference (2) 0.041| 0.041 0.041 0.041 0.429| 0.414| 0.041
robot-nagivation (3) 0.943| 0.943 0.943 0.943 0.000| 0.000/0.943
spot5 (3) 0.990]  0.990 0.990 0.990 0.990| 0.914/0.999
staff-scheduling (10) 0.895| 0.895 0.863 0.840 0.493| 0.385| 0.877
tep (7) 1.000 0.998 0.998 1.000 1.000| 0.864| 0.988
timetabling (1) 0.667| 0.148 0.130 0.131 0.131] 0.026/0.941
Total (172) 0.870, 0.864 0.857 0.847 0.785‘ 0.680‘ 0.807

detailed analysis on the behaviour of core-boosted linear search in the form of
plots showing the evolution of the gap between the upper and lower bound (in
logscale) of Core-Boosted-30s, Linear-Search and Core-Guided on three hand-
picked benchmarks. The benchmark on the left shows a case where core-guided
search is effective. During the first 30 seconds, both Core-Boosted-30s and Core-
Guided rapidly decrease the gap. After 30 seconds, Core-Boosted-30s switches
to its linear search phase, which on this benchmark slows its search progres-
sion. Core-Guided continues with the same search strategy, finding (and proving
optimality of) a solution of cost 76250 in just under 190 seconds. Even if the
gap of Core-Boosted-30s is larger due to a smaller lower bound, it still finds an
“almost optimal” solution having cost 76251. On this benchmark Linear-Search
is unable to improve on its initial solution at all and returns a solution with cost
226338. An important observation to make is that, in contrast to Linear-Search,
Core-Boosted-30s did manage to improve its solution also in the linear phase.
This indicates that the linear search phase of core-boosted search can indeed
benefit from the reformulation steps performed and the best solution obtained
during the core-guided phase.

The benchmark in the middle of Figure 2 demonstrates the opposite be-
haviour to the one on the left. On this benchmark Core-Guided is unable to
improve on its initial solution having cost 651, while Linear-Search continuously
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# Benchmarks
IS
S

Core-guided phase ended between (s)

Fig. 1: Time spent in core-guided phase by Core-Boosted-300s.

improves it and ends up finding one that has cost 17. Core-Boosted-30s is ini-
tially unable to make progress, but starts decreasing its gap when switching to
the linear phase after 30s and ends up finding a solution of cost 23. Finally,
the benchmark on the right demonstrates a best-case scenario for core-boosted
search. On this benchmark Linear-Search is unable to improve at all on its ini-
tial solution that has cost 311544. Core-Guided is able to decrease the gap by
increasing the lower bound to 104585, but is unable to find a single better so-
lution and returns the initial solution of cost 311544 as well. Core-Boosted-30s
is able to use the best of both worlds by first increasing the lower bound during
the core-guided phase and then switching to the linear phase in order to find a
solution of cost 171437, significantly better than either of its components. Notice
that the initial solution given to the linear phase of Core-Boosted-30s is the same
as the one found by Linear-Search, so the performance difference between the
two is only due to the reformulation steps done during core-guided search.

The results shown in Figure 2 suggest, that a more sophisticated strategy
for deciding when to switch from the core-guided to the linear phase could be
used to further improve the empirical performance of core-boosted linear search.
Even though the instances in Figure 2 are hand-picked, the average scores over
all benchmarks in the corresponding domains listed in Table 1 support the ob-
servations.

100000 \ | \ Core-Boosted30s

ore-Guided
\ Linear-Search

10000
100
1000

100 !

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s) Time (s)

Gap (UB-LB) (logscale)

100000

Fig.2: Evolution of the gap between the upper and lower bound during search.
The specific benchmarks shown are abstraction-refinement-downcast-antlr (left) [50],
hs-timetabling-Brazillnstance5.xml (middle) [22], causal-discovery-causal_carpo_-8-100
(right) [26].
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Next we turn our attention to evaluating the effect that different factors have
on the overall performance of Core-Boosted-30s. Figure 3 shows a per-instance
comparison of the score obtained by Core-Boosted-30s and four variants of it: 1)
Core-Boosted-30s-no-reformulation that ignores the reformulated instance and
invokes the linear phase on the original instance, 2) Core-Boosted-30s-no-solution
that ignores the best solution obtained during the core-guided phase in the linear
phase and instead initialises a new solution by invoking the SAT-solver on the
hard clauses of the reformulated instance, 3) Core-Boosted-30s-keep-SAT-solver
that keeps the state of the internal SAT solver throughout the entire search
and 4) Core-Boosted-30s-wce-to-strat that uses of the original search strategy
proposed in [16] during the core-guided phase. In all plots Core-Boosted-30s is on
the y-axis, so any data points in the upper left triangle correspond to benchmarks
on which the baseline performed better than the variant. We observe that the
baseline solver performs better than all of its variants. The results suggest that
using the reformulated instance and initialising the Linear Search with the best
solution obtained during core-guided search are especially important for the
overall performance.

1
7 ¥
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fugn P +
08 A + +
+ [ +
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0.4

Core-Boosted-30s
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Core-Boosted-30s-no-reformulation Core-Boosted-30s-no-solution Core-Boosted-30s-keep-SAT-solver Core-Boosted-30s-wce-to-strat

Fig. 3: The effect of different factors of Core-Boosted-30s on the overall performance.

Finally, we compare Core-Boosted-30s and its components to the other solvers
that participated in the 2018 evaluation. Due to running our experiments in the
same environment as the evaluation, we did not rerun the other solvers but in-
stead compared our solvers directly to the results of the evaluation. Figure 4
demonstrates the performance of our solvers on the 300s weighted (left) and
unweighted (right) tracks®. We observe that the Linear-Search solver is compet-
itive with the state of the art, taking fourth position in both tracks. As can be
expected, Core-Boosted-30s performs better, improving the state of the art in
the weighted category and finishing 3rd in the unweighted category. For an alter-
native view, out of the 172 weighted instances, Core-Boosted-30s and LinSBPS
are equal on 63 instances (36%), Core-Boosted-30s finds a solution of strictly
lower cost on 65 (37%), and LinSBPS on 44 (25%). We also evaluated our al-
gorithms in the 60s tracks, i.e. using a timeout of 60 seconds. In the weighted
track Core-Boosted-30s obtains the average score 0.814 which is highest of all

5 A consequence of the metric we use is that the scores of the other solvers we report
are lower than in the evaluation. Their relative ranking is however the same.
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solvers followed by Open-WBO-Inc-BMO (0.793) and LinSBPS (0.779). In the
unweighted track, the average score of Core-Boosted-30s is 0.696 which is second
highest after SATLike-c (0.699).

0.8 [

0.6

Score

SATLike-c (0.810

Open-WBO-Inc-MCS (0.65:
Open-WBO-Gluc (0.641

Core-Guided (0.680) Open-WBO-Riss (0.606

Open-WBO-Gluc (0.665) T
P ) og‘en-wso‘-mss (0.648) , , . Core;Guided (0.505) —
0 20 40 60 80 100 120 140 160 60 80 100 120 140 160
Instances Instances

( )
04 inSBPS (0.854) maxroster (0.788)
Open-WBO-Inc-BMO (0.815, Core-Boosted-30s (0.777) ——
Linear-Search (0.807) —— Linear-Search (0.756) ——
maxroster (0.785) LinSBPS (0.741)
Open-WBO-Inc-Cluster (0.742) —— Open-WBO-Inc-OBV (0.681)
0.2 SATLike-c (0.687) ATLike (0.680) - - -
’ SATLike (0.730) = - - B;
)
)

Fig. 4: Performance of Core-Boosted-30s, Linear-Search and Core-Guided compared to
the results of the 300s weighted (left) and unweighted (right) track of the 2018 MaxSAT
Evaluation.

7 Conclusions

We presented core-boosted linear search, a novel search strategy for incomplete
MaxSAT solving, that combines the strengths of core-guided and linear search.
Our experimental evaluation on a prototype implementation indicates that the
information flow between the two phases of a core-boosted linear search solver
often allows it to perform better than either of its individual components, while
very rarely performing significantly worse. Furthermore, our comparison to other
incomplete solvers shows that core-boosted linear search can be used to obtain
state-of-the-art performance in weighted incomplete MaxSAT solving. As fu-
ture work we plan to develop more dynamic ways of deciding when to switch
between the core-guided and the linear search phase. Another interesting re-
searchs directions to consider is the inclusion of MaxSAT preprocessing before,
or even in-between, the core-guided and linear phases. Finally we also plan to
look into extensions of core-boosted linear search to other constraint optimiza-
tion paradigms.
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