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The aim

• Let G be a group, K a field, V an n-dimensional vector field over

K.

• The aim is to study the maximal subgroups of classical groups.

• Aschbacher’s Theorem divides the maximal subgroups of finite

classical groups into “geometrical” ja “irregular” types.

• We use representation theory to study the irregular maximal sub-

groups.

• More precisely: we try to bound the number of conjugacy classes

of irregular maximal subgroups.



Representations (1)

• The general linear group GL(V ) consists of invertible linear trans-

formations of V .

• A representation of G is a homomorphism G → GL(V ), i.e., a

linear action of G in the space V .

• The image of a representation is a subgroup of GL(V ).

• Useful fact 1: Having representations makes it possible to use lin-

ear algebra in the study of G (matrices, eigenvalues, determinants

etc.).

• Useful fact 2: By listing representations one finds subgroups of

GL(V ).



Representations (2)

• The dimension of a representation is the dimension of V .

• Two representations are equivalent if they are related by a linear
transformation of V .

• That is, ϕ ∼ ψ if there is some T ∈ GL(V ) such that

ψ(g)(v) = T−1[ϕ(g)(Tv)]

for all v ∈ V and g ∈ G.

• A representation is irreducible if its image does not stabilise a
subspace of V .

• If |G| is finite, there is a finite number of inequivalent irreducible
representations.



Classical groups (1)

• Subgroups of GL(V ) that preserve a bilinear form B : V × V → K.

• Trivial form B(x, y) = 0  GL(V ) (linear group)

• Symmetric form B(x, y) = B(y, x)  O(V ) (orthogonal group)

• Alternating form B(x, y) = −B(y, x)  Sp(V ) (symplectic group)

• Hermitian form B(x, y) = B(y, x)  U(V ) (unitary group, the bar

indicates an automorphism of the scalar field)

• The choice of the form is important: for example there are many

non-isomorphic orthogonal groups.



Classical groups (2)

• Subgroups with determinant 1 are called special.

• For example the special orthogonal group SO(V ) consists of ro-

tations of V .

• Quotienting over the scalar elements produces projective groups.

• E.g. the projective special linear group PSL(V ) consists of linear

transformations of V having determinant 1, where g and λg are

identified for all λ ∈ K.

• Projective special groups are usually simple, that is, without non-

trivial quotients.



Aschbacher’s Theorem (1)

• Deals with finite classical groups, i.e., V is finite (as well as K).

• Assume G0 is a finite simple classical group and G0EG < Aut(G0).

• Let M be a maximal subgroup of G, such that G0 6≤M .

• Either a) M belongs to one of eight so-called “geometrical”
classes, typically consisting of stabilisers of a substructure of V ,

• or b) M normalises a simple subgroup M0 < G and M0 acts irre-
ducibly in V (M is then “irregular”).

• Aschbacher’s classes form a classification of the geometrical sub-
groups; groups in different classes are not conjugate to each
other; the conjugacy within each class is described in Kleidman &
Liebeck: The subgroup structure of the finite classical groups.



Aschbacher’s Theorem (2)

• What if M is not “geometrical”?

• The conjugates of M are determined by the conjugates of M0.

• As M0 is a simple subgroup of PGL(V ), it is an image of a rep-

resentation of a finite quasisimple group.

• If two representations are equivalent, the corresponding subgroups

are conjugates.

• Conclusion: The number of conjugacy classes of irregular maximal

subgroups can be bounded by bounding the number of dim(V )-

dimensional representations of finite (quasi)simple groups.



Finite quasisimple groups

• Finite simple groups are classified:

• (1) Cyclic groups of prime order (abelian).

• (2) Alternating groups Alt(d), when d ≥ 5.

• (3) Groups of Lie type (classical and exceptional).

• (4) Sporadic groups (26 groups).

• Each type has its own representation theory.

• Quasisimple groups are central extensions of simple groups; for

each simple group there is a finite number of such extensions.



Representation growth

• Let H be a finite (quasi)simple group.

• Let rn(H) denote the number of n-dimensional irreducible repre-

sentations of H.

• Divide the finite simple groups into finitely many classes Hi (e.g.

alternating, linear, orthogonal. . . ).

• For each i, try to bound the sum

sn(Hi) =
∑

H∈Hi
rn(H).



Examples of bounds of representation growth

groups bound reference

H ∈ Alt rn(H) < n2,5 [1]
H ∈ SL (same characteristic) rn(H) < n3,8 [1]
H = SL (different characteristic) sn(H) < 2,72n [2]
H = U (different characteristic) sn(H) < 2,89n [2]
H = Lie (different characteristic) sn(H) < 15n [2]

[1] Guralnick, Larsen, Tiep: Representation growth in positive char-

acteristic and conjugacy classes of maximal subgroups, 2010

[2] H: Growth of cross-characteristic representations of finite qua-

sisimple groups of Lie type, 2011 (submitted)



The result

• The number of conjugacy classes of maximal subgroups of finite

classical groups (geometrical and irregular) is at most

2n5,2 + n log2 log2 q,

where n is the dim of V and q the size of the scalar field K. [H]

• The same method can be used in complex vector spaces, by study-

ing representations over the complex numbers.

• With classical groups over the complex numbers, Aschbacher’s

Theorem is replaced by the Liebeck–Seitz Theorem.



THANK YOU


