Algebra II Department of Mathematics and Statistics Problem sheet 6 to 4.3.2010

- 1. Consider the ideal geneated by the polynomials $f = X^4 1$ and $g = X^3 + X$ in the polynomial ring $\mathbb{Z}[X]$.
 - (a) Find $h \in \mathbb{Z}[X]$, such that $\langle h \rangle = \langle f, g \rangle$.
 - (b) Show that in the quotient ring $\mathbb{Z}[X]/\langle f,g\rangle$ there exists an element a, such that $a^2 = -1$.
- 2. Let R be a ring with an ideal A. Prove the following claims (Theorem 6.6):
 - (a) A is a prime ideal if and only if R/A is an integral domain.
 - (b) A is maximal if and only if R/A is a field.
- 3. Assume that A is an ideal in a ring R, and B is a maximal ideal of the quotient ring R/A. Let π denote the canonical surjection $R \to R/A$. Show that $\pi^{-1}B$ is a maximal ideal of the ring R, and A is contained in B. (Corollary 6.10.)
- 4. Prove the following claims:
 - (i) If $f: M \to N$ is a module homomorphism, then Im f is a submodule of N, and Ker f is a submodule of M.
 - (ii) If (M_i) is a family of submodules of M, their sum $\sum_i M_i$ consists of elements $\sum_i x_i$, where $x_i \in M_i$ and $x_1 = 0$ apart from a finite set of indices.
- 5. Let R be a ring with an ideal A and a subring S. Prove the following claims:
 - (i) Every R/A-module is also an R-module, but not all R-modules are R/A-modules.
 - (ii) Every *R*-module is also an *S*-module, but not all *S*-modules are *R*-modules.

Hint: Think about \mathbb{Z}_n -modules.

6. Let M and N be R-modules. Show that $\operatorname{Hom}_R(M, N)$ is an R-module, and that $\operatorname{Hom}_R(R, M) \cong M$. (The ring R is thought of as a module equipped with its own multiplication.)