
Multi-model Databases and Tightly

Integrated Polystores
Current Practices, Comparisons, and

Open Challenges

Jiaheng Lu, Irena Holubová, Bogdan Cautis

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

A grand challenge on Variety

●Big data: Volume, Variety, Velocity, Veracity

●Variety: hierarchical data (XML, JSON), graph data (RDF,

property graphs, networks), tabular data (CSV), etc

Photo downloaded from: https://blog.infodiagram.com/2014/04/visualizing-big-data-concepts-strong.html

Motivation: E-commerce

Customer

Social

Media

Gaming

Entertain

Banking

Finance

Our

Known

History

Purchase

Motivation: one application to include multi-

model data

An E-commerce example with multi-model data

●Relational data: customer databases

●Graph data: social networks

●Hierarchical data: catalog, product

●Text data: Customer Review

●…...

Two solutions

1. Polystores

Using jointly multiple data storage technologies, chosen

based upon the way data is being used by individual

applications.

1. Multi-model databases

Using one single, integrated backend.

Polystores

• Use the right tool for (each part of) the job

• If you have structured data with some differences

• Use a document store

• If you have relations between entities and want to efficiently
query them

• Use a graph database

• If you manage the data structure yourself and do not need
complex queries

• Use a key-value store

Glue everything together...

Multiple NoSQL databases

Sales Social
media Customer

CatalogShopping-cart

MongoDB

MongoDBRedis

MongoDBNeo4j

Pros and Cons of Polystores

• Requires the company to hire
people to integrate different
databases

• Implementers need to learn
different databases

• It is a challenge to handle cross-
model query and transaction

• Handle multi-model data

• Help your apps to scale well

• A rich experience

Three types of polystore systems*

• Loosely-coupled systems

• Similar to mediator / wrapper

• Common interfaces

• Autonomy of local stores

• Tightly-coupled systems

• Trade autonomy for performance with materialized

views and indexes

• Hybrid

• Compromise between loosely-coupled and tightly

* Bondiombouy, Carlyna, and Patrick Valduriez. "Query processing in multistore systems:

an overview." International Journal of Cloud Computing 5.4 (2016): 309-346

An overview of polystores https://slideplayer.com/slide/13365730/

Polystore example - Myria

http://myria.cs.washington.edu/

Two solutions

1. Polystores

Using jointly multiple data storage technologies,

chosen based upon the way data is being used

by individual applications.

1. Multi-model databases

Using one single, integrated backend

Multi-model DB

Tabular

RDFXML

Spatial

Text
Multi-model DB

JSON

• One unified database for multi-model data

Multi-model databases

● A multi-model database is designed to support multiple

data models against a single, integrated backend.

● Document, graph, relational, and key-value models are

examples of data models that may be supported by a

multi-model database.

Multi-model databases:

One size fits multi-data-model

…

Most of DBs became multi-model

databases in 2017

--- Gartner report for operational

databases 2016

• By 2017, all leading
operational DBMSs will offer
multiple data models,
relational and NoSQL, in a
single DBMS platform.

Three examples of multi-model databases

Oracle database provides a long list of supported data

models that can be used and managed inside Oracle

database:

• JSON document

• Spatial and Graph Data

• XML DB data

• Text data

• Multimedia data

19

20

Tasks SQL/JSON language

Construct JSON View from

relational content

CREATE JSON_VIEW AS

SELECT JSON {“Staff” : {“STAFF_ID” : e.staff_id, “First” : e.first,

“Last” : e.last, “Mgr” : e.mgr, {“Dept” : {“Dept_ID” :d.dept_id,

“Names” : d.name, “Head” : d.head }} } FROM Employee e, department d

WHERE e.dep_id = d.dep_id

Construct relational view of

employee from JSON

CREATE EMPLOYEE_REL_VIEW AS

SELECT * FROM JSON_VIEW f, JSON_TABLE (f.Staff COLUMNS

(Staff_ID, First, Last, Mgr)

Example: Data transformation by views

between JSON and relation data

ArangoDB is designed as a native multi-model database,

supporting key/value, document and graph models.

An example of multi-model data
and query

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

An example of multi-model data
and query

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

Q: Return all products which are ordered by a friend

of a customer whose credit limit is over 3000

Let CustomerIDs =(FOR Customer IN Customers FILTER

Customer.CreditLimit > 3000 RETURN Customer.id)

Let FriendIDs=(FOR CustomerID in CustomerIDs FOR

Friend IN 1..1 OUTBOUND CustomerID Knows return

Friend.id)

For Friend in FriendIDs

For Order in 1..1 OUTBOUND Friend Customer2Order

Return Order.orderlines[*].Product_no

An example of multi-model query (ArangoDB)

Recommendation query:

Return all products which are ordered by a friend of a

customer whose credit limit is over 3000.

• Supporting graph, document, key/value and object models.

• It supports schema-less, schema-full and schema-mixed
modes. Queries with SQL extended for graph traversal.

Select

expand(out("Knows").Orders.orderlines

.Product_no) from Customers where

CreditLimit > 3000

Recommendation query:

Return all products which are ordered by any friend of a

customer whose credit limit is over 3000.

What is the difference between Multi-model
and Multi-modal

• Multi-model: graph, tree, relation, key-value,…

• Multi-modal: video, image, audio, eye gaze data,
physiological signals,…

Three arguments on multi-model data
management

• 1. One size cannot fit all

• 2. One size can fit all

• 3. One size fits a bunch

One size cannot fit all

“SQL analytics, real-time decision support, and data warehouses
cannot be supported in one engine.”

M. Stonebraker and U. Cetintemel. ”One Size Fits All”: An Idea
Whose Time Has Come and Gone (Abstract). In ICDE, 2005.

One size can fit all

• OctopusDB suggests a unified, one size fits all data processing
architecture for OLTP, OLAP, streaming systems, and scan-
oriented database systems.

Jens Dittrich, Alekh Jindal: Towards a One Size Fits All Database
Architecture. CIDR 2011: 195-198

One size can fit a bunch: AsterixDB

Providing Hadoop-based

query platforms, key-value

stores and semi-structured

data management

AsterixDB: A Scalable, Open Source BDMS. PVLDB 7(14): 1905-1916 (2014)

http://dblp.uni-trier.de/db/journals/pvldb/pvldb7.html#AlsubaieeAABBBCCCFGGHKLLOOPTVWW14

A simple survey

How many of you agree that (You can choose both or all or none of them)

1. One size cannot fit all

2. One size can fit all

3. One size fits a bunch

4. ???

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Theoretical foundation for multi-model

management

Diagram to illustrate 2-category

Challenge: a new theory foundation

Call for a unified model and theory for multi-

model data!

The theory of relations (150 years old) is not

adequate to mathematically describe modern

(NoSQL and multi-model) DBMS.

Two possible theoretical models

● Category theory

● Associative array

One possible theory foundation: category theory

● Introduced to mathematics world by Samuel

Eilenberg and Sauders MacLane in 1944

● Found as part of their work in topology

● Category theory becomes the theoretical

foundation on functional programming :

Haskell

Categories Defined
● A category C is ….

● a collection of objects ob(C) .. {X,Y, Z ….}

● a collection of morphisms {f, g ….}

● A set of morphisms from object a into b is denoted by

Homc(a, b) or a→b.

Categories Defined (con’t)
● The category must satisfy the following rules

● associativity

● (h ○ g) ○ f = h ○(g ○ f) [a,b,c,d Є ob(C), f Є Homc(a, b), g

Є Homc(b, c), h Є Homc(c, d)]

● unit laws

● f ○ 1a = f = 1b ○ f

● Think of it like a graph: the nodes are objects

and the arrows are relationships

Relational category

41

a

b

● A relational category C
● an ob(C) is a table

● a morphisms a→b means that a has

the relational homomorphism with b

Staff_ID Name

100 John Smith

101 James William

Table A
Staff_ID First Last

100 John Smith

Table B

JSON category

42

a

b

● A JSON category J
● an ob(J) is a JSON file

● a morphisms a→b means that a

has a tree homomorphism with b

JSON A JSON B
{Staffs: {“Staff_ID”:”100”,”First”:”John”,

“Last”: “Smith”, “First”: “John”}

{“Staff_ID”:”101”,”First”:”James”,”Last”:”Willia

m”}}

{Staffs:

{“Staff_ID”:”100”,”First”:”John”,

“Name”: “John Smith”, }

}

Graph category

43

a

b

● A Graph category G
● an ob(J) is a graph

● a morphisms a→b means that a has

a graph homomorphism with b

Graph A Graph B
John

Sales
James

Dept Manager

John

Dept

Sales

A single object can contain multi-model data

Marry (1)

John (2)

FriendFriend

William (3)

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

One object in a category contains both graph and table data.

Product and Pull-back in categories

45

Product Pull-back

An example of Product

Mary

John

FriendFriend

William

Name Credit_limits

Mary 5,000

John 3,000

William 2,000

T

G G X T
Name Credit_limits G.Name

Mary 5,000 Mary

John 3,000 Mary

William 2,000 Mary

Name Credit_limits G.Name

Mary 5,000 William

John 3,000 WIlliam

William 2,000 William

Name Credit_limits G.Name

Mary 5,000 John

John 3,000 John

William 2,000 John

Friend Friend

An example of Push-back

Mary

John

FriendFriend

William

Name Credit_limits

Mary 5,000

John 3,000

William 2,000

T

G G X T
Name Credit_limits G.Name

Mary 5,000 Mary

Name Credit_limits G.Name

William 2,000 William

Name Credit_limits G.Name

John 3,000 John

An example of multi-model data and
query

Mary (1)

John (2)

FriendFriend

William (3)
{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy"

,

"Price":66 },

{

"Product_no":“3424g”,

"Product_Name":“Book

",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"

"2"-- > "0c6df508"

T

G K

J

Join with four models of data by
Pull-back

G T

G⋈T
K

G⋈T⋈K

G⋈T⋈K⋈J

J

Custom_ID

Order_No

Custom_ID
Q: Return all products which are ordered
by any friend of a customer whose
credit_limit>3000

Functors
● a “category of categories”

● objects are categories, morphisms are mappings

between categories

● preserves identity and composition properties

Functors for data transformation

51

Dep_ID Name Head

D2 Sales 101

D3 Production 102

Table A

Dep_ID Name

D2 Sales

Table B JSON B

{Depts:

{“Dep_ID”:”D2”,”Name”:”Sales”,

“Head”: “101”}

{“Dep_ID”:”D3”,”Name”:”Producti

on”,”Head”:”102”}}

JSON A

{Depts: {“Dep_ID”:”D2”,”Name”:”Sales”,}

}

www.helsinki.fi

Natural transformation
● A natural transformation provides a way of transforming one

functor into another

http://www.helsinki.fi/

Natural transformation example

Dep_ID Name Head_I D Head_

Name

D2 Sales 101 John

D3 Product

ion

102 Jame

Table A1

ID Head_I D Head_N

ame

H01 101 John

H02 102 Jame

Tables A2

JSON A

{Depts: {“Dep_ID”:”D2”,”Name”:”Sales”,

Head: {“ID”: “101”, “Name”:”John”}}

{“Dep_ID”:”D3”,”Name”:”Production”,Head:{

”ID”:”102”, “Name”:”James”}}

DepID Name Head

101 Sales H01

102 Production H02

Functor F

53

Functor G

Category theory: mathematical foundation for MMDB

1, Category object: an abstract definition of object in multi-model databases:

including relation, tree, graph, key-value pair

2. Query semantics: product, pull-back, limits in category theory

3. Proof of the equivalence of declarative and procedural syntaxes over the above

definitions: functor and natural transformation

4. Proof of data instance equivalence for multi-model data

Two possible theoretical model

● Category theory

● Associative array

Associative arrays

Associative arrays could provide a mathematical

model for polystores to optimize the exchange of

data and execution queries.

Definition: A:{1,...,m} x {1,...,n} → V

Associative array for relations and graphs

A(row1,Name)=”Mary”

A(row2,Name)=”John”

A(row3,Name)=”William”

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Mary (1)

John (2)

FriendFriend

William (3)

B(Edge1, start)=”William” ,

B(Edge1, end)=”Mary”

B(Edge2, start)=”Mary”

B(Edge2, end)=”John”

Associative array example

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

Mary (1)

John (2)

FriendFriend

William (3)

C(row3, start)=”William”

C(row1, end)=”Mary”

C(row1, start)=”Mary”

C(row2, end)=”John”

C = PB ⊕ PPTA

⋈

Matrix A
Matrix B

From SQL to Associative algebra

Comparison between Category theory and

Associative array

Category theory Associative array

Abstraction

level

High Low

Operation No concrete definition Linear algebra operation

Extensibility High, generalized to

more data types

Focus on relation and

graph

References on theoretical foundation (1)

Category theory

1.Multi-Model Database Management Systems-a Look Forward

ZH Liu, J Lu, D Gawlick, H Helskyaho, G Pogossiants, Z Wu, VLDB workshop

Poly 2018

2.Henrik Forssell, Håkon Robbestad Gylterud, David I. Spivak: Type Theoretical

Databases. LFCS 2016: 117-129

3. Patrick Schultz, David I. Spivak, Christina Vasilakopoulou, Ryan Wisnesky:

Algebraic Databases. CoRR abs/1602.03501 (2016)

4. David I. Spivak: Simplicial Databases. CoRR abs/0904.2012 (2009)

. DBPL 2015: 21-28

References on theoretical foundation (2)

Associative array

1. Hayden Jananthan et al.: Polystore mathematics of relational algebra.

BigData 2017: 3180-3189

2. Jeremy Kepner, et al:Associative array model of SQL, NoSQL, and NewSQL

databases. HPEC 2016: 1-9

3. J. Kepner et al., “Dynamic Distributed Dimensional Data Model (D4M)

Database and Computation System,” ICASSP (International Conference on

Accoustics, Speech, and Signal Processing, 2012, Kyoto, Japan

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Multi-model data storage

Classification

● Basic approach: on the basis of original (or core) data model

Timeline

● When a particular system became multi-model
○ Original data format (model) was extended

○ First released directly as a multi-model DBMS

Extension towards Multiple Models

Types of strategies:

1. Adoption of a completely new storage strategy suitable for the new data

model(s)
○ e.g., XML-enabled databases

2. Extension of the original storage strategy for the purpose of the new data

model(s)
○ e.g., ArangoDB - special edge collections bear information about edges in a graph

3. Creating of a new interface for the original storage strategy
○ e.g., MarkLogic - stores JSON data in the same way as XML data

4. No change in the original storage strategy
○ Storage and processing of data formats simpler than the original one

sometimes hard

to decide

Overview of

Supported

Data Models

Relational Stores

● Representatives: PostgreSQL, SQL

Server, IBM DB2, Oracle DB, Oracle

MySQL, Sinew

● Biggest set of multi-model databases
○ The most popular type of databases

○ SQL has been extended towards other data

formats (e.g, SQL/XML)

○ Simplicity and universality of the relational

model

INSERT INTO customer

VALUES (1, 'Mary', 'Prague',

'{"Order_no":"0c6df508",

"Orderlines":[

{"Product_no":"2724f", "Product_Name":"Toy", "Price":66},

{"Product_no":"3424g", "Product_Name":"Book", "Price":40}]

}');

INSERT INTO customer

VALUES (2, 'John', 'Helsinki',

'{"Order_no":"0c6df511",

"Orderlines":[

{ "Product_no":"2454f", "Product_Name":"Computer", "Price":34 }]

}');

CREATE TABLE customer (

id INTEGER PRIMARY KEY,

name VARCHAR(50),

address VARCHAR(50),

orders JSONB

);

SELECT json_build_object('id',id,'name',name,'orders',orders)

FROM customer;

SELECT jsonb_each(orders) FROM customer;

SELECT jsonb_object_keys(orders) FROM customer;

Column Stores

● Representatives: Cassandra, CrateDB,

DynamoDB, HPE Vertica

● Two meanings:
○ Column-oriented (columnar, column) DBMS

stores data tables as columns rather than rows

■ Not necessarily NoSQL

○ Column-family (wide-column) DBMS = a NoSQL

database which supports tables having distinct

numbers and types of columns

■ Underlying storage strategy is arbitrary

create keyspace myspace

WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 3 };

CREATE TYPE myspace.orderline (

product_no text,

product_name text,

price float

);

CREATE TYPE myspace.myorder (

order_no text,

orderlines list<frozen <orderline>>

);

CREATE TABLE myspace.customer (

id INT PRIMARY KEY,

name text,

address text,

orders list<frozen <myorder>>

);

INSERT INTO myspace.customer JSON

' {"id":1,

"name":"Mary",

"address":"Prague",

"orders" : [

{ "order_no":"0c6df508",

"orderlines":[

{ "product_no" : "2724f",

"product_name" : "Toy",

"price" : 66 },

{ "product_no" : "3424g",

"product_name" :"Book",

"price" : 40 }] }]

}';

INSERT INTO myspace.customer JSON

' {"id":2,

"name":"John",

"address":"Helsinki",

"orders" : [

{ "order_no":"0c6df511",

"orderlines":[

{ "product_no" : "2454f",

"product_name" :

"Computer",

"price" : 34 }] }]

}';

CREATE TABLE myspace.users (

id text PRIMARY KEY,

age int,

country text

);

INSERT INTO myspace.users (id, age, state)

VALUES ('Irena', 37, 'CZ');

SELECT JSON * FROM myspace.users;

[json]

{"id": "Irena", "age": 37, "country": "CZ"}

Key/Value Stores

● Representatives: Riak, c-treeACE,

Oracle NoSQL DB

● The simplest type of NoSQL database
○ Get / put / delete + key

○ Often extended with more advanced features

● Multi-model extensions:
○ More complex indices over the value part +

new APIs (e.g., JSON, SQL, ...)

create table Customers (

id integer,

name string,

address string,

orders array (

record (

order_no string,

orderlines array (

record (

product_no string,

product_name string,

price integer)))

),

primary key (id)

);

import -table Customers

-file customer.json

customer.json:

{ "id":1,

"name":"Mary",

"address":"Prague",

"orders" : [

{ "order_no":"0c6df508",

"orderlines":[

{ "product_no" : "2724f",

"product_name" : "Toy",

"price" : 66 },

{ "product_no" : "3424g",

"product_name" :"Book",

"price" : 40 }] }]

}

{ "id":2,

"name":"John",

"address":"Helsinki",

"orders" : [

{"order_no":"0c6df511",

"orderlines":[

{ "product_no" : "2454f",

"product_name" : "Computer",

"price" : 34 }] }]

}

Document Stores

● Representatives: ArangoDB,

Couchbase, MongoDB, Cosmos DB,

MarkLogic

● Distinct strategies:
○ ArangoDB: special edge collection

○ MarkLogic: stores JSON data as XML

{

"name": "Oliver",

"scores": [88, 67, 73],

"isActive": true,

"affiliation": null

} JavaSript:
declareUpdate();

xdmp.documentInsert("/myJSON1.json",

{

"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{"Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

);

XQuery:
xdmp:document-insert("/myXML1.xml",

<product no="3424g">

<name>The King's Speech</name>

<author>Mark Logue</author>

<author>Peter Conradi</author>

</product>

);

Graph Stores

● Representatives: OrientDB

● Based on an object database = native

support for multiple models
○ Element of storage = record = document /

BLOB / vertex / edge

● Classes – define records

● Classes can have relationships:
○ Referenced – stored similarly to storing

pointers between two objects in memory

○ Embedded – stored within the record that

embed

CREATE CLASS orderline EXTENDS V

CREATE PROPERTY orderline.product_no STRING

CREATE PROPERTY orderline.product_name STRING

CREATE PROPERTY orderline.price FLOAT

CREATE CLASS order EXTENDS V

CREATE PROPERTY order.order_no STRING

CREATE PROPERTY order.orderlines EMBEDDEDLIST orderline

CREATE CLASS customer EXTENDS V

CREATE PROPERTY customer.id INTEGER

CREATE PROPERTY customer.name STRING

CREATE PROPERTY customer.address STRING

CREATE CLASS orders EXTENDS E

CREATE CLASS knows EXTENDS E

CREATE VERTEX order CONTENT {

"order_no":"0c6df508",

"orderlines":[

{ "@type":"d",

"@class":"orderline",

"product_no":"2724f",

"product_name":"Toy",

"price":66 },

{ "@type":"d",

"@class":"orderline",

"product_no":"3424g",

"product_name":"Book",

"price":40}]

}

CREATE VERTEX order CONTENT {

"order_no":"0c6df511",

"orderlines":[

{ "@type":"d",

"@class":"orderline",

"product_no":"2454f",

"product_name":"Computer",

"price":34 }]

}

CREATE VERTEX customer CONTENT {

"id" : 1,

"name" : "Mary",

"address" : "Prague"

}

CREATE VERTEX customer CONTENT {

"id" : 2,

"name" : "John",

"address" : "Helsinki"

}

CREATE EDGE orders FROM

(SELECT FROM customer WHERE name = "Mary")

TO

(SELECT FROM order WHERE order_no = "0c6df508")

CREATE EDGE orders FROM

(SELECT FROM customer WHERE name = "John")

TO

(SELECT FROM order WHERE order_no = "0c6df511")

CREATE EDGE knows FROM

(SELECT FROM customer WHERE name = "Mary")

TO

(SELECT FROM customer WHERE name = "John")

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Multi-model data query languages

Multi-model Query Languages

1. Simple API
○ Store, retrieve, delete data

■ Typically key/value, but also other use cases

○ DynamoDB – simple data access + querying over indices using comparison operators

2. SQL Extensions and SQL-Like Languages
○ Most common

○ In most types of systems (relational, column, document, …)

{"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

SELECT name,

orders->>'Order_no' AS Order_no,

orders#>'{Orderlines,1}'->>'Product_Name'

AS Product_Name

FROM customer

WHERE orders->>'Order_no' <> '0c6df511';

Multi-model Query Languages

3. SPARQL Query Extensions
○ e.g., IBM DB2 - SPARQL 1.0 + subset of features from SPARQL 1.1

■ SELECT, GROUP BY, HAVING, SUM, MAX, …

■ Probably no extension for relational data

● But: RDF triples are stored in a table = SQL queries can be used over them too

4. XML Query Extensions
○ MarkLogic – JSON can be accessed using XPath

■ Tree representation like for XML

■ Can be called from XQuery and JavaScript

5. Full-text Search
○ In general quite common

○ e.g., Riak – Solr index + operations

■ Wildcards, proximity search, range search, Boolean operators, grouping, …

JavaSript:
declareUpdate();

xdmp.documentInsert("/myJSON1.json",

{

"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

);

XQuery:
xdmp:document-insert("/myXML1.xml",

<product no="3424g">

<name>The King's Speech</name>

<author>Mark Logue</author>

<author>Peter Conradi</author>

</product>

);

XQuery:
let $product := fn:doc("/myXML1.xml")/product

let $order := fn:doc("/myJSON1.json")

[Orderlines/Product_no = $product/@no]

return $order/Order_no

Result: 0c6df508

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Multi-model query processing

Query Processing Approaches

● Depend highly on the way the system was extended
○ No change

○ New interface

■ e.g., MarkLogic

○ Extension of the original storage strategy

■ e.g. ArangoDB

○ A completely new storage strategy

■ e.g. Oracle native support for XML

● General tendencies:
○ Exploit the existing storage strategies as much as possible

○ Exploit the verified approaches to query optimization

changes in the query

processing approaches

JavaSript:
declareUpdate();

xdmp.documentInsert("/myJSON1.json",

{

"Order_no":"0c6df508",

"Orderlines":[

{ "Product_no":"2724f",

"Product_Name":"Toy",

"Price":66 },

{ "Product_no":"3424g",

"Product_Name":"Book",

"Price":40}]

}

);

XQuery:
xdmp:document-insert("/myXML1.xml",

<product no="3424g">

<name>The King's Speech</name>

<author>Mark Logue</author>

<author>Peter Conradi</author>

</product>

);

XQuery:
let $product := fn:doc("/myXML1.xml")/product

let $order := fn:doc("/myJSON1.json")

[Orderlines/Product_no = $product/@no]

return $order/Order_no

Result: 0c6df508

MarkLogic Multiple Models

● Indexes both XML and JSON data in the same way

● Schema-less data

● Universal index - optimized to allow text, structure and value searches to be

combined into
○ Word indexing

○ Phrase indexing

○ Relationship indexing

○ Value indexing

● Other user-defined indexes
○ Range indexing

○ Word lexicons

○ Reverse indexing

○ Triple index

Marry (1)
FriendFriend

William (3)

{"Order_no":"0c6df508",

“Orderlines": [

{ "Product_no":"2724f”

“Product_Name":“Toy",

"Price":66 },

{ "Product_no":“3424g”,

"Product_Name":“Book",

"Price":40 }]

}

Customer_ID Name Credit_limits

1 Mary 5,000

2 John 3,000

3 William 2,000

"1" -- > "34e5e759"
"2"-- > "0c6df508"

Social network graph

Order JSON document

Key/value pairs
(Customer_ID , Order_no)

relation Customers

relation - graph join

key/value - JSON

document join

graph - key-value join

John (2)

LET CustomerIDs = (

FOR Customer IN Customers

FILTER Customer.CreditLimit > 3000

RETURN Customer.id)

LET FriendIDs = (

FOR CustomerID IN CustomerIDs

FOR Friend IN 1..1 OUTBOUND CustomerID Knows

RETURN Friend.id)

FOR Friend IN FriendIDs

FOR Order IN 1..1 OUTBOUND Friend Customer2Order

RETURN Order.orderlines[*].Product_no

Return all products which are
ordered by a friend of a
customer whose credit limit is
over 3000.

ArangoDB Multiple Models

● Supported models:
○ Document - original

○ Key/value - special type of document without complex value part

○ Tables - special type of document with regular structure

○ Graph - relations between documents

■ Edge collection – two special attributes _from and _to

● So we still need to efficiently process queries over documents

● Indexes
○ Primary = hash index for document keys

○ Edge = hash index, which stores the union of all _from and _to attributes

■ For equality look-ups

○ User-defined - (non-)unique hash/skiplist index, (non-)unique sparse hash/skiplist index, geo,

fulltext, ...

Query Optimization

Strategies

● B-tree/B+-tree index - the most common

approach
○ Typically in relational databases

● Native XML index - support of XML data
○ Typically an ORDPATH-based approach

● Hashing - can be used almost

universally

● ...

● But: still no universally acknowledged

optimal or sub-optimal approach
○ Approaches are closely related to the way the

system was extended

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Overview on tightly integrated polystores

No one size fits all…

● Heterogenous analytics: data processing frameworks (MR, Spark, Flink), NoSQL

● ETL is very expensive towards a single model (may degrade performance),

adapts poorly to changes in data / application requirements

Polystore idea: package together multiple query engines: union (federation) of different

specialized stores, each with distinct (native) data model, internal capabilities,

language, and semantics → Holy grail: platform agnostic data analytics

● Use the right store for (parts of) each specialized scenario

● Possibly rely on middleware layer to integrate data from different sources

● Read-only queries as distributed transactions over different data stores is hard !

Dimensions of polystores *

● Heterogeneity – different data models / query models, semantic

expressiveness / query engines

● Autonomy – association, execution, evolution

● Transparency – location (data may even span multiple storage

engines), transformation / migration

● Flexibility – schema, interfaces, architecture

● Optimality – federated plans, data placement

* Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData 2017

Tightly integrated polystores (TIPs)

● Heterogeneity moderate

● Autonomy low

● Transparency high

● Flexibility low

● Optimality high

● Semantic expressiveness high

TIPs

● Trade autonomy for efficient querying of diverse kinds of data for BD analytics

○ data stores can only be accessed through the multi-store system (slaves)

○ less uncertainty with extended control over the various stores

○ stores accessed directly through their local language

● Query processor directly uses the local language and local interfaces

● Efficient / adaptive data movement across data stores

● Number of data stores that can be interfaced is typically limited

● Extensibility ? Good to have…

Arguably the closest we can get to multi-model DBs, while having several

native stores “under the hood”.

Loosely integrated polystores

Reminiscent of multidatabase systems, follow mediator-wrapper architecture (one

wrapper per datastore), one global common language

● Notable examples: BigIntegrator, Forward/SQL++, QoX

● Data mediation SQL engines: Apache Drill, Spark SQL, SQL++ allow different

sources to be plugged in by wrappers, then queried via SQL

General approach

● Split a query into subqueries (per datastore, still in common language)

● Send to wrapper, translate, get results, translate to common format, integrate

Hybrid polystores

Rely on tight coupling for some stores, loose coupling for others, following the

mediator-wrapper architecture, but the query processor can also directly access

some data stores

● Notable examples: BigDawg (next), SparkSQL, CloudMdsQL

BigDawg – Big Data Analytics Working Group*

● One key abstraction: island of information, a collection of data stores accessed

with a single query language

● BigDawg relies on a variety of data islands (relational, array, NoSQL,

streaming, etc)

● No common data model, query language / processor (each island has its own)

● Wrappers (shims) mapping the island query to the native one

● CAST: explicit operators for moving intermediate datasets between islands

● Subqueries for multi-island query processing

* https://bigdawg.mit.edu/

Historical perspective

Multi-database systems (federated systems, data integration systems)

● mediator-wrapper architecture, declarative SQL-like language, single unified

global schema (GAV, LAV)

● key principle: query is sent to store that owns the data

● focus on data integration

The reference federated databases: Garlic, Tsimmis

● even multi-model settings, but the non-relational stores did not support their own

declarative query language (being wrapped to provide an SQL API)

● no cross-model rewriting

Polystores:

● higher expectations in terms of data heterogeneity

● allow the direct exploitation of the datasets in their native language (but not only)

Another classification for polystores / multistores*

● Federated systems: collection of homogeneous data stores and

features a single standard query interface

● Polyglot systems: collection of homogeneous data stores and exposes

multiple query interfaces to the users

● Multistore systems: data across heterogeneous data stores, while

supporting a single query interface

● Polystore systems: query processing across heterogeneous data stores

and supports multiple query interfaces

* Tan et al. “Enabling query processing across heterogeneous data models: A survey”. BigData 2017

Scenarios for polystores*

● Platform independence

● Data analysis spanning stores (polystore)

● Query acceleration / opportunistic cross-platform

● Mandatory cross-platform

* Z. Kaoudi and J.-A. Quiané-Ruiz. Cross-Platform Data Processing: Use Cases and Challenges. ICDE 2018

In summary - goals of TIPs

● Focus on efficiency and transparency

● Exploit mature, focused technologies, good fits for different workloads

● Integrated, transparent access to data stores through one or more

query languages (semantic expressiveness)

● Exploit the full expressive power of the native query languages

● Ease of use / develop apps

In summary - goals of TIPs (cont’d)

● Cross-model data migration, automated scheduling, self tuning

(transparent)

● Cross-platform / multi-model query planning and optimizer

○ automatic query reformulation, inter-platform parallelism, …

● Potential goal: internally, unified storage abstraction

○ cross-model view (internal) over the native data

Main TIPs aspects discussed

● Architecture

● Data models / storage

● Query languages

● Query processing

Systems: HadoopBD, Polybase, Estocada/Tatooine, Odyssey/MISO, Myria, RHEEM

HadoopDB* - introduction

Main idea:

● Query RDBMS from Hadoop

● use MR as communication layer

Schema: GAV

Queries: SQL-like system (HiveQL)

Objective: the best of parallel DBMS and MR systems, gets efficiency of PDBMS

and scalability, fault-tolerance of MR

● Extends HIVE (Facebook) to push down operations into single node DBMS

* http://dslam.cs.umd.edu/hadoopdb/hadoopdb.html

HadoopDB - introduction (cont’d)

● Multiple single-node RDBMs (PostgreSQL, VectorWise) coupled with

HDFS/MR, deployed in a shared-nothing cluster

● Extensions to Hadoop: DB connector, catalog, data loader

● SQL-MR-SQL planner: extends HIVE, HiveQL → MR → SQL

● Data is partitioned both in RDMS tables and in HDFS files

HadoopDB - big picture

HadoopDB data and query model

● Raw data (text / binary), transformed into key-value pairs for Map tasks

○ Data globally repartitioned on a given key

○ Building and bulk-loading data chunks in the single-node DBs

● Relational data (column store or row store) → rows also hash partitioned

across BD instances

Queries expressed as SQL (front end, extends HIVE)

● translated into MR, work pushed to single node DBMSs

Polybase* - introduction

Main idea:

● querying Hadoop (unstructured data) from RDBMS (structured)

● SQL Server Parallel Data Warehouse (shared nothing parallel) + Hadoop

Schema: GAV

Queries: SQL queries and distributed SQL execution plans

Objective: data in Hadoop (people just don’t see the value of clean, schema,

load… or are more comfortable writing procedural code)

● Minimize data imported to PDW, maximize MR processing capability

*DeWitt et al. “Split Query Processing in Polybase”. SIGMOD 2013.

Polybase - introduction (cont’d)

● HDFS data can be imported / exported to / from SQL Server PDW

● HDFS referenced as « external tables », manipulated together with PDW native tables

● Takes advantage of PDW’s data movement service (DMS), extended with HDFS bridge

Polybase data and query model

● Raw data files (text / binary) - unstructured data with relational view

● Relational data - structured

● Queries expressed as SQL over relational tables (including external ones)
○ Translates SQL operators into MR jobs for data in HDFS

Estocada* - introduction

Main idea: self-tuning platform supporting natively various models

Schema: LAV

Queries: Access to each dataset in its native format

● no common query language / data model on top

Objectives: allow any data model, at both application and view level

● fragment based store, transparent to users

○ automatically distribute / partition the data into fragments

● although accessed natively, data internally may reside in different formats

○ pivot language: relational with prominent use of constraints

* Bugiotti et al. “Invisible Glue: Scalable Self-Tunning Multi-Stores”. CIDR 2015

Estocada - big picture

Estocada - data and query model

● (Nested) relational data, NoSQL (graphs, key-value, document)

● Queries expressed natively (e.g., over JSON data, below), translated into

pivot language → relational algebra

Tatooine* - introduction

Main idea: use ontologies to mediate relational and non-relational sources

● RDF model as “glue” between all other models

Schema: GAV

Queries: Conjunctive Mixed Queries (CMQ) - variation over the SPARQL subset of

conjunctive queries (a.k.a. Basic Graph Pattern Queries - BGPs)

Objectives: lightweight integration over multiple native stores (mixed data instance), with

focus on querying with a unified view

● a specific architecture and usage scenario for data journalism

● custom (application dependent) RDF graph, including ontology / triples, acting as

bridge between different stores, based on common / repeated values (URIs)

* Bonaque et al. “Mixed-instance querying: a lightweight integration architecture for data journalism”. PVLDB 2016

Tatooine - big picture

Odyssey / Miso* - introduction
Main idea: self-tuning polystore on different analytic engines (parallel OLAP, Hadoop)

● enables storing and querying in HDFS and relational stores, using opportunistic

materialized views

Schema: LAV

Queries: SQL-like (HiveQL) posed on HDFS, RDBMS used as query accelerator

Objectives: focus on time-to-insight / evolutionary analytics

● which dataset should we move, where, when → method for tuning the physical

design (MISO), decide in which data store the data should reside

* LeFevre et al. “MISO: souping up big data query processing with a multistore system”. SIGMOD 2014

Hacigümüs et al. “Odyssey: A Multi-Store System for Evolutionary Analytics”. PVLDB 2013

Odyssey / Miso - introduction (cont’d)

● Insight: single query optimization over multi-stores brings limited benefits;

workload optimization instead

● Claim: physical design tuning is key

● Continuously monitors the workloads, online analysis to decide which views

to materialize (share computation across queries)

Odyssey / Miso - big picture

Odyssey - data and query model

● Structured (relational) and unstructured data (large log files, text-

based data stored as flat HDFS files)

● HiveQL queries: declarative language on top of MR

○ relational operators and arbitrary code (UDFs)

○ UDFs executed as MR jobs

Myria* - introduction

Main idea: A federated data analytics system, over data held by multiple backend

systems (including MyriaX, SciDB, PostgreSQL, RDF, Spark key-value store)

Schema: LAV

Queries: MyriaL - a hybrid declarative / imperative language (relational query

language with imperative extensions) (or Python)

Objectives: “relational at the core approach”, focus on efficiency and usability,

delivering the performance of specialized systems with the convenience of general

purpose systems

● hides the data model differences between the various backends

* http://myria.cs.washington.edu/

Myria - big picture

● MyriaX (a parallel shared nothing DBMS) - query execution engine

● PipeGen: automatic data migration between stores, in support of query plans

across engine boundaries

● RACO: Relational Algebra Compiler (locality-aware, rule based)

Myria - data and query model

● Relations, arrays, graphs, key-value pairs → the relational data model is used

for translation and optimization

○ Observation: fundamentally isomorphic

● Queries expressed as SQL with imperative statements (similar to PL/SQL):

○ Relational semantics defined for operators of non-relational systems

○ Rules to translate such operators properly

RHEEM* - introduction

Main idea: general purpose cross-platform data processing system (DBMS, MR,

NoSQL) -- data natively resides on different storage platforms

Schema: LAV

Queries: logic of the app in imperative form

Objectives: Decouple applications from underlying platforms → multi-platform task

execution and data storage independence

● platform independent task specification

● transparent multi-platform optimization & execution (cost-based / learned)

● data storage and data movement optimization

● data processing and storage abstraction for adaptability / extensibility

* http://da.qcri.org/rheem/

RHEEM - big picture

RHEEM - data and query model
● Data quanta abstraction (for database tuples, graph

edges, full document content, etc)

● Procedural data-flow queries (Rheem plan)

○ Rheem Latin (based on Pig Latin grammar), Rheem Studio

○ Data-flow graph, vertices being platform agnostic operators

○ One or several data source

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Query processing in TIPs

HadoopDB

Query processing: split MR/DB joins, referential partitioning, post-join aggregation

Query optimization: heuristics

Queries expressed as SQL (front end, extends HIVE), translated into MR, work

pushed to single node DBMSs

● Query processing is simple: HiveQL query decomposed into QEP of relational

operators, which are translated into MR jobs

● Leaf nodes are transformed into SQL to query the RDBMS instances

● Joins: easy if corresponding partitions collocated on same physical node

HadoopDB (cont’d) - SMS planner (extending Hive)

SELECT YEAR(date) AS year,

SUM(price)

FROM sales GROUP BY year

SMS Planner extensions, before

execution:

● Retrieve data fields to determine

partitioning keys

● Traverse DAG bottom-up (rule

based SQL generator)

Polybase

● Query plans: search space with 2 parts

○ MR jobs

○ regular relational operators

● Cost-based query optimizer: decide when good to push SQL to HDFS

(statistics on external tables)

○ selects and projects on external tables (by MR jobs)

○ joins of 2 external tables (only when both tables are stored in HDFS)

○ indexes built on HDFS-resident data, stored inside PDW → use as pre-

filter, lazily updated

● Query processing: query splitting

Polybase example

SELECT count (*) from Customer

WHERE acctbal < 0

GROUP BY nationkey

Polybase example (cont’d)

Estocada

● Recall: fragment based store, automatically distributes / partition the data into

fragments → each data partition described as a materialized view

● View-based query processing: with conjunctive queries + constraints

● Query optimization: cost based

● Query → logical QEP on possibly multiple data stores → physical QEP

based on relational algebra

○ leafs being translated into queries accessing the stores natively

○ work divided between the native stores and Estocada’s own runtime engine

● Cross model / language storage advising (akin to automatic view selection)

MISO / Odyssey

● Optimization for entire workloads, using

opportunistic materialized views

○ Shared intermediate results: opportunistic

materialized views (useful if used repeatedly)

● Normalized cost-based optimization

○ cost in HV

○ cost in DW

○ cost of transfer between stores

● Annotated (by views) Query Plans

○ Stores in which sub-expressions are

computed depends on the multistore physical

design (views)

Myria

● Relational algebra compiler (RACO) is the query optimizer and federated

query executor

● MyriaX takes as input RACO query plans

● RACO uses rule-based optimization

○ default: each leaf assigned to where data resides

○ iterates bottom up adding data movement operators wherever needed

○ rewrite rules determine the platform that each operator should run on

Myria RACO optimizer

● Graph of operators (including cycles, for iterative processing)

○ including relational operators + iterative processing, flatmap, stateful apply

● Query plans are organized into fragments and are fully pipelined

● Efficient join query evaluation (for large tables)

● Data movement during federated execution: if a query spans engine

boundaries, intermediate results must move across systems

○ via HDFS, in a common format (CVS), or

○ new interconnection operators for each pair of systems, or...

○ PipeGen: enables automatically optimized data transfer between arbitrary

pairs of systems

RHEEM

● Input: query – logic of the app in imperative form

● System ultimately decides on which platform to execute each task

For each RHEEM operator list all the alternatives for the optimizer to choose from:

inflated RHEEM plan (each operator + all all its execution alternatives)

Three layer decoupled optimization

● Logical operators (application optimization layer)

● Physical operators (core optimization layer)

● Execution operators (platform optimization layer)

RHEEM execution plan

Cost-based optimizer outputs a RHEEM execution plan, also a data flow graph, but

● vertices are platform specific execution operators

● may include operators for data movement across platforms

Cost model:

● each execution operator has an estimated cost, based on resource usage and unit

cost, data cardinality → user hints, learned from logs, progressive optimization

● data movement: planning and assessing for cost model optimization

○ channel conversion graph (CCG): space of possible communication steps

RHEEM - inflated execution plans

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Advanced Aspects of TIPs

Tuning (MISO example)

● Physical design: materialized views

○ View storage budget

○ View migration budget

● Reorganization phase (workload history)

● Computationally hard problem

○ Heuristic approach: variant of the knapsack problem

○ Additional complexity: 2 physical design pbs, each with 2 dimensions

Multistore Design Problem. Given an observed query stream, a multistore

design M = <Vh , Vd>, and a set of design constraints Bh , Bd , Bt compute a

new multistore design M new = <Vh
new, Vd

new>, where Vh
new, Vd

new in Vh U Vd ,

that satisfies the constraints and minimizes future workload cost.

MISO tuner algorithm

Extensibility - RHEEM

RHEEM brings an additional level of abstraction

● Data quanta

● Platform agnostic data transformation operators (RHEEM plans)

When a new platform is added

● New execution operators

● Their mappings to RHEEM operators

● Data quantum specification

● Communication channels (at least one)

Extensibility - Myria

When a new platform is added:

● An AST describing the API / query language supported

● rewrite rules / mappings of logical algebra into AST

● rule ordering

● set of administrative functions (querying the catalog, issuing a query,

extracting results)

RHEEM cost model learner

RHEEM cost model learner (cont’d)

Parameters for a given operator and ressource:

● α : number of required CPU cycles for each input data quantum in operator

● β : number of required CPU cycles for each input data quantum in UDF

● γ : fixed overhead for the operator start-up / scheduling

Logs used to learn these parameters: the cost of individual execution operators is

modeled as a regression problem.

● difficulty: in logs, runtimes of stages (not individual operators)

● execution stage: {(o1;C1); (o2;C2); ... ; (on;Cn)}; t)

● fi(x,Ci) total cost function for executing operator o,

● finding xmin = argminx loss(t, Σn
i=1 fi(x, Ci)

● Genetic algorithm to find xmin

Data movement in RHEEM

Channel conversion graph (CCG)

Data movement in RHEEM

CCG: the space of possible communication steps

● vertices: data structure types (communication channels)

● edges: conversions from one structure to another (conversion operators)

Finding the most efficient communication path among execution operators: a new

graph problem of finding a minimum conversion tree (similar to the Group Steiner

Tree - GST problem).

● NP-hard problem, however, exp. time algorithm performs well in practice

Data movement in Myria - PipeGen

● PipeGen automatically enables optimized data transfer between arbitrary pairs of

database systems

● Not dealing with schema matching / focus on “mechanics” of data movement

● Relies on DBMS capacity to ingest / export data to / from file system (CSV,

JSON)

● Requires as input the DBMSs source code, unit tests exercising import / export

● Replaces that functionality with highly optimized version that sends data over a

network socket

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Comparison of multi-model databases

and tightly integrated polystores

Common features

● Support for multiple data models

● Global query processing

● Cloud support

Multi-model DBMSs TIPs

Engine single engine, backend multiple databases (native)

Maturity lower higher

Usability Read, write and update read-only

Transactions global transaction supported unsupported

Holistic query

optimizations

Open problem challenging

Community industry-driven academia-driven (recently)

Data migration difficult simple

Comparison

Outline

● Motivation and multiple model examples (30')
● Theoretical foundations (30')
● Multi-model data storage (25')
● Questions and discussion (5’)

Session break

● Multi-model data query languages (10')
● Multi-model query processing (10')
● Overview on tightly integrated polystores (20')
● Query processing in tightly integrated polystores (15')
● Advanced aspects of tightly integrated polystores (15')
● Comparison of multi-model databases and tightly integrated polystores (5')
● Open problems and challenges (10')
● Questions and discussion (5’)

Open problems and challenges

Multi-model databases

1. Schema design and optimization
○ NoSQL databases - usually schemaless

■ But we still need to model the target domain at least roughly

■ e.g. an application which stores data partially in JSON, XML and relational model => a

user-friendly modeling tool which enables to model both the flat relations and semi-

structured hierarchical data + relationships

○ Schema design influences query evaluations

■ Relational: minimum redundancy vs. NoSQL: materialized views

■ Relational: normalization vs. NoSQL: de-normalization

○ Schema inference

■ Approaches for single-models need to be extended

● to support references amongs models

● to benefit from information extracted from related data with distinct models

Multi-model databases

2. Query processing and optimization
○ Query languages are immature

■ Limited expressive power, limited coverage of models, …

○ The best query plan for queries over multi-model data

■ New dynamic statistics techniques for changing schema of the data

○ Indexing structures defined for single models + results are combined

■ e.g., relational: B-tree, XML: XB-tree, graph: gIndex, ...

■ How to index multiple data models with a single structure?

● To accelerate cross-model filtering and join

○ In-memory technologies challenge disk-based solutions

■ A just-in-time multi-model data structure is a challenge

Multi-model databases

3. Evolution management
○ Schema evolution + propagation of changes

■ Adaptation of data instances, queries, indexes, or even storage strategies

■ Difficult task in general

○ Smaller applications = skilled DBA

■ Error-prone, demanding

○ Intra-model - re-use of an existing solution

○ Inter-model - distinct models cover separate parts of reality interconnected using references,

foreign keys, …

■ Propagation across multiple models and their connections

4. Extensibility
○ Intra-model - extending one of the models with new constructs

○ Inter-model - new constructs expressing relations between the models

○ Extra-model - adding a whole new model

Tightly integrated polystores

Many challenges: query optimization, query execution, extensibility, interfaces,

cross-platform transactions, self-tuning, data placement / migration, benchmarking.

● High degree of uncertainty even in TIPs

● Transparency: do not require users to specify where to get / store data, where

to run queries / subqueries

○ Explain and allow user hints

● More than ever need for automation, adaptiveness, learning on the fly

Tightly integrated polystores
Many challenges: query optimization, query execution, extensibility, interfaces,

cross-platform transactions, self-tuning, data placement / migration, benchmarking.

Query optimization:

● Query-based vs. workload based optimization

● Workload driven data partitioning, indexing, controlled degree of parallelism

● Progressive optimization → control over underlying platforms

● View-based query rewriting at large scale

● Cost based reformulation under constraints at large scale

● Cost-based optimizations across-platforms: uniformization, common cost unit,

normalization → hard even in tightly coupled systems

● Computation costs vs data transfer costs

Tightly integrated polystores
Many challenges: query optimization, query execution, extensibility, interfaces,

cross-platform transactions, self-tuning, data placement / migration, benchmarking.

Query execution:

● Data exploration in cross-platform settings

● Efficiently support fault tolerance across platforms

● Different query semantics / data typing

Extensibility: add new platforms automatically / easily

● Data abstractions / query abstractions

Query interfaces / internal common models / foundations:

● Expressiveness vs. declarative

● Limitations of the relational “glue” (algebra, imperative vs. Datalog-based) ?

● Slides download: http://udbms.cs.helsinki.fi/?tutorials/CIKM2018

● UniBench: Towards Benchmarking Multi-Model DBMS
http://udbms.cs.helsinki.fi/?projects/ubench

● Helsinki Multi-Model Dataset Repository:

http://udbms.cs.helsinki.fi/?datasets

○ Collects and integrates publicly available datasets

More materials:

http://udbms.cs.helsinki.fi/?tutorials/CIKM2018
http://udbms.cs.helsinki.fi/?projects/ubench
http://udbms.cs.helsinki.fi/?datasets

Conclusion

● Big Data V-characteristics bring many challenges

● Variety requires concurrent storage and management of data with distinct formats

● Two sides of the same coin ?

○ Multi-model databases

○ Tightly-coupled polystores

● Still there is a long journey towards robust solutions

