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Abstract. Significant advances have been recently made in the de-
velopment of increasingly effective in-exact (or incomplete) search
algorithms— particularly geared towards finding good though not
provably optimal solutions fast—for the constraint optimization
paradigm of maximum satisfiability (MaxSAT). One of the most suc-
cessful recent approaches is a new type of stochastic local search in
which a Boolean satisfiability (SAT) solver is used as a decision or-
acle for moving from a solution to another. In this work, we strive
for extending the success of the approach to the more general realm
of pseudo-Boolean optimization (PBO), where constraints are ex-
pressed as linear inequalities over binary variables. As a basis for the
approach, we make use of recent advances in practical approaches to
satisfiability checking pseudo-Boolean constraints. We outline var-
ious heuristics within the oracle-based approach to anytime PBO
solving, and show that the approach compares in practice favorably
both to a recently-proposed local search approach for PBO that is
in comparison a more traditional instantiation of the stochastic local
search paradigm, and a recent exact PBO approach when used as an
anytime solver.

1 INTRODUCTION
Significant progress in developing practical solvers for maximum
satisfiability (MaxSAT) [3]—as the optimization extension of the
Boolean satisfiability (SAT) problem—has established MaxSAT as
a viable choice for a declarative optimization paradigm enabling
efficiently solving various types of real-world combinatorial opti-
mization problems. Leveraging on the extraordinary success of SAT
solvers [24, 6, 23, 31, 25] as “real-life NP oracles”, together with
non-trivial algorithmic advances, research on MaxSAT solving tech-
niques has until recently mostly focused on complete (or exact) al-
gorithms, yielding solvers which are guaranteed to provide provably-
optimal solutions given enough computational resources. However,
due to intrinsic computational barriers in scaling and speeding up ex-
act approaches in general, the development of practical incomplete
(or in-exact) MaxSAT solvers has recently gained significant trac-
tion [26, 4, 7, 1, 10]. In contrast to typical complete solvers (such as
those based on the core-guided, implicit hitting set, model-improving
or branch-and-bound approaches [3, 23]), the so-called “incomplete”
solvers are in particular geared towards finding relatively good solu-
tions as fast as possible (without general guarantees on optimality),
effectively acting as anytime algorithms.
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Beyond pure stochastic local search [7, 21], the most effective
“incomplete” solvers today are based on clever combinations of com-
plete solvers, such as the Loandra approach that combines the model-
improving and core-guided approaches for incomplete solving [4].
A different approach, first proposed in Mrs. Beaver [26] and subse-
quently improved and extended in a sequence of publications [28,
27], can be viewed as a non-traditional stochastic local search (SLS)
which—somewhat unintuitively yet very successfully—uses a com-
plete SAT solver to guide search space traversal from one solution
to another, ideally better one. Integrating local search with complete
solvers has been shown to increase efficiency in other contexts as
well, such as in SAT solvers [8] or solvers of constraint satisfaction
problems (CSP) [17].

Despite the noticeably recent success of MaxSAT, the underlying
modeling language of propositional logic has its limitations. This
holds in particular true for problems in which constraints are more
naturally represented as pseudo-Boolean constraints [5, 13, 18], i.e.,
linear inequalities over binary variables, as a central class of integer
programs. Complementing the more classical branch-and-cut type
approach to solving integer programs, special reasoning approaches
for pseudo-Boolean constraints have recently been developed [15],
which take up ideas from SAT solving, allowing for extensions such
as complete core-guided [12] and implicit hitting set [32, 33] ap-
proaches to pseudo-Boolean optimization. However, the analogy be-
tween complete and incomplete solving in MaxSAT has received lit-
tle attention in the realm of PBO, apart from classical stochastic local
search approaches [35, 34, 9], with [22] being the most recent devel-
opment with an open-access solver implementation.

In this work, we investigate the question of whether the suc-
cess of incomplete MaxSAT solving approaches that use complete
SAT solving techniques can be transferred to the PBO domain in
order to obtain a novel type of anytime algorithm for PBO. In
particular, we study ways of effectively lifting the Mrs. Beaver
approach—implementing non-traditional SAT-oracle based stochas-
tic local search—to the realm of PBO. For this, we make use of
the recent RoundingSAT approach [11, 14] as a decision oracle for
deciding whether a given set of pseudo-Boolean constraints has a
solution under different assumptions. The decision oracle guides
the overall search, transitioning from one configuration to another.
Stochasticity is introduced by randomization heuristics which af-
fect, e.g., the order in which variables are assigned and the decision
oracle is invoked. Furthermore, we integrate a solution-improving
search into the approach, which is achieved by enforcing an upper



bound constraint—which is naturally declared as a single pseudo-
Boolean constraint—in the outer loop of the procedure. Thereby, the
approach can be considered both as an anytime approach to PBO
and, given sufficient resources, even as a complete oracle-based,
local search boosted solution-improving approach that, unlike the
recently-proposed pure SLS approach to PBO [22], is guaranteed to
eventually find an optimal solution. We provide an open-source im-
plementation of the described approach, and empirically evaluate its
runtime performance. Our implementation of the approach outper-
forms both a recent pure SLS approach [22] and a recent complete
specialized PBO solver running in anytime mode [12] in terms of the
quality of solutions found in a short time.

2 PSEUDO-BOOLEAN OPTIMIZATION
A pseudo-Boolean (PB) constraint is of the form

∑
i cixi ◦B, where

◦ ∈ {≤,≥, <,>, ̸=,=}, each xi is a binary (0-1) variable, each ci
an integer constant and B an integer bound. Without loss of gener-
ality, we assume that every PB constraint is in the normalized form∑

i cili ≥ B, where each coefficient ci and the bound B are non-
negative, and each literal li is either a variable xi or its negation
x̄i = 1 − xi. An assignment M maps binary variables to either
0 or 1. The assignment M satisfies a constraint

∑
i cili ≥ B if∑

i ciM(li) ≥ B, where M(x̄) = 1 − M(x). A PB formula F
is a set of pseudo-Boolean constraints. An assignment M is a so-
lution to F if it satisfies all constraints in F . When convenient, we
view M as the set of literals which it maps to 1, i.e. l ∈ M iff
M(l) = 1. A solution M is complete for a formula F if it assigns
all variables in F , otherwise it is partial. An objective O ≡

∑
i cixi

over binary variables xi is a pseudo-Boolean expression under mini-
mization. We assume without loss of generality that each coefficient
ci in an objective is positive. We use VAR(O) to denote the set of
variables that appear in an objectiveO; more precisely, x ∈ VAR(O)
iff cx is a term in O for some constant c. A pseudo-Boolean opti-
mization (PBO) instance I = (F,O) consists of a PB formula F
and an objective O. The solutions of I are the solutions of F . The
cost O(M) of a solution M is the value of O evaluated under M .

Example 1. Consider the PBO instance (F,O), where F =
{
∑5

i=1 bi ≥ 3, b1 + b4 ≥ 1, b2 + b5 ≥ 1} and O ≡ 3b1 + 6b2 +
3b3 + b4 + 5b5. A minimum-cost solution M of the instance sets
M(b3) = M(b4) = M(b5) = 1 and M(b1) = M(b2) = 0 and
has O(M) = 9. The solution is represented as a set of literals by
M = {b̄1, b̄2, b3, b4, b5}.

We consider pseudo-Boolean optimization in an anytime con-
text. In contrast to complete algorithms, which are geared to-
ward computing—given enough time and memory resources—a
minimum-cost solution for a given PBO instance, anytime algorithms
are essentially designed to find the best possible solutions in the
shortest possible time.

3 ANYTIME PBO SOLVING
We discuss two approaches to anytime optimization for PBO relevant
to our work: solution-improving search [5, 11] and stochastic local
search [20, 22, 35, 34, 9]. The oracle-based local search procedure
we develop integrates features from both types of approaches.

3.1 PB Oracles and Solution-Improving PBO Search

Solution-improving search makes iterative queries to a PB decision
procedure, abstracted as a PB-oracle PB-Solve, in order to itera-

tively find solutions of increasing quality (i.e., solutions of decreas-
ing cost). A PB-oracle is a complete decision procedure which, given
a formula Fw and enough computational resources, either outputs a
solution to Fw or determines that one does not exist. Due to recent
advances in PB solving, efficient PB solvers implementing a form
of a conflict-driven pseudo-Boolean decision procedure [11, 14, 15]
are readily available, which is also what we will rely on as the prac-
tical PB-oracle in this work. Such an algorithm can be viewed as
a lifting of the immensely successful conflict-driven clause learn-
ing paradigm from SAT solving into the pseudo-Boolean domain,
with native pseudo-Boolean constraint reasoning integrated. In short,
a conflict-driven pseudo-Boolean algorithm performs backtracking
search, making decisions, propagating the consequences of those de-
cisions and inferring new constraints that prune the search space
whenever the decisions performed lead to a conflict.

Given a PBO instance (F,O), pure solution-improving search
works by iteratively invoking a PB-oracle on the working formula
F ∪ {O < UB} consisting of the constraints F of the original
PBO instance and (the normalized version) of the so-called solution-
improving constraint O < UB, which enforces a known upper
bound on the minimum-cost of the PBO instance and thus restricts
the search to solutions that have lower costs than UB. That is, the
solution-improving constraint is satisfied by an assignment M if
and only if O(M) < UB; if the PB-oracle finds a solution Mw to
the working formula, the algorithm improves on its currently best
known solution. The solution-improving constraint is then iteratively
strengthened to O < O(Mw) and the PB-oracle invoked again. As-
suming that an initial solution is found before a possible time limit
the algorithm can return the latest found solution at any time, and can
thus be considered an anytime approach. The algorithm terminates at
the time limit or when the PB-oracle determines that there are no so-
lutions to the current working instance. In the latter case, the last so-
lution found is guaranteed to be of minimum cost for the input PBO
instance. In other words, solution-improving search is a complete al-
gorithm for PBO which can be implemented as a stand-alone solver
as well as in combination with other solving approaches [32, 33, 12].
For the approach we develop in this work, the more important aspect
of solution-improving search is its anytime feature; our approach
integrates solution-improving search together with so-called oracle-
based local search.

Example 2. Consider an invocation of pure solution-improving
search on the PBO instance (F,O) detailed in Example 1. The ini-
tial call to the PB-oracle PB-Solve is done on the working formula
F (conceptually adding the solution-improving constraint O < ∞).
There are many possible solutions that the oracle can return; for the
sake of this example, assume that the oracle returns the solution
M∗ = {b1, b2, b3, b̄4, b5} which has cost O(M∗) = 17. This so-
lution is stored as the current best solution. In the next iteration, the
PB-oracle is invoked on the formula F ∪{O < 17}. There are again
many solutions that could be returned; assume that the PB-oracle re-
turns the solution M∗ = {b̄1, b̄2, b3, b4, b5} with O(M∗) = 9. In
the next iteration, the oracle is invoked on F ∪ {O < 9}. Now the
oracle determines that there are no solutions to the current working
formula. Hence the algorithm terminates and returns the latest M∗

as a minimum-cost solution.

3.2 Stochastic Local Search for PBO

The other approach to anytime pseudo-Boolean optimization
which—as a general algorithmic paradigm—is relevant for our work,



is that of stochastic local search (SLS) [19]. Starting from a heuris-
tically chosen variable assignment Mw, an SLS algorithm for PBO
searches for a low-cost solution to a given PBO instance (F,O) by
heuristically flipping the values assigned by Mw until a solution for
F is found. The algorithm then attempts to improve on the such
found initial solution by making local changes to the solution in a
similar manner. This process is iterated until a termination criterion
is reached, at which point the best solution found so-far is returned.
The main challenge in developing SLS algorithms is designing prac-
tically effective heuristics for choosing which variables to flip, as
well as for initializing assignments in order to find a solution with
the lowest possible cost without getting stuck in a local minimum.
Typical SLS approaches integrate both greedy moves to a best solu-
tion in the local neighborhood of the current solution, and random
walk steps which—in order to escape local minima—allow for mov-
ing to neighboring solution of higher cost than the current solution.
A recently developed pure SLS approach is detailed in [22]; we re-
fer to the original work for the specifics of the approach. Note that a
pure SLS approach does not typically guarantee finding an optimal
solution regardless of how much resources are given, and such ap-
proaches do not integrate mechanisms which would allow for detect-
ing whether a current solution is of minimum-cost. The oracle-based
local search approach to PBO developed in this work, as detailed
next, can be viewed either as a non-traditional form of local search
in which a complete PB-oracle is used as the basis for moving from
one solution to another and detecting when a minimum-cost solution
is found, or as an extension of solution-improving search with local-
search elements; the approach integrates aspects of both local search
and solution-improving search.

4 ORACLE-BASED LOCAL SEARCH FOR PBO
In this section we detail OraSLS, the oracle-based local search al-
gorithm for PBO developed in this paper. The algorithm draws ideas
from both solution-improving search and stochastic local search. On
a high level, OraSLS can be seen as a local search algorithm over
complete assignments to the objective variables of a given PBO in-
stance. However, in contrast to traditional local search, OraSLS
works entirely with solutions to the input PBO instance. More specif-
ically, whenever the value of an objective variable would be flipped,
OraSLS relies on a PB-oracle to determine whether solutions to
the input instance that extend the current assignment of objective
variables actually exist. OraSLS goes beyond this type of non-
traditional approach to stochastic local search by also integrating
iterations of solution-improving search that are invoked whenever
the oracle-based local search is unable to improve on the current so-
lution; conceptually being stuck in a local optimum. This guaran-
tees that given enough resources, the search is bound to produce a
minimum-cost solution.

The PB Oracle. In the following detailed description of OraSLS,
we abstract the use of the PB-oracle into the function PB-Solve. In
contrast to solution-improving search, our algorithm often makes use
of the oracle as an incomplete decision procedure by invoking it un-
der a resource limit (in practice, limiting the number of conflicts seen
before terminating the oracle call, as will be detailed later in Sec-
tion 5). More specifically, given a formula F , a partial assignmentA
of its variables, and a resource limit α, the call PB-Solve(F,A, α)
runs a conflict-driven pseudo-Boolean decision solver until one of
the following three scenarios realize:

(i) a solution M ⊃ A to F that extends A is found,

1 OraSLS
Input: A PBO instance I = (F,O)
Output: The best solution M∗ to I found

2 init-polarities-and-activities ();
3 (M, sat?)← PB-Solve(F, ∅,∞);
4 if not sat? then return “no feasible solutions” ;
5 F ← F ∪ {O < O(M∗)}; M∗ ←M ;
6 while true do
7 A ← ∅;
8 set-sticky-polarities (M∗);
9 shuffled-obj-vars← reorder(VAR(O));

10 for x ∈ shuffled-obj-vars do
11 if M(x) = 0 then A ← A∪ {x̄} ;
12 else
13 (M, sat?)← PB-Solve(F,A ∪ {x̄}, α);
14 if sat? then
15 A ← A∪ {x̄};
16 if O(M) < O(M∗) then M∗ ←M ;
17 else
18 A ← A∪ {x};
19 if |A ∩ VAR(O)| > β then break;
20 if stagnation then
21 F ← F ∪ {O < O(M∗)};
22 (M, sat?)← PB-Solve(F, ∅,∞);
23 if not sat? then return M∗ ;
24 else M∗ ←M ;
25 return M∗;

Algorithm 1: OraSLS: Oracle-based local search for PBO

(ii) the decision solver determines that there is no such solution, or
(iii) the decision solver reaches the resource limit α at which point the

decision solver is interrupted.

Note that setting α = ∞ guarantees that scenario (iii) will never
happen. For each of the scenarios, the decision solver returns a tuple
(M, sat?), where sat? is true if a solution M ⊃ A to F was found.

Overview of Oracle-Based SLS for PBO

Algorithm 1 details OraSLS in pseudo-code. Invoked on an input
PBO instance (F,O), OraSLS first calls the PB-oracle without as-
sumptions and without resource limits to check that the input in-
stance has a solution (Line 3); otherwise the instance at hand would
essentially not be a PBO instance but rather an unsatisfiable PB de-
cision problem instance (in which case the algorithm will terminate
early on Line 4). Invoked without assumptions (i.e., under an empty
partial assignment) and without a resource limit, the PB-oracle is
guaranteed to provide an initial solution if one exists. The initial so-
lution is stored in M and in M∗. The latter M∗ will for the duration
of the search always be the lowest-cost solution found so-far. The al-
gorithm then adds a solution-improving constraint to the PB formula
F of the input instance, using the cost of the initial solution as the
right-hand-side upper bound (Line 5).

After the just-described initialization phase, the main search loop
(Lines 6-19) is entered. The loop is iterated until either (i) an opti-
mal solution is found or (ii) the algorithm is stopped by the user (or
using a pre-described limit) at which point it outputs the lowest-cost
solution M∗ found so far.

Each iteration of the main search loop begins by using the
reorder function for determining an ordering of the objective vari-
ables, storing the ordering in shuffled-obj-vars, and initializing a par-



tial assignmentA. The reorder function in a sense corresponds to
an ordering in which a traditional SLS algorithm may flip the val-
ues assigned to individual variables. As we will see, the order of the
variables in shuffled-obj-vars maps directly to the order in which the
search will attempt to improve the current assignment M by modify-
ing the current solution. Hence the implementation of the reorder
function can be expected to play a key role in the performance of the
approach. Our implementation of reorder is detailed in Section 5.
At each point during an iteration, the partial assignment A consists
of those objective variables that have already been processed during
the iteration and whose assignments are fixed for the rest of it.

More specifically, after shuffling the objective variables via
reorder, the inner loop (Lines 10 to 19) processes the objec-
tive variables in the obtained order. When processing a variable
x ∈ shuffled-obj-vars, the assignment of x under the current solu-
tion M is checked. If M(x) = 0, then the assignment of x does
not currently incur cost on M . Informally speaking, in this case M
cannot be locally improved by flipping the value of x. With this in-
tuition, the value of x is fixed to 0 for the rest of the inner loop by
adding x̄ to A on Line 11. Otherwise (Line 12), the PB-oracle is in-
voked to check for the existence of a solution that agrees with the
variables in A (the already-processed variables during this iteration)
and the additional assumption that x = 0 (Line 13). If such a solu-
tion is obtained from the PB-oracle, the value of x is fixed to 0 for
the rest of the inner loop on Line 15 and the solution M returned by
the PB-oracle is compared to the currently best known solution M∗

on Line 16. Otherwise, the value of x is fixed to 1 for the rest of the
inner loop on Line 19.

Important for practical efficiency of the approach, the call to the
PB-oracle on Line 13 is made under a resource limit α, in practice
limiting how much time is spent in the PB-oracle. As such, fixing
x = 1 within the inner loop can happen both if the PB-oracle deter-
mines that no solution extending A ∪ {x̄} exists, or when the PB-
oracle is terminated due to having reached a resource limit. If the
value of x is fixed to 1 during an iteration, the iteration is regarded as
a failed attempt to extendA without incurring more cost. As detailed
later on in Section 5, for practical performance it is also reasonable to
limit the number of failed attempts by using a fail-limit β (Line 19),
note that the number of elements in A ∩ VAR(O) equals the number
of objective variables fixed to 1 so far in this iteration.

Example 3. Consider invoking OraSLS on the PBO instance
(F,O) from Example 1 and an iteration of the main loop in which the
current solution M is {b1, b2, b3, b̄4, b5}. Assume that the reorder
function returns shuffled-obj-vars = {b1, b4, b2, b3, b5}. Then in
the first step of the inner loop A is empty. Since M(b1) = 1 the
first query to the PB-oracle is PB-Solve(F, {b̄1}, α) under the as-
sumptions {b̄1}. This constitutes asking the PB-oracle for any so-
lution in which b1 = 0. Assume that the solver returns M =
{b̄1, b2, b3, b4, b̄5}, which results in b̄1 being added to A. In the next
iteration, the variable to be processed is b4. Since M(b4) = 1—
note that the solution changed in the first iteration—the PB-oracle
is invoked on PB-Solve(F, {b̄1, b̄4}). Assume that this time the
PB-oracle is unable to find a solution, and so b4 is added to A. The
third variable to be processed is b2. The PB-oracle is this time in-
voked on PB-Solve(F, {b̄1b4, b̄2}). Now assume that the solver
returns M = {b̄1, b̄2, b3, b4, b5}, resulting in b̄2 being added to
A. In the last two iterations of the inner loop (corresponding to
processing variables b3 and b4) no more solutions are found. Note
that the instantiation of reorder can strongly influence the qual-
ity of solutions OraSLS finds. If the reorder function in Exam-

ple 3 would have returned shuffled-obj-vars = {b4, b5, b1, b2, b3} in-
stead, the inner loop could at best only have discovered the solution
{b1, b2, b3, b̄4, b̄5}.

5 SEARCH HEURISTICS
With the high-level description of OraSLS in place, we turn to dis-
cussing the various heuristic choices that the approach allows for.
In particular, these deal with (i) the instantiation of reorder for
ordering the objective variables at each iteration; (ii) how to limit re-
sources on various level of the search; and (iii) how to guide the PB-
oracle’s internal search via altering the scores of it decisions heuris-
tics in order to efficiently find initial solutions (before the main loop)
and improving solutions (in the inner loop).

5.1 Ordering of Objective Variables

The instantiation of reorder is one of the central design choices
in OraSLS, as it governs intensification and diversification in terms
of how the solution space is traversed. We instantiate OraSLS as
follows. For intensification, OraSLS employs what we call “shuf-
fling”. In shuffling, the objective variables are sorted by their co-
efficients in decreasing order. For integrating limited randomization
into the intensification step, the sorted variables are then partitioned
into n (a search parameter) equally sized buckets with a potentially
smaller last bucket which are then randomly permuted. Shuffling is
performed at every even iteration of the main loop. For diversifica-
tion, OraSLS fully reverses at every odd iteration the current order-
ing of the objective variables.

5.2 Limiting Resources for Performance

We turn to the question of how to limit resources on various levels of
the search in order to avoid the overall search getting stuck. For this,
we employ resource limits on three levels: on the level of individ-
ual calls to the PB-oracle (to avoid the overall search getting stuck
in potentially significantly hard individual PB-oracle calls—using a
conflict limit), on the level of how much resources are used within
individual iterations of the inner loop (using a fail limit), and on the
level of search stagnation (not finding improving solutions) in the
main search loop overall (using a stagnation limit);

Conflict Limit The goal of the PB-oracle call performed in the
inner loop (on Line 13) is to quickly determine whether the current
partial assignment A is extendable into a solution M to the PBO in-
stance at hand. Some of these PB-oracle calls can take a significant
amount of time, which is unacceptable for an anytime search proce-
dure geared towards finding relatively good solutions fast. In particu-
lar, instead of insisting on using significant runtime to prove the non-
existence (or to find) such a M , it is more sensible to terminate costly
PB-oracle calls early and thereafter direct the search to another part
of the search space. This is achieved by fixing the variable under con-
sideration at the time to 1, i.e. to incur cost, similarly as what would
be done if the PB-oracle would report that there are no solutions. In
practice, as the resource bound for terminating PB-oracle early, we
limit the number of allowed conflicts in each conflict-driven search
PB-oracle call with the parameter α. The notable exceptions to this
are the very first call in Line 3 for finding an initial solution, and the
PB-oracle call after stagnation in Line 22, since early termination of
the oracle at these points would not necessarily allow the algorithm
to escape stagnation.



Fail Limit We found the ordering of the objective variables in the
inner loop of OraSLS can have a very significant effect on whether
new solutions improving on the best known solution M∗ are found.
If better solutions are too difficult to find or do not exist, OraSLS
can spend a significant amount of time in iteratively invoking the PB-
oracle without making any progress (regardless of whether this is due
to the oracle being interrupted due to the conflict limit or because of
determining that no better solutions exist). In order to prevent this, we
enforce a fail limit parameter β that limits the number of variables
that can be processed without improving the currently best known
solution within each iteration of the inner loop. Exceeding the limit
results in terminating the current iteration of the inner loop early.

Stagnation Limit The search of OraSLS can stagnate at the level
of the main search routine in case the inner loop is invoked consec-
utively many times without improving on the currently best known
solution, i.e., without executing Line 16 at least once (regardless of
why the inner loop is exited—due to exceeding the fail limit or oth-
erwise). If stagnation occurs—indicated in the pseudo-code by the
Boolean stagnation becoming true—the next time Lines 20-24 are
reached, OraSLS enforces a solution-improving constraint to F and
invokes PB-Solve on the formula without assumptions or conflict
limit. As such the call will either find a solution that has cost lower
than the current M∗, or determine that the current solution is in fact
minimum-cost. In other words, stagnation prevention is what makes
OraSLS complete. We use the δ parameter to represent the num-
ber of times the inner loop can be tried without improving on M∗,
i.e., without executing Line 16 at least once before stagnation occurs.
Note the difference between breaking the inner loop and stagnation
prevention. The variable stagnation becomes true if δ different or-
derings of objective variables are processed without improving M∗

while the inner loop is broken if β variables in the ordering have been
fixed to 1, i.e. processed without improving the current solution.

5.3 Variable Activities and Polarities in the PB-Oracle

We also consider guiding the search within individual calls to the
PB-Oracle specifically with the type of search OraSLS implements
in mind, building on similar ideas employed in the context of the
Mrs. Beaver approach to anytime MaxSAT [26]. The two specific
search heuristics of a PB-oracle we consider are the activity heuris-
tics of variables (which governs which variables are decided on next
during search), and the default polarity selection for a variable (which
governs to which value a variable is assigned to when making a deci-
sion on the variable). By default, variable activities in the PB-oracle
are initialized uniformly, which means that the PB-oracle will in the
beginning choose decision variables simply in the order in which the
variables are in its internal data-structures. The activity is increased
by the PB-oracle whenever a variable is involved in a conflict, alike
in the central VSIDS decision heuristics in CDCL SAT solvers [25].
As for the variable polarities, they are initialized to 0 by default in the
PB oracle, which means that the PB oracle decides to set the variables
to 0 first. Phase saving [29], similarly as in CDCL SAT solvers, is by
default employed: variable polarity selection heuristics for a variable
x are updated whenever constraint propagation assigned a value v to
x, so that next time x is decided on, it will be assigned to v.

As detailed next, we focus search in particular on objective vari-
ables, and employ a modified activity and polarity initialization that
aims a finding better initial solutions faster, as well as replace phase
saving with an alternative that takes into account the current best so-
lution while the PB-oracle is trying to improve on it.

Oracle Heuristics for Initial Solutions For finding an initial so-
lution, we force the PB-oracle to first make decisions on objective
variables by increasing the activity scores of objective variables by
one unit in the init-polarities-and-activities proce-
dure on Line 2 of Algorithm 1. Furthermore, we initialize variable
polarities of objective variables optimistically, i.e., so that deciding
on an objective variables does not incur cost in terms of the objective
function. Combining the two guides the search for an initial solutions
of the PB-oracle toward finding a solution of relatively low cost, with
ideally many of the objective variables assigned in a way that they do
not incur cost.

Oracle Heuristics for Improving Solutions Once an initial solu-
tion is found, the inner loop (Lines 10-24 of Algorithm 1) aims to
improve on it. For the PB-oracle in the inner loop, as an approach-
specific form of phase saving, we set the polarities of the variable
according to the polarities of variables in the current best solution.
Furthermore, motivated by earlier work on oracle heuristics in any-
time MaxSAT solving (going under the name solution-guided search
in [10, 4] and “conservative, fix, original-variables” in [26]), we ac-
tivate what we refer to as “sticky polarities” (Line 8). This works as
follows. If the polarity of a variable x is set to v, then the PB-oracle
will never assign 1− v as a decision; with sticky polarities, the only
way x can be assigned to 1 − v during the PB-oracle search is by
constraint propagation. Intuitively, sticky polarities intensify search
toward the currently best solution, this approach has been shown to
provide performance improvements in the context of MaxSAT [26].

6 EMPIRICAL EVALUATION

We turn to an empirical evaluation of OraSLS,

6.1 Setup

The experiments we report on were run on computing nodes with
8-core Intel Xeon E5-2670 2.6-GHz CPUs and 64-GB RAM.

Implementation and Competing Solvers We implemented the
approach in C++ building on the source code of RoundingSAT (com-
mit: a7fe32d8) [15]. The open-source implementation and full empir-
ical data are available via https://bitbucket.org/coreo-group/orasls/.
RoundingSAT is a state-of-the-art pseudo-Boolean decision solver,
making it a natural choice for the oracle in our approach. For the
empirical comparison, we consider the following variants of our ap-
proach.

OraSLS is the default version of our implementation of OraSLS. In
terms of default parameters, we use based on preliminary evalua-
tion a conflict-limit of 20, a fail-limit of 10, and a stagnation-limit
of 1. The number of buckets (in the reorder function) was set
to 8.

SIS is a baseline pure solution-improving search using the same
source code as OraSLS, obtained by disabling line 2 and lines 8-
20 in OraSLS.

SIS+ is another baseline using using the same source code as
OraSLS, in-between SIS and OraSLS, obtained by disabling
lines 9-20 in OraSLS (and, in contrast to SIS, lines 2 and 8 en-
abled). That is, SIS+ is a refinement of SIS which employs the
same activity and polarity initialization and sticky phases heuris-
tics as OraSLS.



The values for the parameters used by OraSLS in these experiments
are based on small-scale "by hand" experimentation performed dur-
ing development. The values were not exhaustively optimized by e.g.
an automatic configurator.

Furthermore, we compare the performance of OraSLS to the fol-
lowing recent anytime and complete PBO solvers.

LS-PBO [22], using its default parameters, is a recently-proposed
pure stochastic local search solver for PBO, as the main non-
complete approach to compare to.

RoundingSAT includes an implementation of a solution-improving
search algorithm (LSU) [14] as well as a recent exact hybrid ap-
proach that combines core-guided optimization (OLL, sometimes
referred to as MSU4) with LSU [12]. In order to obtain anytime
solutions from RoundingSAT, we modified it to output an objec-
tive value upper bound whenever it finds a better solution dur-
ing search. We include the LSU as well as OLL implementations
of this PBO solver in our experiments as a natural choice, since
OraSLS employs RoundingSAT as its decision PB-oracle.

Performance Metric In contrast to complete (exact) solvers,
which are typically compared against one another in terms of how
long each solver takes to find a provably optimal solution, com-
paring anytime solvers requires different types of metrics. Here we
use the establish performance metric used regularly for ranking any-
time solvers MaxSAT Evaluation [2] (MSE), the main competitive
event for MaxSAT solvers. For our empirical evaluation, the set of
solvers is S = {OraSLS, SIS, SIS+, LS-PBO, RoundingSAT LSU,
RoundingSAT OLL}. For a solver s ∈ S and instance in I let
BEST-COST(I, s) be the minimum cost of the solutions found by
s when invoked on I in our experiments and BEST-COST(I) =
mins∈S{BEST-COST(I, s)} the minimum cost of all solutions found
by any solver. The MSE score SCORE(I, s) of s on I is then 0 if s
was unable to find any solution of s within the timeout and:

SCORE(I, s) = BEST-COST(I) + 1

BEST-COST(I, s) + 1

otherwise. We report the average scores of the solvers our evalua-
tion. The MSE score takes values between 0 and 1 and—intuitively
speaking—measures how close to the best-known solution, a solu-
tion computed by a solver is. A score value of 1 means that the solver
was able to compute a solution whose cost matches the best known
solution and a value of 0.5 means that the found solution has twice
the cost of the best known solution. We enforced a per-instance time
limit of 5 minutes and a memory limit of 16 MiB on each solver,
following the incomplete track of MaxSAT Evaluations.

Benchmarks We consider the same heterogeneous set of bench-
marks, with 50 different benchmark domains, as used recently in
benchmarking complete PBO solvers [33]. The full set of bench-
marks contains optimization benchmarks used in Pseudo-Boolean
Competition 2016 [30] (as the most recent instantiation of the com-
petition) and 0-1 integer programs from the MIPLIB library [16].
Following [33], filtering was applied to remove all unsatisfiable
benchmarks, benchmarks without objective functions and bench-
marks with very large (≥ 264) coefficients. To obtain a balanced
set of benchmark in terms of the various different benchmark do-
mains, following [32, 33] we randomly sampled 20 instances from
each benchmark domain, including all instances if the family had 20
or less instances; as shown in [32], such a random sampling of bench-
marks allows for obtaining robust sample results when comparing

different solvers. After the sampling, we ended up with a benchmark
set consisting of a total of 865 instances.

6.2 Results

We first compare the MSE scores of OraSLS against those of LS-
PBO, RoundingSAT LSU and RoundingSAT OLL. Starting with LS-
PBO as state-of-the-art pure stochastic local search style competitor
of OraSLS, Table 1 shows the average MSE score of OraSLS and LS-
PBO for the 24 benchmark domains on which the domain-specific
average score of the two solvers differs by at least 0.1. OraSLS wins
LS-PBO on 18 of the 24 domains. OraSLS is significantly better in
providing solutions, with timeouts (TO; i.e., no solutions found) on a
total on 89 instances against 194 for LS-PBO, which underlying the
benefit of using a PB-oracle. Complementing the tabulated results,
Figure 1 (left plot) provides a visualization of the per-instance MSE
scores of these two solvers.

Table 1. OraSLS vs LS-PBO: Average MSE scores for domains on which
the score differ by ≥ 0.1

LS-PBO OraSLS
Benchmark domain # Score #TO Score #TO
MANETS 20 0.19 16 0.87 2
airplane-cost-quality 20 0.80 4 1.00 0
decomp 10 0.88 0 0.99 0
domset 15 1.00 0 0.85 0
golomb-rulers 20 0.52 8 0.84 3
haplotype-inf 20 0.99 0 0.77 0
lecture-timetabling 20 0.31 0 0.93 0
logic-synthesis 20 1.00 0 0.89 0
market-split 20 0.19 11 0.35 11
miplib-neos 20 0.67 5 0.81 3
miplib-various 20 0.48 10 0.84 2
netlib-various 20 0.43 11 0.58 7
number-factorization 20 0.20 16 1.00 0
plan-museum-visits 20 0.40 12 0.89 2
prime-implicants 20 0.55 9 0.75 5
radar-station-alloc 12 1.00 0 0.16 10
repair-bionet 20 0.82 0 1.00 0
transport-systems 20 0.89 0 1.00 0
transportation 20 0.20 16 0.71 4
unibo-various 20 0.18 15 0.77 4
upgradability 20 0.76 1 1.00 0
vm-workload 20 0.60 8 0.44 11
wnq 16 1.00 0 0.42 0
workshift-design 20 0.12 17 0.98 0
All domains 865 0.73 194 0.84 89
Wins (#domains) 6 18

Table 2 and Figure 1 (right plot) provide a similar comparison of
OraSLS against the anytime versions of RoundingSAT’s LSU and
OLL implementations. In terms of average MSE scores, both opti-
mization algorithms of RoundingSAT come in fact closer to OraSLS
than LS-PBO, with OLL being the closest; this is also reflected in
the average score of the solver over all benchmarks (see Table 4).
However, when the difference in scores between any one of the
three solvers is ≥ 0.1 for a particular domain, which is the case for
8 benchmark domains, OraSLS outperforms either one of the two
RoundingSAT variants on 7 of the domains. Furthermore, the differ-
ences appear quite significant, for example, with differences ≥ 0.37
for the course-alloc domain in the benefit of OraSLS.

Finally, we consider in more detail the performance of the fully-
fledged OraSLS against its pure SIS variants and the in-between vari-
ant SIS+. Table 3 provides the comparison for the 14 benchmark
domains on which the average MSE scores of the best and worst
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Figure 1. Per-instance performance comparison. Left: OraSLS vs LS-PBO. Right: OraSLS vs RoundingSAT.

Table 2. OraSLS vs RoundingSAT LSU and RoundingSAT OLL: Average
MSE scores for domains on which the scores differ by ≥ 0.1

RS LSU RS OLL OraSLS
Benchmark domain # Score #TO Score #TO Score #TO
MANETS 20 0.45 0 0.52 0 0.87 2
aries-da-nrp 20 0.44 1 0.61 1 0.68 2
course-alloc 6 0.54 0 0.55 0 0.92 0
decomp 10 0.33 6 0.82 1 0.99 0
lecture-timetabling 20 0.85 0 0.69 0 0.93 0
unibo-various 20 0.59 4 0.61 4 0.77 4
wnq 16 0.53 0 0.65 0 0.42 0
workshift-design 20 0.53 0 0.96 0 0.98 0
All domains 865 0.80 90 0.83 83 0.84 89
Wins (#domains) 0 1 7

performance variants on the domain differ by at least 0.1. These
results more importantly show that the combination of techniques
in the fully-fledged OraSLS pay off in terms of performance, with
OraSLS winning on 9 domains against 3 and 1 domains, respectively,
for SIS+ and SIS; this includes a tie on 2 domains for OraSLS and
SIS+. Furthermore, on the only domain on which SIS+ wins OraSLS,
the scores of these two solvers differ only by 0.01.

Table 3. OraSLS, SIS and SIS+: Average MSE scores for domains on
which the largest difference in scores ≥ 0.1

SIS SIS+ OraSLS
Benchmark domain # Score #TO Score #TO Score #TO
MANETS 20 0.45 0 0.74 2 0.87 2
aries-da-nrp 20 0.44 1 0.63 2 0.68 2
course-alloc 6 0.54 0 0.93 0 0.92 0
cryptography 11 0.59 0 0.66 0 0.73 0
decomp 10 0.33 6 0.98 0 0.99 0
haplotype-inf 20 0.61 0 0.74 0 0.77 0
repair-bionet 20 0.00 0 1.00 0 1.00 0
unibo-various 20 0.59 4 0.73 4 0.77 4
upgradability 20 0.31 0 1.00 0 1.00 0
wnq 16 0.53 0 0.41 0 0.42 0
workshift-design 20 0.53 0 0.94 0 0.98 0
All domains 865 0.76 90 0.83 89 0.84 89
Wins (#domains) 1 3 9

As a high-level overview, the average MSE scores of OraSLS, its
baseline versions SIS and SIS+, and the two competing approaches

over all benchmark instances are shown in Table 4. Again, we ob-
serve that OraSLS outperforms all of the competing approaches also
when considering all benchmarks as a single set. Interestingly, the
performance of the recent LS-PBO approach implementing pure
stochastic local search exhibits the weakest performance and is also
outperformed by RoundingSAT when run as an anytime solver.

Table 4. Average MSE scores over all benchmark domains

Solver Score #TO
OraSLS 0.8422 89
SIS+ 0.8316 89
RS OLL 0.8299 83
RS LSU 0.8049 90
SIS 0.7597 90
LS-PBO 0.7280 194

7 CONCLUSIONS

Compared to MaxSAT, where the development of anytime solvers
has received significant attention during the past five year, fewer
advances have so-far been made in specialized anytime algorithms
for PBO. Motivated by the recent success of new types of any-
time approaches to MaxSAT solving, we studied the applicabil-
ity of the oracle-based local search approach in the more general
context of pseudo-Boolean optimization. Overall, in the context of
PBO, the approach, titled OraSLS naturally allows for integrating
both pure oracle-based transitions from one solution to another and
solution-improving search, with various heuristic options to vary
search behavior. Empirically, the approach turned out to be promis-
ing, outperforming on various benchmark domains clearly the recent
pure stochastic local search approach, the solution-improving search
implementation of RoundingSAT, as well as often also the core-
guided RoundingSAT approach as an anytime solver. Since the best-
performing approaches in the evaluation turned out to be OraSLS
and anytime core-guided RoundingSAT, a promising direction for
future work is to study various of combining aspects of both these
approaches towards further performance improvements.
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