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A grand challenge on Variety

eBig data: Volume, Variety, Velocity, Veracity

eVariety: hierarchical data (XML, JSON), graph data (RDF,
property graphs, networks), tabular data (CSV), etc

Big Data: 4V definition

Volume

Variety

Photo downloaded from: https://blog.infodiagram.com/2014/04/visualizing-big-data-concepts-strong.html
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Motivation: one application to include multi-
model data

eRelational data: customer databases
eGraph data: social networks
eHierarchical data: catalog, product

e Text data: Customer Review

An E-commerce example with multi-model data



Two solutions

1. Polystores

Using jointly multiple data storage technologies, chosen
based upon the way data is being used by individual
applications.

1. Multi-model databases

Using one single, integrated backend.



Polystores

« Use the right tool for (each part of) the job

* |f you have structured data with some differences
« Use a document store
« If you have relations between entities and want to efficiently
guery them
« Use a graph database
« If you manage the data structure yourself and do not need
complex queries
« Use a key-value store
Glue everything together...



Multiple NoSQL databases

Sales- History Recommendations Customer
DocumentStore GraphStore DocumentStore
Sales Social
media Customer
MongoDB Neo4j MongoDB
Redis MongoDB
Shopping-cart Catalog
KeyValueStore DocumentStore
ShoppingCart Product-Catalog



Pros and Cons of Polystores

O

« Handle multi-model data
« Help your apps to scale well
* A rich experience

* Requires the company to hire
people to integrate different
databases

 Implementers need to learn
different databases

|t is a challenge to handle cross-
model query and transaction




Three types of polystore systems*

* Loosely-coupled systems
Similar to mediator / wrapper
Common interfaces
Autonomy of local stores

Tightly-coupled systems

Trade autonomy for performance with materialized
views and indexes

* Hybrid
Compromise between loosely-coupled and tightly

* Bondiombouy, Carlyna, and Patrick Valduriez. "Query processing in multistore systems:
an overview." International Journal of Cloud Computing 5.4 (2016): 309-346



Polystore Special modules Query processing Query
optimization

Loosely-coupled

BigIntegrator
(Uppsala U.)

Forward (UC San
Diego)

QoX (HP Labs)

Tightly-coupled
Polybase (Microsoft)

HadoopDB
(Yale U.)

Estocada (Inria)
Hybrid

SparkSQL (UCB)

BigDAWG (MIT)

An overview of polystores https://slideplayer.com/slide/13365730/

Importer, absorber,
finalizer

Query processor

Dataflow engine

HDFS bridge

SMS planer,
dbconnector

Storage advisor

Catalyst extensible
optimizer

Island query
processors

LAV

GAV

No

GAV
GAV

Materialized
views

Dataframes

GAV within
islands

Access filters
Data store capabilities
Data/ function shipping,

operation decomposition

Query splitting
Query splitting

View-based query
rewriting

In-memory caching using
columnar storage

Function/ data shipping

Heuristics

Cost-based

Cost-based

Cost-based

Heuristics

Cost-based

Cost-based

Heuristics



Polystore example - Myria

Myrial and Python

RACO Middleware

Translation, Optimization, Orchestration

MyriaX S  Radish B SciDB B, Spark W, SPARQL

Relational C++ HPC cluster Array Key-Value RDF
Data Transfer with PipeGen

http://myria.cs.washington.edu/




Two solutions

1. Multi-model databases

Using one single, integrated backend



Multi-model DB

* One unified database for multi-model data

XML

Tabular

Spatial

Mult-model DB

JSON



Multi-model databases

e A multi-model database is designed to support multiple
data models against a single, integrated backend.

e Document, graph, relational, and key-value models are
examples of data models that may be supported by a
multi-model database.



Multi-model databases:
One size fits multi-data-model

A. J mongo J
ORACLE _
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Most of DBs became multi-model
databases in 2017

w0 2, « By 2017, all leading
i@ operational DBMSs will offer
- multiple data models,

@ MongoDB ® . .
e (T relational and NoSQL, in a
MarkLogic @ Pz 1
T single DBMS platform.
Faitcom @) @ Couchbase
couen @ @
e Ambag vog} Fa::o: MMMMMM
@ .0 - . .. --- Gartner re port foro perationa I
wl o A (%) Aerospike
g rtonworks @) @) Orient Technologies d a ta b a S e S 20 1 6
)é icObject .

COMPLETENESS OF VISION As of October 2015



Three examples of multi-model databases

ORACLE" IIrienfDB@

@& ArangoDB



ORACLE"

Oracle database provides a long list of supported data

models that can be used and managed inside Oracle
database:

JSON document

Spatial and Graph Data
XML DB data

Text data

Multimedia data

19



Example: Data transformation by views
between JSON and relation data

Tasks

Construct JSON View from
relational content

Construct relational view of
employee from JSON

SQL/JSON language

CREATE JSON_VIEW AS

SELECT JSON {“Staff” : { “STAFF ID” : e.staff id, “First” : e.first,
“Last” :e.last, “Mgr” :e.mgr, { “Dept” : {“Dept ID” :d.dept id,
“Names” : d.name, “Head” : d.head }} } FROM Employee e, department d
WHERE e.dep_id = d.dep_id

CREATE EMPLOYEE_REL _VIEW AS
SELECT * FROM JSON_VIEW f, JSON_TABLE (f.Staff COLUMNS
(Staff_ID, First, Last, Mgr)

20



& DB

ArangoDB is designed as a native multi-model database,
supporting key/value, document and graph models.



An example of multi-model data
and query

Mary (1) "1"-->"34e5e759"
Friend Friend "2"-->"0co6df508"

William (3) John (2)
{"Order no":"0Ocbdf508",
“Orderlines": [
{ "Product no":"2724f"”
“Product Name":“Toy",

1 Mary 5,000 "Price":66 },
2 John 3,000 { "Product no":“3424g”,
3 William 2’000 "PrOdUCt_Name" : “"Book" F;

"Price":40 } ]



An example of multi-model data
and query

Mary (1) "1"-->"34e5e759"

Friend Frier:;/ "2"-->"0c6df508"
William (3) John I

{"Order no":"0Ocbdf508",
“Orderlines": [
{ "Product no":"2724ft"”
“Product Name":“Toy",

1 Mary 5,000 "Price":66 },
2 John 3,000 { "Product no":“3424g”,
3 William 2’000 "PrOdUCt_Name" : “"Book" F;

"Price":40 } ]



Q: Return all products which are ordered by a friend
of a customer whose credit limit is over 3000

Mary (1) "1" -->"34e5e759"
Friend Friend "2"-->"0co6df508"

William (3) John (2)
{"Order no":"Oco6df508",
“Orderlines": [
{ "Product no":"2724f”
“Product Name":“Toy",

1 Mary 5,000 "Price":66 } ,
2 John 3,000 { "Product no":“3424g”,
3 William 2,000 "Product Name":“Book",

"Price":40 } ]



An example of multi-model query (ArangoDB)

Let CustomerIDs =(FOR Customer IN Customers FILTER
Customer.CreditLimit > 3000 RETURN Customer.id)

Let FriendIDs=(FOR CustomerID in CustomerIDs FOR
Friend IN 1..1 OUTBOUND CustomerID Knows return
Friend.id)

For Friend 1in FriendIDs
For Order in 1..1 OUTBOUND Friend Customer20rder

Return Order.orderlines[*].Product no

Recommendation query:
Return all products which are ordered by a friend of a
customer whose credit limit is over 3000.



Irrien’rDB@

e Supporting graph, document, key/value and object models.

* |t supports schema-less, schema-full and schema-mixed
modes. Queries with SQL extended for graph traversal.




i]ﬁen’rDB
Select

expand (out ("Knows") .Orders.orderlines
.Product no) from Customers where
CreditLimit > 3000

Recommendation query:
Return all products which are ordered by any friend of a
customer whose credit limit is over 3000.



What is the difference between Multi-model
and Multi-modal

* Multi-model: graph, tree, relation, key-value,...

» Multi-modal: video, image, audio, eye gaze data,
physiological signals,...



Three arguments on multi-model data
management

* 1. One size cannot fit all
« 2. One size can fit all

* 3. One size fits a bunch



One size cannot fit all

“SQL analytics, real-time decision support, and data warehouses
cannot be supported in one engine.”

M. Stonebraker and U. Cetintemel. "One Size Fits All”: An Idea
Whose Time Has Come and Gone (Abstract). In ICDE, 2005.



oA OctotrasDE

One size can fit all

» OctopusDB suggests a unified, one size fits all data processing
architecture for OLTP, OLAP, streaming systems, and scan-
oriented database systems.

Jens Dittrich, Alekh Jindal: Towards a One Size Fits All Database
Architecture. CIDR 2011: 195-198



One size can fit a bunch: AsterixDB

AsterixDB System Overview

Data loads and feeds AQLqueries | '  pata |

from external sources | and results D;')ta' ' P rOVI d I n g H ad O O p - b ase d

‘é:r’ $ ,# query platforms, key-value
Hi-Speed Network .
e stores and semi-structured

9

T Asterix Client Interface T T Asterix Client Interface ]
[ AQL ][ Metadata | [ AQL ][ Meud;i] data management
Compiler Manager Compiler Manager
[ Hyracks Dataflow Engine ] ...... [ Hyracks Dataflow Engine ]
| Dataset / Feed Storage | [ Dataset / Feed Storage |
u LSM Tree Manager ] ) ‘ LSM Tree Manager

~ A
UChes

AsterixDB: A Scalable, Open Source BDMS. PVLDB 7(14): 1905-1916 (2014)



http://dblp.uni-trier.de/db/journals/pvldb/pvldb7.html#AlsubaieeAABBBCCCFGGHKLLOOPTVWW14

A simple survey

How many of you agree that (You can choose both or all or none of them)

1. One size cannot fit all
2. One size can fit all

3. One size fits a bunch

4. ?77?
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Theoretical foundation for multi-model
management

Diagram to illustrate 2-category



Challenge: a new theory foundation

Call for a unified model and theory for multi-
model data!

The theory of relations (150 years old) is not
adequate to mathematically describe modern
(NoSQL and multi-model) DBMS.



Two possible theoretical models

e Category theory

e Associative array



One possible theory foundation: category theory

e |ntroduced to mathematics world by Samuel
Eilenberg and Sauders MacLane in 1944

e Found as part of their work in topology

e Category theory becomes the theoretical
foundation on functional programming :
Haskell



Categories Defined

o« AcategoryCis ....
« a collection of objects ob(C) .. {X)Y, Z ....}

« a collection of morphisms {f, g ....}
A set of morphisms from object a into b is denoted by

Hom (a, b) or a—b. _
J }__-
Z

A



Categories Defined (con’t)

» The category must satisfy the following rules

e associativity

(hog)of=ho(gof)[a,b,c,d€ ob(C), fE€ Hom (a, b), g
€ Hom,(b, c), h € Hom(c, d) ]

e unit laws
fol,=f =1 0f

e Think of it like a graph: the nodes are objects
and the arrows are relationships



Relational category

« A relational category C
o an ob(C) is a table

e a morphisms a—b means that a has
the relational homomorphism with b

Table A Table B
Staff_ID First Last Staff_ID Name
100 John Smith 100 John Smith

101 James William

41



JSON category

o A JSON category J
e an ob(J) is a JSON file

o a morphisms a—b means that a

— Q

has a tree homomorphism with b .
JSON A JSON B
{Staffs: {Staffs: {“Staff_ID":"100”,"First”:"John”,
{“Staff_ID":"100”,”First”:”John”, “Last”: “Smith”, “First”: “John”}
“Name”: “John Smith”, } {“Staff_ID":"101”,"First”:"James”,”Last’:"Willia

} m’}}

42



Graph category

» A Graph category G
o an ob(J) is a graph

e a morphisms a—b means that a has
a graph homomorphism with b

Graph A Graph B

Manager
Dept l

O «—9Q

43



A single object can contain multi-model data

Mary 5,000 Marry (1)
Friend Friend

John 3,000
William 2,000 William (3) John (2)

One object in a category contains both graph and table data.



Product and Pull-back in categories

Product Pull-back

45



An example of Product

Mary / \
-riend Friend Mary 5,000 Mary
William John John 3,000 Mary
William 2,000 Mary
Friend Friend
Mary 5,000
John 3,000 Mary 5,000 William Mary 5,000 John
William 2,000 John 3,000 William John 3,000 John

Wiam 2,000 William William 2,000 John /




An example of Push-back

Mary
Friend
William
Mary 5,000
John 3,000

William 2,000

Friend
John

GXT

[

\_

William 2,000

Mary

William

5,000

John

Mary

3,000

John




An example of multi-model data and
guery
Mary (1) "1" -->"34e5e759"

G Friend Friend K "2"-->"0c6df508"

William (3) John (2)
{"Order no":"0Oco6df508",

“Orderlines": [
{ "Product no":"2724ft"”
1- J “Product Name":“Toy"
1 Mary 5,000 , o
2 John 3,000 "Price":66 },
3 William 2,000 {

"Product no":%“3424qg”,
"Product Name":"“Book

"Price":40 } ]



Join with four models of data by
Pull-back
/GmTDIKNJ

/GtxlTlNK\ /J
/GT \f Order No

Custom_|ID
~Q: Return all products which are ordered
Cu stom_ID by any friend of a customer whose

credit_limit>3000



Functors

» a "category of categories”

e ODbjects are categories, morphisms are mappings
between categories

e preserves identity and composition properties




Functors for data transformation

Dep_ID Neme | » {Depts: {*"Dep_ID":"D2”,"Name™:"Sales”,}
D2 Sales }
Table B JSON B

Dep_ID Name Head {DeptS:

D2 Sales 101 ———— {“Dep_ID”."D2”,"Name”:."Sales”,

D3 Production 102 “Head”: “1 01 ”}

{*"Dep_ID":"D3”,"Name”:"Producti
on”,”"Head”:"102"}} 51



Natural transformation

e A natural transformation provides a way of transforming one
functor into another

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI www. helsinki.fi



http://www.helsinki.fi/

Natural transformation example

JSON A

Head: {"ID": “1017, "Name”™:"John"}}

"ID”."1027, “Name”™."James’}}

Functor F
. Table Al
Dep_ID Name Head | D | Head_
{Depts: {“Dep_ID":"D2","Name”:"Sales”, mame
D2 Sales 101 John
{“Dep_ID":"D3”,”"Name”:"Production”,Head:{ b3 Product | 102 Jame
on
Functor G Tables A2
1D Head | D Head_lst’3
DeplID Name Head ame
101 Sales HO1 HO1 101 John
102 Production HO2 HO?2 102 Jame




Category theory: mathematical foundation for MMDB

1, Category object: an abstract definition of object in multi-model databases:
including relation, tree, graph, key-value pair

2. Query semantics: product, pull-back, limits in category theory

3. Proof of the equivalence of declarative and procedural syntaxes over the above
definitions: functor and natural transformation

4. Proof of data instance equivalence for multi-model data



Two possible theoretical model

e Associative array



Associative arrays

Associative arrays could provide a mathematical

model for polystores to optimize the exchange of
data and execution queries.

Definition: A:{1,..m}x{1,...n} -V



Associative array for relations and graphs

B(Edge1, start)="William”
A(row1,Name)="Mary” (EdgeT, start)="William™ ,

B(Edge1, end)="Mary”
A(row2,Name)="John” (Edge1, end)="Mary

B(Edge2, start }="Mary’
A(row3,Name)="William” (Edge2, start )="Mary

B(Edge2, end)="John”

1 Mary 5,000 ' Mary (1) .
2 John 3,000 Friend Friend

3 William 2,000 William (3) John (2)



Associative array example

1 Mary 5,000
2 John 3,000
3 William 2,000

Matrix A

C=PB @ PP'A

P-I, (A®Q®B) Iy
~I, (A&=B") I

X

Mary (1)
Friend Friend
William (3) John (2)
Matrix B
C(row3, start)="William”
C(row1, end)="Mary”
C(row1, start)="Mary”

C(row2, end)="John”



From SQL to Associative algebra

SELECT J(1),...,J(n) FROM A —> A I(1)....J(n)
SELECT * FROM A UNION SELECT * FROM B —> A®B

SELECT * FROM A INTERSECT SELECT #* FROMB > PB or P'A

SELECT * FROM A, B WHERE 0(A.y1)._imB.r1).0m) > PB®PP'A



Comparison between Category theory and
Associative array

Abstraction
level

Operation

Extensibility

Category theory Associative array

High Low

No concrete definition | Linear algebra operation

High, generalized to Focus on relation and
more data types graph



References on theoretical foundation (1)

Category theory

1.Multi-Model Database Management Systems-a Look Forward
ZH Liu, J Lu, D Gawlick, H Helskyaho, G Pogossiants, Z Wu, VLDB workshop

Poly 2018

2.Henrik Forssell, Hakon Robbestad Gylterud, David |. Spivak: Type Theoretical
Databases. LFCS 2016: 117-129

3. Patrick Schultz, David I. Spivak, Christina Vasilakopoulou, Ryan Wisnesky:
Algebraic Databases. CoRR abs/1602.03501 (2016)

4. David |. Spivak: Simplicial Databases. CoRR abs/0904.2012 (2009)
. DBPL 2015: 21-28



References on theoretical foundation (2)

Associative array

1. Hayden Jananthan et al.: Polystore mathematics of relational algebra.
BigData 2017: 3180-3189

2. Jeremy Kepner, et al:Associative array model of SQL, NoSQL, and NewSQL
databases. HPEC 2016: 1-9

3. J. Kepner et al., “Dynamic Distributed Dimensional Data Model (D4M)
Database and Computation System,” ICASSP (International Conference on
Accoustics, Speech, and Signal Processing, 2012, Kyoto, Japan
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Multi-model data storage



Classification

e Basic approach: on the basis of original (or core) data model

Original Type | Representatives

Relational PostgreSQL, SQL Server, IBM DB2, Oracle DB, Oracle MySQL, Sinew
Column Cassandra, CrateDB, DynamoDB, HPE Vertica

Key/value Riak, c-treeACE, Oracle NoSQL DB

Document ArangoDB, Couchbase, MongoDB, Cosmos DB, MarkLogic

Graph OrientDB

Object Caché

Other Not yet multi-model — NuoDB, Redis, Aerospike

Multi-use-case — SAP HANA DB, Octopus DB




Timeline

e \When a particular system became multi-model
o Original data format (model) was extended
o First released directly as a multi-model DBMS

MongoDB
Oracle DB CrateDB
(JSON) Oracle Caché
Oracle HPE Vertica NoSQL DB (XML, JSON)
Couchbase MySQL PostgreSQL Sinew SQL Server
OrientDB  ArangoDB DynamoDB  (ySON) Riak Cassandra  (JSON) Cosmos DB
{ : ! ; ; } | —>
2010 2011 2012 2013 2014 2015 2016 2017
SQL Server Oracle DB PostgreSQL
(XML) (XML)  C-treeACE (key/value) IBM DB2 MarkLogic
| | | | | | L
f 1 1 1

| | I
2000 2001 .. 2003 .. 2006 2007 2008 2009



Extension towards Multiple Models

Types of strategies:

1.

Adoption of a completely new storage strategy suitable for the new data

model(s) @ sometimes hard
o e.g., XML-enabled databases to decide

Extension of the original storage strategy for the purpose of the new data
model(s)
o e.g., ArangoDB - special edge collections bear information about edges in a graph

Creating of a new interface for the original storage strategy
o e.g., MarkLogic - stores JSON data in the same way as XML data

No change in the original storage strategy
o Storage and processing of data formats simpler than the original one



Approach DBMS Type
New storage strategy PostgreSQL relational
SQL server relational
IBM DB2 relational
Oracle DB relational
Cassandra column
CrateDB column
DynamoDB column
Riak key/value
Cosmos DB document
Extension of the original storage strategy MySQL relational
HPE Vertica column
ArangoDB document
MongoDB document
OrientDB graph
Caché object
New interface for the original storage strategy | Sinew relational
c-treeACE key/value
Oracle NoSQL Database | key/value
Couchbase document
MarkLogic document




Overview of
Supported
Data Models

Type

DBMS

Relational

Column

XML

Graph

Nested data/UDT/object

Relational

PostgreSQL

<_|| Key/value

SQL Server

IBM DB2

Oracle DB

<| <)< || Document (JSON)

< < < <

Oracle MySQL

Sinew

< |<lelelele

<<

Column

Cassandra

CrateDB

DynamoDB

HPE Vertica

< <<l

Key/value

Riak

<[

c-treeACE

Uracle NoSQL DB

Document

ArangoDB

Couchbase

MongoDB

Cosmos DB

MarkLogic

Graph

OrientDB

| I A S | S S R

Object

Caché

| [ S
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Relational Stores 3 2
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e Representatives: PostgreSQL, SQL £ § £18).]4 ¢
— _ ) (] ® |72
Server, IBM DB2, Oracle DB, Oracle | type | DBMS 213|E &8s 2
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MySQL, Sinew S A B Y Sy
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e Biggest set of multi-model databases Orace DB [/ VIV
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formats (e.g, SQL/XML)
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INSERT INTO customer
VALUES (1, 'Mary', 'Prague',
'{"Order no":"0c6df508",
"Orderlines": [
{"Product no":"2724f",
{"Product no":"3424g",
P
INSERT INTO customer
VALUES (2, 'John', 'Helsinki'
'{"Order no":"Oc6df511",
"Orderlines": [
{ "Product no":

}')

"2454€",

CREATE TABLE customer (

id INTEGER PRIMARY KEY, PostgreSQL
name VARCHAR(50),
address VARCHAR(50),
orders JSONB
) ;
"Product Name":"Toy", "Price":66},
"Product Name":"Book", "Price":40}]

"Product Name":"Computer", "Price":34 }]

name address orders
|nteger character varying (50) | character varying (50) | jsonb

1 Mary Prague

2 | John Helsinki

{"Orderlines”

{"COrderlines”

27241}, {"Price”:40,"Product_Name":
"Ocodf511"}

([{"Price”:66,"Product_Mame":"Toy","Product_no"

([{"Price”:34,"Product_Mame":"Computer”,”Product_no":"2454f"}]," Order_no":



SELECT json build object('id',id, 'name' name,'orders',6 orders) %w¥;QL
FROM customer;

json_build_object
json

{"orders”:{ "Orderlines" :[{"Price”:66,"Product_MName":"Toy","Product_no":" 27241}, { "Price” :40,"Product_Name":"Book”,"Product_no":"3 ...
{"orders”:{"Orderlines” :[{"Price”:34,"Product_Name":"Computer”,"Product_no":"2454f"}],"Order_no":"0codf311"},"id":2,"name":"John"}

SELECT jsonb each(orders) FROM customer;

jsonb_each
record
Order_no,"""0cedf308""")

(

(Orderlines,”[{""Price"": 66, ""Product_no"": ""2724f"", ""Product_MName"": ""To...
(Order_no,”""0c6df511""")
(

jsonb_object_keys
text

Orderlines,”[{""Price"": 34, ""Product_no"": ""2454f"", ""Product_Name"": ""Co... Order no
Orderlines

Order_no

SELECT jsonb_object keys (orders) FROM customer; Orderlines



Column Stores

e Representatives: Cassandra, CrateDB,
DynamoDB, HPE Vertica

e Two meanings: Colamn
o Column-oriented (columnar, column) DBMS

stores data tables as columns rather than rows
m Not necessarily NoSQL
o Column-family (wide-column) DBMS = a NoSQL
database which supports tables having distinct
numbers and types of columns
m Underlying storage strategy is arbitrary

Oracle

1 ] | | 1 1

Caché

“SQL DB (XML, JSON)

SQL Server Oracle DB PostgreSQL Couchbase ~ MySQL iP}uslgreSQL
(XML) (XML)  C-reeACE (keyivalue) IBMDB2 MarkLogic OrientDB  ArangoD{ DynamoDB (JSON)
| | | L |

Sinew SQL Server
Riak (JSON)
| |

1 ] I 1

T | T 1 |
2000 2001 .. 2003 .. 2006 2007 2008 2009 2010 20M 2012

|
2013

| | >
00 2015 2016

-
Q
£
- g
g =
Z 5
2 3
—~ -
2| |23 :
L E « 5 = "8
ElE|S2|2|¢%|%
S | o | | g E 5| O
Type DBMS 2o |¥ |8 S |z
Cassandra N NV
CrateDB V4 V4 V4
DynamoDB NV V4
HPE Vertica V4 V4
Oracle DB
(JSON)  Oracle




create keyspace myspace

WITH REPLICATION = { 'class' : 'SimpleStrategy',

CREATE TYPE myspace.orderline (
product no text,
product name text,
price float
)

CREATE TYPE myspace. (
order no text,
orderlines list<frozen <orderline>>
)

CREATE TABLE myspace.customer (
id INT PRIMARY KEY,
name text,
address text,
orders list<frozen < >>

) ;

'replication_factor'

3

&

Cassandra

};



INSERT INTO myspace.customer JSON
'{"id":1,
"name" : "Mary",
"address" :"Prague",
"orders" : [
{ "order no":"0Oc6df508",
"orderlines": [

{ "product no" : "2724f",
"product name" : "Toy",
"price" : 66 },
{ "product no" : "3424qg",
"product name" :"Book",

"price" . 40 } 1} 1
|

o

Cassandra

INSERT INTO myspace.customer JSON
' {"id":2,
"name" :"John",
"address" : "Helsinki",
"orders" : [
{ "order no":"0Océ6df511",
"orderlines": [
{ "product no" : "2454f",
"product name"
"Computer",
"price" : 34 } ] } 1
P



&

Cassandra

CREATE TABLE myspace.users (
id text PRIMARY KEY,
age int,
country text

)

INSERT INTO myspace.users (id, age, state)
VALUES ('Irena', 37, 'CZ');

SELECT JSON * FROM myspace.users;
[json]



Key/Value Stores

%&
g =
H . = o | 8 =
e Representatives: Riak, c-treeACE, £lz|3 : = 3
El2 |52 |2 &%
Oracle NoSQL DB Type DBMS SEIEIEEEEAE:
. Key~value | Riak VvV IV IV
e The simplest type of NoSQL database QL DB 1
o Get/ put/ delete + key
o Often extended with more advanced features
e Multi-model extensions:
o More complex indices over the value part +
new APIs (e.g., JSON, SQL, ...) Oracle DB CrateDB
“SON’ Caché
Oracle HPE Verfn 0o2- 08 (XML, JSON)
SQL Server Oracle DB PostgreSQL Couchbase ~ MySQL PostgreSQL Sinew SQL Server
(XML) (XML) key/value) IBMDB2 MarkLogic OrientDB  ArangoDB DynamoDB  (JSON) .Cassandra (JSON)
} | | ! | | | % ! ! } % >

| ] | 1 | | | ! | |
2000 2001 .. 2003 .. 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016



customer.json:

{ "id":1, ORACLE
"name": "Mary", oRSEse
"address" : "Prague",
create table Customers ( "orders" : |
id integér, { "order no":"0c6df508",
name St:l:'lng'f "orderlines": [
address Strlng, { nproduct_nou . "2'724f||,
orders array ( "product_name" . "TOY",
record ( _ "price" : 66 },
order_r_lo str:Lng, { "product_no" . "34249'",
orderlines array ( "product name" :"BOOk",
record ( "price" - 40 } 1} ]
product no string, }
product name string, { "id":2,
price integer ) ) ) "name" : "John",
_ ) s _ "address" :"Helsinki",
primary key (id) "orders" : |
) {"order no":"0Oc6df511",
"orderlines": [
import -table Customers { "product no" : "2454f",
-file customer. json "product_nzhe" : "Computer",

"price" : 34 } ] } 1



sql-> select * from Customers ORACLE
NOSQL

—-> DATABASE
-t +————————— ————————— +
| id | name | address | orders |
+——— +——— ——_—_——————————————— - +
| 2 | John | Helsinki | order no | Ocbdf511 |
| | | | orderlines |
| | | | product no | 2454f |
| | | | product:ﬁame | Computer |
| | | | price | 34 |
+——— +——— ——_—_——————————————— - +
| 1 | Mary | Prague | order no | Ocbdf508 |
| | | | orderlines |
| | | | product no | 2724f |
| | | | product:ﬁame | Toy |
| | | | price | 66 |
I I I I I
| | | | product no | 34249 |
| | | | product name | Book |
I I I I price | 40 I
+——— +——— ——_—_——————— e —————— - +



Document Stores ;
2 s
2 3
H = o | 8 =
e Representatives: ArangoDB, £lz|3 : = 3
El2 |52 |2 &%
Couchbase, MongoDB, Cosmos DB, Type | DBMS 18|28 8 & 2
. Document | ArangoDB N Vi
MarkLogic Minsob . g \2?/ ;
e Distinct strategies: MarkLogic NARY
o ArangoDB: special edge collection
o MarkLogic: stores JSON data as XML
MongoDB
Oracle DB CrateDB
(JSON) Oracle Caché
Oracle HPE Vertica 0> DB (XML, JSON)
SQL Server Oracle DB PostgreSQL Couchbase /MySQL PostgreSQL Sinew SQL Server
(XML) (XML) ~ C-treeACE (keylvalue) IBM DB2 ( MarkLogic ) OrientDB (ArangoDB )DynamoDB (JSON) Riak  Cassandra (JSON) (Cosmos DB
| l ] | ; | ! l | | :

1 1 1 1 1 | 1 | . | 1 1 1 —»
2000 2001 .. 2003 .. 2006 2007 2008 2009 2011 2012 2013 2014 2015 2016 2017



'.MarkLogiO {

"name" :
"scores'":

"isActive":
"affiliation":

JavaSript:
declareUpdate() ;

xdmp .documentInsert (" /myJSON1. json",

{
"Order no":"0c6d£f508",

"Orderlines": [
{ "Product no":"2724f",
"Product Name":"Toy",
"Price":66 },
{"Product no":"3424g",
"Product Name":"Book",
"Price" :40}]

"Oliver",
(88,

Document
unnamed

Object
6 7 4 unnamed
true,

null

731,

Null
affiliation

Boolean
isActive

Number
scores

Number
scores

Number
scores

XQuery:
xdmp : document-insert (" /myXML1.xml",
<product no="3424g">
<name>The King's Speech</name>
<author>Mark Logue</author>
<author>Peter Conradi</author>
</product>

) ;



_ 6
Graph Stores z :
3 3
. : E 23 =
e Representatives: OrientDB S1EIE 8 |2 3
— _— > Q « 0
- . @ Q ) =] Eo] %}
e Based on an object database = native Type DBMS $1S|2 8|88 |2
: Craph | OrientDB 1 VIV [/ V]
support for multiple models
{
o Element of storage = record = document / " vamiar:  meazeaeee, iy s T
"@class": "Customer", "out": "#12:382",
BLOB / vertex / edge s et e
i nphone" : [::2 ;ﬁ;ﬁ \\ ' "payment": "cash"
e Classes — define records N ui ™ e
"ecity":"London", 4 Y
. . "tags":"millennial® I Makes
e Classes can have relationships: ,; SN
o Referenced — stored similarly to storing /
pointers between two objects in memory
o Embedded — stored within the record that Orade DB CrateDB
(JSON)  Oracle Caché
embed Oradle HPE Verica "Oo0- DB (XML, JSON)
SQL Server Oracle DB PostgreSQL Couchbase  MySQL PostgresQL "W SQL Server
(XI:AL) (X:ML) C-treelaACE (keylvalue) IBMlDBZ Marleogic 1 ngoDB DynamoDB  (JSON) Riak Cass?ndra (JSION)
! 1 l 1 L
| I | | 1 | I | ! | | | ’

T |
2000 2001 .. 2003 .. 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016



CREATE
CREATE
CREATE
CREATE

CREATE
CREATE
CREATE

CREATE
CREATE
CREATE
CREATE
CREATE

CREATE

CLASS EXTENDS

PROPERTY orderline.product no STRING
PROPERTY orderline.product name STRING
PROPERTY orderline.price FLOAT

CLASS order EXTENDS
PROPERTY order.order_no STRING
PROPERTY order.orderlines

CLASS customer EXTENDS

PROPERTY customer.id INTEGER
PROPERTY customer.name STRING
PROPERTY customer.address STRING
CLASS orders EXTENDS E

CLASS knows EXTENDS E

Orient



CREATE VERTEX order CONTENT ({
"order no":"0c6df508",
"orderlines": [

{

"Qtype":"d",
"Qclass":"orderline",
"product no":"2724f",
"product name":"Toy",
"price":66 1},
"Qtype":"d",
"Qclass" :"orderline",
"product no":"3424g",

"product name":"Book",

}

"price" :40}]

d
CREATE VERTEX order CONTENT { —=QrientDBF

"order no":"0Oc6df511", y
"orderlines": [
{ "@type":"d",
"A@class" :"orderline",
"product no":"2454f",
"product name":"Computer",
"price":34 }]
}
CREATE VERTEX customer CONTENT {
"id" : 1,
"name" : "Mary",
"address" : '"Prague"
}
CREATE VERTEX customer CONTENT {
"id" : 2,
"name" : "John",
"address" : "Helsinki"

}



-~ QOrientDPB

CREATE EDGE orders FROM

(SELECT FROM customer WHERE name = "Mary")
TO
(SELECT FROM order WHERE order no = "0c6df508")
CREATE EDGE orders FROM
(SELECT FROM customer WHERE name = "John'")
TO
(SELECT FROM order WHERE order no = "0Oc6df511") —
I ) order
CREATE EDGE knows FROM o Ry
(SELECT FROM customer WHERE name = "Mary") 4 { )
TO @

(SELECT FROM customer WHERE name

"John") u

S"‘.S‘

N
|, ]
@
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Multi-model data query languages



Multi-model Query Languages

1. Simple API

o Store, retrieve, delete data
m Typically key/value, but also other use cases
o DynamoDB - simple data access + querying over indices using comparison operators

2. SQL Extensions and SQL-Like Languages

o Most common
o In most types of systems (relational, column, document, ...)



| Type | DBMS SQL extension
Relational | PostgreSQL (Getting an array element by index, an object field by key, an ob-
ject at a specified path, containment of values/paths, top-level key-
existence, deleting a key-value pair / a string element / an array
element with specified index / a field / an element with specified
path, ...
SQL Server JSON: export relational data in the JSON format, test JSON for-
mat of a text value, JavaSeript-like path queries
SQLXML: SQL view of XML data + XML view of SQL relations
IBEM DB2 SQL/XML + embedding SQL queries to XQuery expressions
Oracle DB SQL/AXML + JSON extensions (JSON_VALUE, JSON_QUERY,
JSON_EXISTS, ...)
Document | Couchbase Clauses SELECT, FROM (multiple buckets), ... for JSON
Cosmos DB Clauses SELECT, FROM (with inner join), WHERE and ORDER BY for
JSON
ArangoDB key/value: insert, look-up, update
document: simple QBE, complex joins, functions, ...
graph: traversals, shortest path searches
Key/value | Oracle NoSQL DB | SQL-like, extended for nested data structures
c-treeAUCKE ommple SQL-like language
Column (Cassandra SELECT, FROM, WHERE, ORDER BY, LIMIT with limitations
CrateDB otandard ANSI SQL 92 + nested JSON attributes
Graph OrientDB Classical joins not supported, the links are simply navigated using
dot notation; main SQL clauses + nested queries
| Object | Cache | SQL + object extensions (e.g. object references instead of joins)




PostgreSQL
name address orders
|nt character varying (50) | character varying (50) | jsonb

Prague {"Orderlines”:[{"Price":66,"Product_Name":"Toy","Product_no":"2724f" } ,{"Price":40," Product_Name":
2 John Helsinki {"Orderlines”:[{"Price":34,"Product_Name":"Computer”,”Product_no":"2454f" }1,"Order_no":"0codf511"}
SELECT name,
{"Order no":"0c6df508", orders->>'Order no' AS Order no,
"Orderlines": [ orders#>' {Orderlines,1l}'->>'Product Name'

{ "Product no":"2724f" AS Product Name

" PrOduct Name" : "TOY" , FROM customer
"Prié;":GG }, WHERE orders->>'Order no' <> 'Oc6df511';

{ "Product no":"3424g",
"Product Name":"Book",

"Prlce"'40
}] name order no product_name
character varying (50) text

Ocedfs0s Book




ORrRACLE

DATABASE
sql-> select * from Customers
->
+--——+----—- +--—— - e ittt +
| id | name | address | orders |
+--——t-————- +--——— - e e P e P +
| 2 | John | Helsinki | order no | 0cedf511 |
I I I | orderlines I
| | | | product no | 2454 F |
| | | | product name | Computer |
I I I I price | 34 I
+--——+----—- +--—— - e ittt +
| 1 | Mary | Prague | order no | 0cedf508 |
I | | | orderlines |
| | | | product no | 2724f |
| | | | product name | Toy |
[ | | | price | 66 |
I I I I I
| | | | product no | 3424qg |
| | | | product name | Book |
I | | | price | 40 |
+--——+----—- +--—— - e ittt +



gql-> SELECT c.name, c.orders.order no, c.orders.orderlines|[0].product name
-»> FROM customers c
-> where ¢ _orders . orderlines[0] .price > 50;

+--=—-- +-———————— +--——— +
| name | ordexr no | product_ name |
+--=—-- +-———————— +--——— +
| Mary | 0c6dfS508 | Toy |
+---—--- +-—-—-———— +--—————————— +

sql-> SELECT c¢.name, c.orders.order no,
-» [c.oxrders.orderlines[$element . price >35]]
->» FROM customexrs c;

+--—--- - e e +
| name | order no | Column 3 |
+--—--- - e e +
| Mary | 0c6df508 | product no | 2724fFf |
I | | product name | Toy |
I I | price | 66 I
I I I I
| | | product no | 342449 |
I | | product name | Book |
I I | price | 40 I
+--—--- - e e +
| John | 0cadfS511l | I
+-——--- F-mmm - D e T T +

ORACLE

NOSQL
DATABASE



Multi-model Query Languages

3. SPARQL Query Extensions
o e.g.,|BMDB2-SPARQL 1.0 + subset of features from SPARQL 1.1
m SELECT, GROUP BY, HAVING, SUM, MAX, ...
m Probably no extension for relational data
e But: RDF triples are stored in a table = SQL queries can be used over them too

4. XML Query Extensions
o MarkLogic — JSON can be accessed using XPath
m Tree representation like for XML
m Can be called from XQuery and JavaScript

5. Full-text Search
o In general quite common
o e.g., Riak — Solr index + operations
m  Wildcards, proximity search, range search, Boolean operators, grouping, ...



JavaSript:
declareUpdate() ;
xdmp .documentInsert (" /myJSON1. json",

'.MarkLogiC'"

{
"Order no":"0c6df508",
"Orderlines": [

{ "Product no":"2724f",
"Product Name":"Toy",
"Price":66 },

{ "Product no":"3424g",
"Product Name":'"Book",
"Price":40}]

XQuery:
xdmp : document-insert (" /myXML1.xml",
<product no="3424g">
<name>The King's Speech</name>
<author>Mark Logue</author>
<author>Peter Conradi</author>
</product>

) ;

XQuery:
let Sproduct := fn:doc("/myXML1l.xml") /product
let Sorder := fn:doc("/myJSON1l. json")

[Orderlines/Product no = Sproduct/@no]
return $order/0rder_no

Result: 0c6d£f508
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Multi-model query processing



Query Processing Approaches

e Depend highly on the way the system was extended

o No change ]
o New interface
m e.g., MarkLogic
o Extension of the original storage strategy
m e.g. ArangoDB
o A completely new storage strategy
m e.g. Oracle native support for XML N

e General tendencies:

changes in the query
processing approaches

o Exploit the existing storage strategies as much as possible

o Exploit the verified approaches to query optimization



JavaSript:
declareUpdate() ;
xdmp .documentInsert (" /myJSON1. json",

'.MarkLogiC'"

{
"Order no":"0c6df508",
"Orderlines": [

{ "Product no":"2724f",
"Product Name":"Toy",
"Price":66 },

{ "Product no":"3424g",
"Product Name":'"Book",
"Price":40}]

XQuery:
xdmp : document-insert (" /myXML1.xml",
<product no="3424g">
<name>The King's Speech</name>
<author>Mark Logue</author>
<author>Peter Conradi</author>
</product>

) ;

XQuery:
let Sproduct := fn:doc("/myXML1l.xml") /product
let Sorder := fn:doc("/myJSON1l. json")

[Orderlines/Product no = Sproduct/@no]
return $order/0rder_no

Result: 0c6d£f508



'.MarkLogiC'"
MarkLogic Multiple Models

e Indexes both XML and JSON data in the same way
e Schema-less data
e Universal index - optimized to allow text, structure and value searches to be

combined into
o Word indexing
o Phrase indexing
o Relationship indexing
o Value indexing

e Other user-defined indexes
o Range indexing
o Word lexicons
o Reverse indexing
o Triple index



Social network graph

Marry (1)

Friend Friend

William (3) John (2)

relation Customers

1 Mary 5,000
2 John 3,000
3 William 2,000

&
Key/value pairs
(Customer_ID, Order_no)

""" —->"34e5e759"
"2"-->"0coedf508"

Order JSON document

{"Order no":"0Oc6df508",
“Orderlines": [

{ "Product no":"2724ft"
“Product Name":“Toy",
"Price":06 1},

{ "Product no":%“3424qg”,
"Product Name":“Book"
"Price":40 } ]

DB



& DB

LET CustomerIDs = (
FOR Customer IN Customers

FILTER Customer.CreditLimit > 3000 Return all products which are
RETURN Customer.id ) .
ordered by a friend of a
LET FriendIDs = ( customer whose credit limit is
FOR CustomerID IN CustomerIDs over 3000.

FOR Friend IN 1..1 OUTBOUND CustomerID Knows

RETURN Friend.id )
FOR Friend IN FriendIDs
FOR Order IN 1..1 OUTBOUND Friend Customer?20rder

RETURN Order.orderlines[*].Product no



ArangoDB Multiple Models

e Supported models:

o

@)
@)
@)

Document - original
Key/value - special type of document without complex value part
Tables - special type of document with regular structure
Graph - relations between documents
m Edge collection — two special attributes _from and _to

So we still need to efficiently process queries over documents
Indexes

(@]

o

(@]

Primary = hash index for document keys
Edge = hash index, which stores the union of all _from and _to attributes
m For equality look-ups

@ ArangoDB

User-defined - (non-)unique hash/skiplist index, (non-)unique sparse hash/skiplist index, geo,

fulltext, ...



Query Optimization
Strategies

B-tree/B+-tree index - the most common

approach
o Typically in relational databases

Native XML index - support of XML data
o Typically an ORDPATH-based approach

Hashing - can be used almost
universally

But: still no universally acknowledged

optimal or sub-optimal approach

o Approaches are closely related to the way the
system was extended

| Optimization DBMS Type
Inverted index PostgreSQL relational
Cosmos DB document
B-tree, B+-tree SQL server relational
Oracle DB relational
Oracle MySQL relational
Cassandra column
Oracle NoSQL DB | key/value
Couchbase document
MongoDB document
| Materialization HPE Vertica column
Hashing DynamoDB column
ArangoDB document
MongoDB document
Cosmos DB document
OrientDB graph
Bitmap index Oracle DB relational
Cache object
| Function-based index | Oracle DB relational
Native XML index Oracle DB relational
SQL server relational
DB2 relational
MarkLogic document
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Overview on tightly integrated polystores



No one size fits all...

e Heterogenous analytics: data processing frameworks (MR, Spark, Flink), NoSQL
e ETL is very expensive towards a single model (may degrade performance),
adapts poorly to changes in data / application requirements

Polystore idea: package together multiple query engines: union (federation) of different
specialized stores, each with distinct (native) data model, internal capabilities,
language, and semantics — Holy grail: platform agnostic data analytics

e Use the right store for (parts of) each specialized scenario
e Possibly rely on middleware layer to integrate data from different sources
e Read-only queries as distributed transactions over different data stores is hard !



Dimensions of polystores *

e Heterogeneity — different data models / query models, semantic
expressiveness / query engines

e Autonomy — association, execution, evolution

e Transparency — location (data may even span multiple storage
engines), transformation / migration

e Flexibility — schema, interfaces, architecture

e Optimality — federated plans, data placement

* Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData 2017



Tightly integrated polystores (TIPS)

Heterogeneity moderate
Autonomy low

Transparency high

Flexibility low

Optimality high

Semantic expressiveness high



TIPS

e Trade autonomy for efficient querying of diverse kinds of data for BD analytics
o data stores can only be accessed through the multi-store system (slaves)
o less uncertainty with extended control over the various stores
o stores accessed directly through their local language

Query processor directly uses the local language and local interfaces

Efficient / adaptive data movement across data stores

Number of data stores that can be interfaced is typically limited

Extensibility ? Good to have...

Arguably the closest we can get to multi-model DBs, while having several
native stores “under the hood”.



Loosely integrated polystores

Reminiscent of multidatabase systems, follow mediator-wrapper architecture (one
wrapper per datastore), one global common language
e Notable examples: Biglntegrator, Forward/SQL++, QoX
e Data mediation SQL engines: Apache Drill, Spark SQL, SQL++ allow different
sources to be plugged in by wrappers, then queried via SQL

General approach
e Split a query into subqueries (per datastore, still in common language)
e Send to wrapper, translate, get results, translate to common format, integrate



Hybrid polystores

Rely on tight coupling for some stores, loose coupling for others, following the
mediator-wrapper architecture, but the query processor can also directly access

some data stores

e Notable examples: BigDawg (next), SparkSQL, CloudMdsQL



BigDawg - Big Data Analytics Working Group*

One key abstraction: island of information, a collection of data stores accessed
with a single query language

BigDawg relies on a variety of data islands (relational, array, NoSQL,
streaming, etc)

No common data model, query language / processor (each island has its own)
Wrappers (shims) mapping the island query to the native one

CAST: explicit operators for moving intermediate datasets between islands

Subqueries for multi-island query processing

* https://bigdawg.mit.edu/



Historical perspective

Multi-database systems (federated systems, data integration systems)
e mediator-wrapper architecture, declarative SQL-like language, single unified
global schema (GAV, LAV)
e Kkey principle: query is sent to store that owns the data
e focus on data integration
The reference federated databases: Garlic, Tsimmis
e even multi-model settings, but the non-relational stores did not support their own
declarative query language (being wrapped to provide an SQL API)
® No cross-model rewriting
Polystores:
e higher expectations in terms of data heterogeneity
e allow the direct exploitation of the datasets in their native language (but not only)



Another classification for polystores / multistores*

Federated systems: collection of homogeneous data stores and
features a single standard query interface

Polyglot systems: collection of homogeneous data stores and exposes
multiple query interfaces to the users

Multistore systems: data across heterogeneous data stores, while
supporting a single guery interface

Polystore systems: query processing across heterogeneous data stores
and supports multiple query interfaces

* Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData 2017



Scenarios for polystores*

e Platform independence
e Data analysis spanning stores (polystore)
e Query acceleration / opportunistic cross-platform

e Mandatorv cross-nlatform

quervl quervl quervl quervl
Application Application Application Application
- "or'“ ~ subquery 1 subquery 2
data \ / data data \, Mmovement
access \ f access access access access
Store A Store A Store A Store A Store B
(a) Platform Independence (b) Opportunistic Cross-Platform (c) Mandatory Cross-Platform (d) Polystore

* Z. Kaoudi and J.-A. Quiané-Ruiz. Cross-Platform Data Processing: Use Cases and Challenges. ICDE 2018



In summary - goals of TIPs

e [ocus on efficiency and transparency

e Exploit mature, focused technologies, good fits for different workloads

e |Integrated, transparent access to data stores through one or more
guery languages (semantic expressiveness)

e EXxploit the full expressive power of the native query languages

Ease of use / develop apps



In summary - goals of TIPs (cont'd)

e Cross-model data migration, automated scheduling, self tuning
(transparent)

e Cross-platform / multi-model query planning and optimizer
o automatic query reformulation, inter-platform parallelism, ...

e Potential goal: internally, unified storage abstraction

o cross-model view (internal) over the native data



Main TIPs aspects discussed

e Architecture
e Data models / storage
e Query languages

e Query processing

Systems: HadoopBD, Polybase, Estocada/Tatooine, Odyssey/MISO, Myria, RHEEM



HadoopDB* - introduction

Main idea:

e Query RDBMS from Hadoop
e use MR as communication layer

Schema: GAV

Queries: SQL-like system (HiveQL)

Scalability*

High

Performance**

v

MapReduce x
Parallel

Databases

What we ' J
need

Objective: the best of parallel DBMS and MR systems, gets efficiency of PDBMS

and scalability, fault-tolerance of MR

e Extends HIVE (Facebook) to push down operations into single node DBMS

* http://dslam.cs.umd.edu/hadoopdb/hadoopdb.html




HadoopDB - introduction (cont’d)

e Multiple single-node RDBMs (PostgreSQL, VectorWise) coupled with
HDFS/MR, deployed in a shared-nothing cluster

e Extensions to Hadoop: DB connector, catalog, data loader

e SQL-MR-SQL planner: extends HIVE, HiveQL - MR — SQL

e Data is partitioned both in RDMS tables and in HDFS files



HadoopDB - big picture

SQL Query SQL Query

MapReduce Job
ap | Hive l MapReduce Job

MapReduce
Job
r“i"E"E 5L . VY HNORON - e =

-
Master node MapReduce st ce MapReduce
HDFS Framework HDFS Framework

[ NameNode ] [ JobTracker ] [ NameNode ] [ JobTracker ]

InputFormat Implementations

Lo o o o o e e e e gl e e e ol o — 4 e e N o e e S S T, —_——— e o — —
Task with
InputFormat




HadoopDB data and query model

e Raw data (text/ binary), transformed into key-value pairs for Map tasks
o Data globally repartitioned on a given key
o Building and bulk-loading data chunks in the single-node DBs
e Relational data (column store or row store) — rows also hash partitioned
across BD instances

Queries expressed as SQL (front end, extends HIVE)
e translated into MR, work pushed to single node DBMSs



Polybase* - introduction

Main idea:

e querying Hadoop (unstructured data) from RDBMS (structured)
e SQL Server Parallel Data Warehouse (shared nothing parallel) + Hadoop

Schema: GAV
Queries: SQL queries and distributed SQL execution plans

Objective: data in Hadoop (people just don’t see the value of clean, schema,
load... or are more comfortable writing procedural code)

e Minimize data imported to PDW, maximize MR processing capability

*DeWitt et al. “Split Query Processing in Polybase”. SIGMOD 2013.



Polybase - introduction (cont'd)

e HDFS data can be imported / exported to / from SQL Server PDW

e HDFS referenced as « external tables », manipulated together with PDW native tables
e Takes advantage of PDW'’s data movement service (DMS), extended with HDFS bridge

Hadoop 4 PDW Hadoop /| PDW

(a) PDW query in, results out (b) PDW query in, results stored in HDFS



Polybase data and query model

e Raw data files (text / binary) - unstructured data with relational view
e Relational data - structured

e Queries expressed as SQL over relational tables (including external ones)
o Translates SQL operators into MR jobs for data in HDFS

CREATE EXTERNAL TABLE hdfsCustomer

( ¢ custkey bigint not null,
C_name varchar (25) not null,
c address varchar (40) not null,
c nationkey integer not null,
c phone char (15) not null,
c acctbal decimal (15,2) not null,
c mktsegment char (10) not null,
c comment varchar(117) not null)

WITH (LOCATION='/tpchlgb/customer.tbl"',
FORMAT OPTIONS (EXTERNAL CLUSTER = GSL_CLUSTER,
EXTERNAL FILEFORMAT = TEXT_FORMAT));



Estocada* - introduction

Main idea: self-tuning platform supporting natively various models
Schema: LAV
Queries: Access to each dataset in its native format

e Nno common query language / data model on top
Objectives: allow any data model, at both application and view level

e fragment based store, transparent to users
o automatically distribute / partition the data into fragments

e although accessed natively, data internally may reside in different formats
o pivot language: relational with prominent use of constraints

* Bugiotti et al. “Invisible Glue: Scalable Self-Tunning Multi-Stores”. CIDR 2015



Estocada - big picture
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Estocada - data and query model

e (Nested) relational data, NoSQL (graphs, key-value, document)
e Queries expressed natively (e.g., over JSON data, below), translated into
pivot language — relational algebra

transports transports

transport transport

T

typevar line_name,q; route  typeyar line_name,q; route

//\ //\

station station station station

name [="Cadet”] IaM€val NaMe€val  pame [="Villers”]

— _ -



Tatooine* - introduction

Main idea: use ontologies to mediate relational and non-relational sources
e RDF model as “glue” between all other models
Schema: GAV

Queries: Conjunctive Mixed Queries (CMQ) - variation over the SPARQL subset of
conjunctive queries (a.k.a. Basic Graph Pattern Queries - BGPs)

Objectives: lightweight integration over multiple native stores (mixed data instance), with
focus on querying with a unified view

e a specific architecture and usage scenario for data journalism
e custom (application dependent) RDF graph, including ontology / triples, acting as
bridge between different stores, based on common / repeated values (URIS)

* Bonaque et al. “Mixed-instance querying: a lightweight integration architecture for data journalism”. PVLDB 2016



Tatooine - big picture

Custom
processing

Dataviz modules

N\

ssification,
Data sou rcey/ ‘/_/ \\_l \_\j

JSON sources Relational RDF sources Streams
(SOLR, sources (Jena, Corese...) (Twitter, RSS)
Postgres...) (RDBMS)

Full-text search sqQL SPARQL «? Subscribe
Indexing "2 Indexing 1 Reasoning ] Query
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Odyssey / Miso* - introduction

Main idea: self-tuning polystore on different analytic engines (parallel OLAP, Hadoop)

e enables storing and querying in HDFS and relational stores, using opportunistic
materialized views

Schema: LAV
Queries: SQL-like (HiveQL) posed on HDFS, RDBMS used as query accelerator
Objectives: focus on time-to-insight / evolutionary analytics

e which dataset should we move, where, when — method for tuning the physical
design (MISO), decide in which data store the data should reside

* LeFevre et al. “MISO: souping up big data query processing with a multistore system”. SIGMOD 2014
Hacigimus et al. “Odyssey: A Multi-Store System for Evolutionary Analytics”. PVLDB 2013



Odyssey / Miso - introduction (cont’'d)

e Insight: single query optimization over multi-stores brings limited benefits;
workload optimization instead

e Claim: physical design tuning is key

e Continuously monitors the workloads, online analysis to decide which views

to materialize (share computation across queries)



Odyssey / Miso - big picture
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Odyssey - data and query model

e Structured (relational) and unstructured data (large log files, text-
based data stored as flat HDFS files)

e HiveQL queries: declarative language on top of MR
o relational operators and arbitrary code (UDFs)
o UDFs executed as MR jobs



Myria* - introduction

Main idea: A federated data analytics system, over data held by multiple backend
systems (including MyriaX, SciDB, PostgreSQL, RDF, Spark key-value store)

Schema: LAV

Queries: MyriaL - a hybrid declarative / imperative language (relational query
language with imperative extensions) (or Python)

Objectives: “relational at the core approach”, focus on efficiency and usability,
delivering the performance of specialized systems with the convenience of general
purpose systems

e hides the data model differences between the various backends

* http://myria.cs.washington.edu/



Myria - big picture

e MyriaX (a parallel shared nothing DBMS) - query execution engine

e PipeGen: automatic data migration between stores, in support of query plans
across engine boundaries

e RACO: Relational Algebra Compiler (locality-aware, rule based)

Myrial and Python

RACO Middleware

Translation, Optimization, Orchestration

MyriaX ., Radish ", DB qge Spark q;e SPARQL
Relational C++ HPC cluster Array Key-Value RDF

Data Transfer with PipeGen



Myria - data and query model

e Relations, arrays, graphs, key-value pairs — the relational data model is used
for translation and optimization
o  Observation: fundamentally isomorphic
e Queries expressed as SQL with imperative statements (similar to PL/SQL):
o Relational semantics defined for operators of non-relational systems

o Rules to translate such operators properly

1 E = scan(Graph); -- Graph(x, y) is an edge table

2 V = select distinct x from E;

3 CC = [from V emit x as node_id, x as comp_id];

4 do

5 newCC = CC + [from E, CC where E.x = CC.node_id

6 emit E.y, CC.comp_id];

7 newCC = [from newCC emit

8 newCC.node_id, min (new_CC.comp_id) as comp_id];
9 delta = diff (CC, newCC);

10 CC = newCC;

11 while [from delta emit count(x) > 0];

12 components = [from CC emit CC.comp_id, count (CC.node_id)];

13 store(components, ConnectedComponents);



RHEEM?* - introduction

Main idea: general purpose cross-platform data processing system (DBMS, MR,
NoSQL) -- data natively resides on different storage platforms

Schema: LAV
Queries: logic of the app in imperative form

Objectives: Decouple applications from underlying platforms — multi-platform task
execution and data storage independence

platform independent task specification

transparent multi-platform optimization & execution (cost-based / learned)
data storage and data movement optimization

data processing and storage abstraction for adaptability / extensibility

* http://da.qgcri.ora/rheem/



RHEEM - big picture
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RHEEM - data and query model

R

[= T |

10

Data quanta abstraction (for database tuples, graph
edges, full document content, etc)

Procedural data-flow queries (Rheem plan)
o Rheem Latin (based on Pig Latin grammar), Rheem Studio
o Data-flow graph, vertices being platform agnostic operators

o One or several data source

import ' /sgd/udfs. class ' AS taggedPointCounter;
lines = load '"hdfs://myData.csv’;
points = map lines —> {taggedPointCounter.parsePoints(lines)};
weights = load taggedPointCounter.createWeights();
final_weights = repeat 50 {
sample_points = sample points —> {taggedPointCounter.getSample()}
with broadcast weights;
gradient = map sample_points — >
{taggedPointCounter.computeGradient() };
gradient_sum_count = reduce gradient —> {gradient.sumcount()};
weights = map gradient_sum —> {gradient_sum_count.average()} with
platform 'JavaStreams’;}
store final_weights "hdfs://output/sgd’;

TextFile
Source
N2
Rl

e )
[pdate ] |
~—1
Y

N
Collection
Sink




Outline
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Advanced aspects of tightly integrated polystores (15')

Comparison of multi-model databases and tightly integrated polystores (5')
Open problems and challenges (10"

Questions and discussion (5)



Query processing in TIPs



HadoopDB

Query processing: split MR/DB joins, referential partitioning, post-join aggregation
Query optimization: heuristics

Queries expressed as SQL (front end, extends HIVE), translated into MR, work
pushed to single node DBMSs

e Query processing is simple: HiveQL query decomposed into QEP of relational
operators, which are translated into MR jobs

e Leaf nodes are transformed into SQL to query the RDBMS instances

e Joins: easy if corresponding partitions collocated on same physical node



HadoopDB (cont'd) - SMS planner (extending Hive)

SELECT YEAR(date) AS year,
SUM(price)
FROM sales GROUP BY year

SMS Planner before

execution:

extensions,

Retrieve data fields to determine
partitioning keys

Traverse DAG bottom-up (rule
based SQL generator)

Reduce L merge partial
Phase

Map [ Reduce Sink Operator
Phase

File Sink Operator
file=annual_sales_revenue

f

Select Operator
expr:[Col[0], Col[1]]

f

Group By Operator
aggr:[Sum(1)] keys:[Col[0]] mode:

Partition Cols: Col[0]

Group By Operator
aggr:[Sum(1)] keys:[Col[0]] mode:
hzxsh

Select Operator
expr:[Col[YEAR(saleDate)], Col
[revenue]]

[0: string, 1: double]

Table Scan Operator
sales

File Sink Operator
file=annual_sales_revenue

*

Table Scan Operator
SELECT YEAR(saleDate), SUM(revenue)
FROM sales GROUP BY YEAR(saleDate)
[0: string, 1: double]

(b)

File Sink Operator
file=annual_sales_revenue

)

Select Operator
expr:[Col[0], Col[1]]

)

Group By Operator
aggr:[Sum(1)] keys:[Col[0]] mode:
merge partial

Reduce Sink Operator
Partition Cols: Col[0]

f

Table Scan Operator
SELECT YEAR(saleDate), SUM(revenue)
FROM sales GROUP BY YEAR(saleDate)
[0: string, 1: double]




Polybase

e Query plans: search space with 2 parts
o MR jobs
o regular relational operators
e Cost-based query optimizer. decide when good to push SQL to HDFS
(statistics on external tables)
o selects and projects on external tables (by MR jobs)
o joins of 2 external tables (only when both tables are stored in HDFS)
o Indexes built on HDFS-resident data, stored inside PDW — use as pre-
filter, lazily updated
e Query processing: query splitting



Polybase example

SELECT count (*) from Customer
WHERE acctbal < 0

GROUP BY nationkey

B
|
Final Agg Normal Agg | |
|
_____ 1 W A
.-)I.
____________ 5 __f'-
' /A
Partial Agg |
______ . — /
xhx .__.-'.
\'\._ ..r'
AT
'| Filter |
|

'l Scan Customer




Polybase example (cont'd)

‘ Normal Agg }
A

Filter |/

A

Scan Customer

7

RETURN:
SELECT COUNT(*) FROM TEMP_1 WHERE
ACCTBAL < 0 GROUP BY NATIONKEY

A

DMS:
Import hdfsCustomer intoc TEMP_1
distributed on NATIONKEY

A

CREATE:
CREATE TABLE TEMP_1(ACCTBAL,
NATIONKEY)
WITH DISTRIBUTION = NATIONKEY

Final Agg

B —— .

f

HDFS Shuffle

RETURN:
SELECT SUM(PartialCount) FROM TEMP_1
GROUP BY NATIONKEY

!

'

Partial Agg

DMS:
Import HDFSInter into TEMP_1
distributed on NATIONKEY

!

Filter

CREATE:
CREATE TABLE TEMP_1{PartialCount, NATIONKEY)
WITH DISTRIBUTION = NATIONKEY

4

(a) Optimized query plan

(b) Corresponding DSQL plan

Scan Customer

HADOOP:
Run Map job computing filter and partial count over
Customer in HDFS. Results are stored in HOFSInter.

(a) Alternative query plan

{b) Corresponding DSQL plan




Estocada

e Recall: fragment based store, automatically distributes / partition the data into
fragments — each data partition described as a materialized view

e View-based query processing: with conjunctive queries + constraints

e Query optimization: cost based

e Query — logical QEP on possibly multiple data stores — physical QEP

based on relational algebra
o leafs being translated into queries accessing the stores natively
o work divided between the native stores and Estocada’s own runtime engine

e Cross model / language storage advising (akin to automatic view selection)



MISO / Odyssey

Optimization for entire workloads, using

opportunistic materialized views
o Shared intermediate results: opportunistic
materialized views (useful if used repeatedly)
Normalized cost-based optimization
o costin HV
o costin DW
o cost of transfer between stores
Annotated (by views) Query Plans
o Stores In which sub-expressions are
computed depends on the multistore physical
design (views)

Query
Execution

HV

EN
Ou*put
HV HV
DW DW



Myria

e Relational algebra compiler (RACO) is the query optimizer and federated
qguery executor
e MyriaX takes as input RACO query plans
e RACO uses rule-based optimization
o default: each leaf assigned to where data resides
o iterates bottom up adding data movement operators wherever needed
o rewrite rules determine the platform that each operator should run on



Myria RACO optimizer

e Graph of operators (including cycles, for iterative processing)
o including relational operators + iterative processing, flatmap, stateful apply
e Query plans are organized into fragments and are fully pipelined
e Efficient join query evaluation (for large tables)
e Data movement during federated execution: if a query spans engine
boundaries, intermediate results must move across systems
o via HDFS, in a common format (CVS), or
o new interconnection operators for each pair of systems, or...

o PipeGen: enables automatically optimized data transfer between arbitrary
pairs of systems



RHEEM

e |nput: query — logic of the app in imperative form
e System ultimately decides on which platform to execute each task

For each RHEEM operator list all the alternatives for the optimizer to choose from:
inflated RHEEM plan (each operator + all all its execution alternatives)

Three layer decoupled optimization
e Logical operators (application optimization layer)
e Physical operators (core optimization layer)
e Execution operators (platform optimization layer)



RHEEM execution plan

Cost-based optimizer outputs a RHEEM execution plan, also a data flow graph, but
e Vvertices are platform specific execution operators
e may include operators for data movement across platforms

Cost model:
e each execution operator has an estimated cost, based on resource usage and unit
cost, data cardinality — user hints, learned from logs, progressive optimization

e data movement: planning and assessing for cost model optimization
o channel conversion graph (CCG): space of possible communication steps

RHEEM plan inflated plan with
(piatrorm-agnostic) inflated plan with  operator costs + cheapest checkpointed
e operalor costs data movement execution plan execution plan
E:'a fnan (platform-specific) (platform-specific)
Reduce . . .
Plan Operator Movement Plan = Re-optimization $
Inflation Costs Costs Enumeration Checkpoints




RHEEM - inflated execution plans

(O RHeem operator @ Spark execution operator @ JavaStreams execution operator

' (a) 1-+to-1 mapping '
» Input/Output [ ] UDF — Data flow ---> Broadcast data flow

(b) 1-to-n mapping |
.............. - | (© n-to-1 mapping |

BN cowe, ICLIILESN

i (DRHEEM operator

L ~ i | .
H m i Map { @ Spark execution operator

TextFile
Source

Sroadcast .?‘.??::.“::f::“:?::r"""’ e @ JavaStreams execution op.
(a) Operator mappings {}inflated operator
| CIUDF

Collection ==

Source -

Map GroupBy

' RepeatLoop

ReduceB .
y Collection
Sink
Map
Collect

ReduceBy

Map

o :
1100]

[950,
: 2 458, 3.334]
f 05% [2.46s,
estimate conf- 80%

(b) Inflated operator with estimates

(a) RHEEM plan (b) Execution plan
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Advanced Aspects of TIPs



~———
Tuning (MISO example) oraYe
—V V_
e Physical design: materialized views vV %
o View storage budget Ig\
o View migration budget eauery 17>l
e Reorganization phase (workload history) v
e Computationally hard problem output

o Heuristic approach: variant of the knapsack problem
o Additional complexity: 2 physical design pbs, each with 2 dimensions

Multistore Design Problem. Given an observed query stream, a multistore
design # = <1, , V> and a set of design constraints B,, B,, B, compute a
new multistore design M " = <{)»w, 4 "w> where v;"*, v in v, U v,
that satisfies the constraints and minimizes future workload cost.



MISO tuner algorithm

Algorithm 1 MISO Tuner algorithm

l: function MISO_TUNE((Vh, Vd>, W, By, By, Bt)
V Vh U Vd

P < COMPUTEINTERACTINGSETS(V)
Veands < SPARSIFYSETS(P)

Vrew M-KNAPSACK(V,.qnds> Ba, Bt)
By < Bt — Zvevhmvc’;“—’-w sz(v)

Vew <— M-KNAPSACK (Vi.gnas — V", By, B{™)
MTIB’U_J (V?’IE’U_}: Vdﬂ€w>

return Mnew

10 end function

SWXN INHEWLD




Extensibility - RHEEM

RHEEM brings an additional level of abstraction

e Data quanta
e Platform agnostic data transformation operators (RHEEM plans)

When a new platform is added

New execution operators

Their mappings to RHEEM operators
Data quantum specification
Communication channels (at least one)



Extensibility - Myria
When a new platform is added:

An AST describing the API / query language supported

rewrite rules / mappings of logical algebra into AST

rule ordering

set of administrative functions (querying the catalog, issuing a query,
extracting results)



RHEEM cost model learner

cost,
Operator Cost I
3 tg
Resource Cost ]
Parameters
(automatically leamed ) / "\i
o . Hoores=4
D I Flesource Utilization Resource Unit Cost l € #GpﬂMh@ 2700
Hardware Specs.
(provided)
--:-‘ Cardinality ‘ll
Selectivities

(computed or provided)



RHEEM cost model learner (cont'd)

Parameters for a given operator and ressource:

e a: number of required CPU cycles for each input data quantum in operator
e [ : number of required CPU cycles for each input data quantum in UDF
e V : fixed overhead for the operator start-up / scheduling

Logs used to learn these parameters: the cost of individual execution operators is
modeled as a regression problem.

difficulty: in logs, runtimes of stages (not individual operators)
execution stage: {(0,;C,); (0,;C.); ... ; (0,;C.)}; t)

f.(x,C)) total cost function for executing operator o,

finding X, = argmin, loss(t, 2"._, f(x, C))

Genetic algorithm to find X,



Data movement in RHEEM

Channel conversion graph (CCG)

root

(o .
| Postgres|

[ Relation ]

j
-
1
1
1
1
I
1
1
1

CachedRDD }~

Broadcast J

targets

targets

Channel conversion graph e

@D Spark operator @B JavaStreams operator W Flink operator
W conversion operator () reusable channel {: non-reusable channel

* for clarity, we do not show conversion operators in all edges



Data movement in RHEEM

CCG: the space of possible communication steps

e vertices: data structure types (communication channels)
e edges: conversions from one structure to another (conversion operators)

Finding the most efficient communication path among execution operators: a new
graph problem of finding a minimum conversion tree (similar to the Group Steiner

Tree - GST problem).

e NP-hard problem, however, exp. time algorithm performs well in practice



Data movement in Myria - PipeGen

PipeGen automatically enables optimized data transfer between arbitrary pairs of
database systems

Not dealing with schema matching / focus on “mechanics” of data movement
Relies on DBMS capacity to ingest / export data to / from file system (CSV,
JSON)

Requires as input the DBMSs source code, unit tests exercising import / export
Replaces that functionality with highly optimized version that sends data over a
network socket



Outline

e Comparison of multi-model databases and tightly integrated polystores (5')
e Open problems and challenges (10"
e Questions and discussion (5’)



Comparison of multi-model databases
and tightly integrated polystores



Common features

e Support for multiple data models
e Global query processing
e Cloud support



Comparison

Engine
Maturity
Usability
Transactions

Holistic query
optimizations

Community

Data migration

Multi-model DBMSs

single engine, backend
lower

Read, write and update
global transaction supported

Open problem

industry-driven

difficult

TIPs

multiple databases (native)
higher

read-only

unsupported

challenging

academia-driven (recently)

simple
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e Open problems and challenges (10"
e Questions and discussion (5’)



Open problems and challenges



Multi-model databases

1. Schema design and optimization
o NoSQL databases - usually schemaless
m But we still need to model the target domain at least roughly
m e.g. an application which stores data partially in JSON, XML and relational model => a
user-friendly modeling tool which enables to model both the flat relations and semi-
structured hierarchical data + relationships
o Schema design influences query evaluations
m Relational: minimum redundancy vs. NoSQL: materialized views
m Relational: normalization vs. NoSQL: de-normalization
o Schema inference
m Approaches for single-models need to be extended
e to support references amongs models
e to benefit from information extracted from related data with distinct models



Multi-model databases

2. Query processing and optimization
o Query languages are immature
m Limited expressive power, limited coverage of models, ...
o The best query plan for queries over multi-model data
m  New dynamic statistics techniques for changing schema of the data
o Indexing structures defined for single models + results are combined
m e.g., relational: B-tree, XML: XB-tree, graph: gindex, ...
m How to index multiple data models with a single structure?
e To accelerate cross-model filtering and join
o In-memory technologies challenge disk-based solutions
m A just-in-time multi-model data structure is a challenge



Multi-model databases

3. Evolution management
o Schema evolution + propagation of changes

m Adaptation of data instances, queries, indexes, or even storage strategies
m Difficult task in general

o Smaller applications = skilled DBA
m Error-prone, demanding
Intra-model - re-use of an existing solution

Inter-model - distinct models cover separate parts of reality interconnected using references,
foreign keys, ...

m Propagation across multiple models and their connections
4. Extensibility
o Intra-model - extending one of the models with new constructs

o Inter-model - new constructs expressing relations between the models
o Extra-model - adding a whole new model



Tightly integrated polystores

Many challenges: query optimization, query execution, extensibility, interfaces,
cross-platform transactions, self-tuning, data placement / migration, benchmarking.

e High degree of uncertainty even in TIPs
e Transparency: do not require users to specify where to get / store data, where

to run queries / subqueries
o Explain and allow user hints

e More than ever need for automation, adaptiveness, learning on the fly



Tightly integrated polystores

Many challenges: query optimization, query execution, extensibility, interfaces,
cross-platform transactions, self-tuning, data placement / migration, benchmarking.

Query optimization:

Query-based vs. workload based optimization

Workload driven data partitioning, indexing, controlled degree of parallelism
Progressive optimization — control over underlying platforms

View-based query rewriting at large scale

Cost based reformulation under constraints at large scale

Cost-based optimizations across-platforms: uniformization, common cost unit,
normalization — hard even in tightly coupled systems

e Computation costs vs data transfer costs



Tightly integrated polystores

Many challenges: query optimization, query execution, extensibility, interfaces,
cross-platform transactions, self-tuning, data placement / migration, benchmarking.

Query execution:

e Data exploration in cross-platform settings
e Efficiently support fault tolerance across platforms
e Different query semantics / data typing

Extensibility: add new platforms automatically / easily

e Data abstractions / query abstractions

Query interfaces / internal common models / foundations:
e Expressiveness vs. declarative
e Limitations of the relational “glue” (algebra, imperative vs. Datalog-based) ?



More materials:

e Slides download: http://udbms.cs.helsinki.fi/2tutorials/CIKM2018

e UniBench: Towards Benchmarking Multi-Model DBMS

http://udbms.cs.helsinki.fi/?projects/ubench

e Helsinki Multi-Model Dataset Repository:
http://udbms.cs.helsinki.fi/?datasets
o Collects and integrates publicly available datasets



http://udbms.cs.helsinki.fi/?tutorials/CIKM2018
http://udbms.cs.helsinki.fi/?projects/ubench
http://udbms.cs.helsinki.fi/?datasets

Conclusion

e Big Data V-characteristics bring many challenges
e Variety requires concurrent storage and management of data with distinct formats

e Two sides of the same coin ?
o Multi-model databases
o Tightly-coupled polystores
e Still there is a long journey towards robust solutions
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