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Representation growth

e Studying finite-dimensional complex representations
e Let G be a group

e Definition: r,(G) is the number of (inequivalent) n-dimensional
irreducible representations of G

e Example: r1(S3) =2, ro(S3) =1 and r,(S3) =0 forn >3
e Idea is to examine the growth rate of r,(G) when n becomes large



Auxiliary notion: Zeta functions

e A representation zeta function of a group G is the following sum
taken over irreducible characters of G

Ca(s) = > x()™F = >
n=1

xelrr(G)
e In general, this is a complex analytic function which may not be
defined everywhere

rn(G)

nS

e ((0) is the number of irreducible characters (or conjugacy classes)
e ((—2) = |G| (if G is finite)



Theorem 1 (M. Liebeck, A. Shalev, 2003)

e Let L be any Lie type, with rank r and the number of positive
roots wu

e Let L(q) denote a finite quasisimple group of type L over F(q)
e Then, as q — oo,

0, ifs>r/u
CL(q)(8) — {OO, if s <r/u

e [ his means that for some constant ¢,

rn(L(q)) < cn™/t for all ¢
e Note: The constant depends on the Lie type, but not on ¢
e Application: Random walks in groups of Lie type



Digression: Quasisimple groups

e G=G"and G/Z(G) is simple
e Finite simple groups are classified
e Interesting families are alternating groups and groups of Lie type

e Any quasisimple group lies “between” a simple group and its full
covering group

e Any representation of a quasisimple group (including the simple
groups) is also a representation of the full covering group

e F.c. groups for simple groups of Lie type are typically pleasant to
work with (e.g. SLn(q))



Proof of Theorem 1 (part I)

e Relies on Deligne-Lusztig theory of complex characters of alge-
braic groups

e Apart from finitely many “small” groups, the full covering group
of a simple group of Lie type is the finite simply-connected fixed-
point subgroup of the algebraic group of the same Lie type

e The characters are partitioned into Lusztig series £(s), parame-
trized by semisimple conjugacy classes s

e There is a bijective correspondence between characters in £(s)
and unipotent characters of the centralizer of s in the dual group



Proof of Theorem 1 (part II)

o Key formula is

X(1) = |G" 1 Ca= ()] - (¥s(x)) (1),

where G* is the dual group and s(x) is the unipotent character
corresponding to x and s

e Need to estimate the number of semisimple conjugacy classes and
the values |G* 1 Cgx(s)|,y

e T he number of positive roots is used to estimate the centralizer
index



Theorem 2 (Generalisation, J.H.)

e Liebeck and Shalev had proved similar results for alternating groups
and their full covering groups

e For n > 1, define

Sp = > rn(H)

H quasisimple
e [ heorem 2: There is a constant ¢ such that s, < cn

e More precisely, if those groups of Lie type that have r/u > d are
excluded, we get s, < cn® (r = w only for SL5)



Proof of Theorem 2 (part I, alternating groups)

e TwoO cases: alternating groups and groups of Lie type

e Liebeck and Shalev (2003): for any e thereis a dg s.t. rn(Ay) < nf
for d > dg

e Characters of S, are parametrized by partitions of d

e Considered different ranges for the first member in the partition
to get

Z’r’n(Ad) < C’n/g
d

e Adding the characters of the covering group was not a problem,
using results of A. Wagner (1977)



Proof of Theorem 2 (part II, groups of Lie type, large rank)

e The f.c. groups of simple groups of Lie type H,(g) are classified
by their rank r and size of the field ¢, e.9. SL,11(q)

e Groups with large rank handled separately

o Key result 1: x(1) > kq" for some constant k£ (Landazuri and
Seitz, 1974)

e Key result 2: for any € > 0 there is rg s.t. rp(Hr(n)) < cn® when
r > rg (Liebeck and Shalev, 2003)

e Moreover, the number of quasisimple groups under a f.c. group is
bounded by r



Proof of Theorem 2 (part III, groups of Lie type, small rank)

e For groups of small rank, used Theorem 1 and the following

e Theorem 3 (Liebeck & Shalev, 2003): For a fixed Lie type (of
fixed rank), there is a set of strictly increasing polynomials
{f1,---, fq} s.t. if H(q) is a f.c. group of this type and x is an
irreducible character of H(q), then x(1) = f;(g) for some i < d.

e This means that for any n, there are at most d values of ¢ that
contribute



Application to Theorem 2

e Consider a classical group G of type SLy, SOy, or Sp, over C
e T he subgroups of G are partitioned into conjugacy classes

e If two n-dimensional representations are equivalent, the corre-
sponding subgroups belong to the same class

e [ he conjugating element can be shown to lie in the conformal
group of the given type

e Finally, conjugacy classes under conformal groups split into at
most two classes under GG

e Result: The number of conjugacy classes of finite irreducible qua-
sisimple groups of G is less than cn



Further developments

e Generalising to modular representations (no Deligne-Lusztig the-
ory available)

e Getting values for the constants (possible from the proofs, but
extremely laborious)

e On the other hand, concrete information of the characters can be
used to find a constant satisfying s, < cn

e The groups SL>(q) are the only ones with r/u =1

e For other groups, r,(G) < en® with d < 1, so there is some room
for d

e SO called gap results of character degrees can be used to estimate
¢, also in the modular case (but bound on d will become worse)



