
1

Main-Memory Foreign Key Joins on Advanced Processors:

Design and Re-evaluations for OLAP Workloads

Yansong Zhang1,2 Yu Zhang3 Xuan Zhou4 Jiaheng Lu5

1 MOE Key Laboratory of DEKE, Renmin University of China, Beijing, China
2 School of Information, Renmin University of China, Beijing, China
3 National Satellite Meteorological Center of China, Beijing, China

4 School of Data Science and Engineering, East China Normal University, Shanghai, China
5 Department of Computer Science, University of Helsinki, Finland

zhangys_ruc@hotmail.com, yuzhang@cma.gov.cn, zhou.xuan@outlook.com, jiahenglu@gmail.com

ABSTRACT
The hash join algorithm family is one of the leading techniques for

equi-join performance evaluation. OLAP systems borrow this line

of research to efficiently implement foreign key joins between

dimension tables and big fact tables. From data warehouse schema

and workload feature perspective, the hash join algorithm can be

further simplified with multidimensional mapping, and the foreign

key join algorithms can be evaluated from multiple perspectives

instead of single performance perspective. In this paper, we

introduce the surrogate key index oriented foreign key join as

schema-conscious and OLAP workload customized design foreign

key join to comprehensively evaluate how state-of-the-art join

algorithms perform in OLAP workloads. Our experiments and

analysis gave the following insights: (1) customized foreign key

join algorithm for OLAP workload can make join performance step

forward than general-purpose hash joins; (2) each join algorithm

shows strong and weak performance regions dominated by the

cache locality ratio of input_size / cache_size with a fine-grained

micro join benchmark; (3) the simple hardware-oblivious shared

hash table join outperforms complex hardware-conscious radix

partitioning hash join in most benchmark cases; (4) the customized

foreign key join algorithm with surrogate key index simplified the

algorithm complexity for hardware accelerators and make it easy to

be implemented for different hardware accelerators. Overall, we

argue that improving join performance is a systematic work

opposite to merely hardware-conscious algorithm optimizations,

and the OLAP domain knowledge enables surrogate key index to

be effective for foreign key joins in data warehousing workloads

for both CPU and hardware accelerators.

1. INTRODUCTION
Recent years have witnessed the debate between hardware-

conscious or hardware-oblivious hash join algorithms. Hardware-

conscious join algorithm is to optimize join algorithm with

comprehensive considerations on hardware characteristics to obtain

the maximal performance gains and its underlying assumption is

that the hardware must be carefully used to improve join

performance. The representative hardware-conscious join

algorithm is radix partitioning based hash join, in which cache and

TLB are carefully used to make memory access efficient. On the

other hand, hardware-oblivious join is designed with simple

algorithm without much considerations on hardware

characteristics, and the assumption is that hardware is good enough

to automatically hide the memory access latencies. The

representative hardware-oblivious join algorithm is the no-

partitioning hash join, in which only the simple shared hash table is

employed for parallel working threads without the concerns on

specified hardware characteristics.

The purpose of this paper is not to simply determine whether

hardware-conscious or hardware-oblivious join algorithms

perform better than the others, but to discover the intrinsic

performance pattern and to exploit the key insight to understand

why and when one join algorithm outperforms the others. To handle

the real-world workloads, comprehensive benchmark evaluations

are considered, instead of limited user defined workloads for

performance testing. We argue that the best join algorithm may not

be the fastest one, and the implementation complexity, the

intermediate memory consumption, the heterogeneous platform

adaptiveness and the compatibility with query engine are all

important and indispensable dimensions for holistic consideration.

In particular, we review the state-of-the-art main-memory join

algorithms and their limitations as follows.

First, the hardware-oblivious join algorithm [1] uses the shared

hash table for building and probing without much considerations

for how to eliminate cache conflicts. In contrast, the hardware-

conscious join algorithm [2] uses radix partitioning [3] method and

many hardware tuning configurations to divide big join table into

cache fit small partitions to improve cache locality. With the

partitioning space cost, hardware-conscious join algorithm always

outperforms the hardware-oblivious join algorithm [18]. These

approaches are beneficial for OLAP workloads for the foreign key

join between dimension tables and big fact tables dominating the

OLAP performance. But the conclusions need re-evaluations based

on OLAP schema, workloads, update mechanism features, and the

OLAP domain knowledge can also further improve foreign key join

performance with customized structure and algorithm.

Second, comprehensive join benchmarks, rather than the isolated

user-defined workloads should be considered for performance

evaluations. The recent work [18] extended the workloads for more

scenarios. Their work focused on join evaluations with a small

relation (smaller than probe relation) and a big relation (with the

same size of probe relation). This experimental design has two

major limitations. (1) hardware-oblivious join algorithm is

sensitive to the cache locality ratio of input_size/cache_size instead

of the size of join relation R or the ratio of |R|/|S|. To describe the

join performance, we should vary the join table size according to

L1, L2, L3 cache slice, and LLC size to measure the join

performance pattern. (2) database benchmarks are widely used for

2

the academic and industry performance evaluations with different

schemas, e.g., SSB for star schema, TPC-H for snow-flake schema

and TPC-DS for snow storm schema, and the joins in these

benchmarks represent the big fact table joining with different size

of dimension tables. The benchmark tests can evaluate how

different join algorithms perform in real-world workloads with

different size of tables.

Third, hardware accelerators come to be main-stream high

performance computing platforms, the join algorithm designs and

optimizations should consider the heterogeneous platform

adaptiveness to avoid tightly coupled optimizations with CPU

cache hierarchy. The cache-centric optimizations focus on cache

locality in private cache (L1, L2, L3 cache slice), while private

cache in GPU and Xeon Phi accelerators is commonly small, so that

it is to make join algorithm adaptive to be performed in parallel.

One feasible solution is to extend hardware-oblivious join

algorithm to platform-oblivious join algorithm i.e., simplifying

hash table to reduce branching, using one to one map to reduce

conflicts in building phase and using shared probing for massive

parallel working threads.

In this paper, we combine schema-conscious and OLAP workload

customized design with join algorithm through heterogeneous

platform perspective, benchmark evaluation perspective and

systematic optimization perspective. The contributions of this

paper are summarized as follows:

 Schema-conscious and OLAP workload customized

design for join. We introduce surrogate key index

mechanism to relational data warehouse. The column-

wise index simplifies foreign key join as array index

referencing (AIR) by creating surrogate key index for

PK-FK constraint tables. Surrogate key index enables

relational database to perform a multidimensional style

operation like [12], and the surrogate key index

mechanism makes array join in [18] to be an OLAP

workload customized design for relational data

warehouses.

 Benchmark based evaluations. We start with a cache-

conscious join benchmark with fine-granularity tests,

where the probe table remains fixed-length and the join

table varies its size to different proportions of L1, L2, L3

cache size. Our fine-granularity experimental results give

a performance curve chart for each join algorithm to

discover the performance strength and weakness regions

and the dependency between join table size and cache

size. We also employ SSB, TPC-H, TPC-DS

benchmarks to exploit how these join algorithms perform

for real-world workloads, and our analysis on the

comprehensive experimental results shed the lights on

query optimizer design in practice.

 Platform evaluations. The emerging trend is to

accelerate the costly relational join operation with new

hardware based on more cores and simultaneous

massive-threading mechanism such as GPU[4][5],

APU[10], Phi[6], and FPGA[8]. We implemented the

join algorithm for Xeon Phi and NVIDIA K80 GPU

platforms, and designed the experiments to evaluate the

join performance for different processor architectures.

Our experimental results discovered how caching and

simultaneous massive-threading mechanisms dominate

the join performance in different workloads and

platforms. We also found that memory efficiency is

another key consideration for joins to maximize co-

processor’s on-board device memory utilization rate.

The rest of this paper is organized as follows: Section 2 introduces

the background of representative in-memory join algorithms. The

surrogate key index mechanism is described in Section 3. Section

4 presents the experimental evaluations. Section 5 analyzes the

related work, and Section 6 concludes the paper.

2. PRELIMINARIES
The essential difference between hardware-oblivious and

hardware-conscious join algorithms is whether hardware is good

enough to optimize memory access latencies. The main roadmaps

to reduce memory access latency can be classified into two

categories: (1) caching mechanism and (2) simultaneous multi-

threading approach. The effectiveness of caching mechanism relies

on the LLC size, x86 processors are commonly designed with small

LLC size (2.5MB*#core), while the latest KNL processor can

configure at most 16 GB on-board high bandwidth memory as LLC,

the 6th-generation Skylake also supports large memory-side cache

[20], the trend of increasing LLC size enables hardware-oblivious

join algorithm to be used for more workloads. The simultaneous

multi-threading mechanism overlaps memory access latency with

massive threads, the Xeon Phi’s hyper threading and GPU’s SIMT

technique support hundreds or thousands of simultaneous threads

to overlap memory access latency. From hardware feature

perspective, hardware-conscious join algorithm is majorly

designed for multiple cache hierarchy of x86 processors, hardware-

oblivious join algorithm is adaptive to hardware accelerator’s

architecture with massive hardware simultaneous threads. In this

paper, we shall focus on hardware-oblivious join algorithm on

hardware accelerator platforms.

Another important perspective is combining schema-conscious and

OLAP workload customized design into join algorithm

optimizations. For data warehouse schemas, as shown in Figure 1,

the multidimensional dataset can be modeled as data cube, the fact

data can be located by multiple dimensions. Relational model

organizes the data as dimension tables and fact table with PK-FK

referencing constraints between them, missing the features that

dimension tables can be mapped to dimensions and fact data can

directly map to corresponding dimension items. Thus, the foreign

key join in OLAP workloads can be customized by using dimension

table as dimension and transforming hash join as FK mapping to

dimension, simplifying the hash probing as address probing.

Dimension Table

Dimension Table

Dimension Table

Data Cube Fact Table

Figure 1. Multi-dimensional model and relational model.

3

In this paper, we majorly evaluated three representative join

algorithms: hardware-oblivious no partitioning hash join, schema-

conscious and OLAP workload customized AIR, and hardware-

conscious radix partitioning hash join. Three join algorithms are

designed with two important perspectives: hardware feature and

database systematic design.

2.1 No Partitioning Join
Let R denote the dimension table with primary key, and S the fact

table with foreign key. The join between R and S is to locate the

corresponding tuple in R with the same key of tuple in S. NPO

algorithm from [1] is a no-partitioning join algorithm, which builds

a shared hash table from R. For multiple-thread parallel processing,

NPO algorithm divides the input relations R and S into equi-sized

portions that assigned to working threads. As shown in Figure 2,

during build phase, the hash table is shared among all the working

threads. To enable the concurrent insertions on hash table, each

bucket is protected via a latch for a thread to obtain before inserting

a tuple. [2] has optimized the hash table by combining the lock and

hash bucket together to reduce cache misses. For the big input

relation, the build phase is very costly.

NPO algorithm does not consider hardware parameters such as

cache size or TLB entries, and the performance is majorly affected

by table size. When shared hash table from R is small enough to be

held in cache, NPO is efficient; but when shared hash table size

exceeds cache size, NPO suffers from cache miss latencies. Modern

processors commonly use auto-prefetching, out-of-order execution

and simultaneous multi-threading mechanisms to overlap or hide

cache miss latencies. For CPU platform, the hash probing overhead

is large for limited cores and threads. The hardware accelerators

like Phi and GPU strengthen the simultaneous multi-threading

feature with hundreds or thousands of threads, the hash probing

performance of NPO can be accelerated by them.

2.2 AIR algorithm
AIR algorithm is an array-store oriented foreign key join

algorithm. As shown in Figure 3, relation R is stored as array, the

array index is used as primary key of R, and the foreign key of S is

the array index of referenced tuple of R, the foreign key join

between R and S is simplified as array addressing on R. This feature

is also used in CAT[17] and array join[18] with PRIMARY KEY

AUTOINCREMENT constraint and dense primary key. [12]

further optimized the shared hash table with a shared vector, each

tuple of R is mapping to a unique vector cell according to primary

key, the hash probing is also simplified as directly accessing vector

cell by mapping foreign key value to vector index.

Compared with NPO algorithm, the vector is simpler than hash

table which contains next pointer for overflow bucket and cannot

be directly implemented on GPU platform. If all the tuples in table

R is selected, hash table size is larger than vector for storing key,

value and the additional meta data such as head pointer, next

pointer; in build phase, the tuple is mapped to unique cell in vector

without conflict control opposite to latch mechanism in building

shared hash table of NPO; the complexity of hash probing can be

expected as O(1), but hash probing involves many cycles on

computing hash functions, loading buckets, matching key and

probing in overflow bucket etc., which need to be further optimized

with SIMD on Phi platform[6][7], while AIR algorithm directly

uses key for address probing without storing key/hashing key and

matching key, each key is strictly mapped to unique cell in vector

without further computing cycle consumption.

AIR uses the fixed length vector for address probing, each tuple is

mapped to the unique cell in vector without conflicts, while NPO

uses the filtered tuples to build shared hash table with latch

mechanism. For query with high selectivity, the shared vector is

smaller than shared hash table, for query with low selectivity, the

shared vector may be larger than shared hash table. In OLAP

benchmarks, queries usually have high selectivity on single

dimension table in roll-up and drill-down operations, the shared

vector is commonly smaller than shared hash table; with

compression on dimension tables, the shared vector can be even

smaller. Shared vector is adaptive to data warehouse workloads, on

one hand, the dimension tables in data warehouses are commonly

small size and increasing slowly, the shared vector for dimension

table is usually small size; on another hand, nowadays processors

have large LLC size for caching shared vector, e.g., Xeon E7 8890

v4’s 60 MB L3 cache can hold a shared vector(int_8) with

60,000,000 rows, the fixed length shared vector is efficient for

processors and data warehouse workloads. Considering the large

LLC size, small compact vector size and small dimension size, AIR

algorithm is customized for OLAP workloads.

NPO algorithm is hardware-oblivious for multicore CPU platform,

but how to design efficient hash join is a complex issue [11]. For

hardware accelerator platforms such as GPU, Phi or FPGA, the

complex hash table, hashing schema, hash function, SIMD

r1

r2

r3

r4

...R h2

h2

s1

s2

s3

s4

S

.

.

.

.

.

.

 build probe

h1,2

h1,2

h1,1sc
a

n

h1,2

h1,2

h1,1

sc
a

n

Pass 1 Pass 2

 partition

Pass 2

 partition

Pass 1

h2

h2

...

.

.

.

b1

b2

R
h

h

S

.

.

.

.

.

.

 build probe

h

h

.

.

.

R

S

 build probe

.

.

.

shared

hash table
shared

vector

one hash table

per partition

Figure 2. No partitioning join Figure 3. AIR algorithm Figure 4. Radix join

4

optimizations etc. need to be re-designed with specified platform

features[4][7][8][10]. NPO algorithm is hardware-oblivious but

not platform-oblivious join approach. AIR algorithm is even

simpler than NPO algorithm in data structure, build phase and

probe phase, the vector structure is compatible for different

hardware platforms, the address probing operation involves less

computing optimization requirements. AIR is a customized join

algorithm for data warehousing workloads, the customized design

with simple structure and algorithm also enable AIR to be platform-

oblivious for heterogonous platforms.

The OLAP benchmarks, e.g., SSB, TPC-H and TPC-DS use

surrogate key (consecutive values without semantic information) as

primary key, Table 1 illustrates how to map surrogate key to vector

index. [12] proposed array store to guarantee directly mapping

primary key to vector index, it is not a OLTP workload design but

a OLAP workload design for the read-only feature of data

warehouses. The new trend of analytical in-memory database is to

combine OLTP and OLAP processing inside single engine, the

representative systems are Hyper [13] and SAP HANA [15]. The

copy-on-write, MVCC, insert-only mechanisms for OLTP conflict

with strictly position constraint of array store, we need a relaxed

mechanism to map out-of-order keys to vector addresses, and how

to maintain array index with update workload.

2.3 Parallel Radix Join
We use PRO algorithm from [2] as parallel radix partitioning join

algorithm. PRO majorly optimizes the build and probe phases with

hardware parameters to tune the performance. In partition phase,

the major latency is caused by TLB miss. TLB caches the virtual

memory mapping entries, the number of TLB entries are defined

by hardware, if the number of created partitions exceeds the number

of TLB entries the partition phase may cause TLB misses. The

radix partitioning optimizes TLB misses by partitioning both input

relations R and S in multiple passes, as shown in Figure 4, the first

pass looks at a different set of bits from hash function h1,1, the

second pass looks at the other set of bits from hash function h1,2, in

2nd pass, all partitions produced by 1st pass guarantee the

partitioning fan-out never exceeds the hardware limit given by the

number of TLB entries. For typical data sizes, two or three passes

are sufficient to create cache-sized partitions without TLB misses.

Hash tables are built over each cache-sized partitions of table R. In

probe phase, all si partitions are scanned and probe the respective

ri partitions for join matches.

Two important hardware parameters of radix join are the maximum

fanout per radix pass and partition size which are defined by the

number of TLB entries and cache size. [2] also showed that radix

join can also works well with misconfiguration of either

parameters.

PRO algorithm optimizes parallel radix join in partition phase to

avoid thread contention in creating a shared set of partitions. Each

thread scans the R and S relations twice, the first scan computes a

set of histograms over the input data for exact output size for each

thread and partition, by computing a prefix-sum over the histogram,

a contiguous memory space is allocated for the output and each

thread pre-computes the exclusive location for its output. With

these optimizations, all threads can perform parallel hash join on

each partition without needs to synchronize.

PRO is designed for cache-centric architecture, the hypothesis is

that caching is superior to simultaneous multi-threading

mechanism, so that the big relations are divided into cache-fit small

partitions to guarantee in-cache hashing. That is right for x86

processors for the limited threads and large LLC, but it is not

suitable for accelerators with massive threads and small cache size

(e.g., NVIDIA Tesla K80 has 4992 cuda cores and 1.5MB L2

cache). PRO algorithm doubled the memory space in partition

phase, the performance gain is preferred for multicore CPU

platform with large memory. But for the emerging accelerator

platforms like GPU and Phi, the on-board memory size is limited

and expensive, PRO algorithm sacrifices the memory efficiency.

3. SURROGATE KEY INDEX
Surrogate key is widely used in data warehouses, surrogate key uses

the simple consecutive integer sequence as primary key, and can

also be produced with PRIMARY KEY AUTOINCREMENT

constraint in databases.

For an in-memory column store, a surrogate key can be mapped to

the offset address of dimension tuple. From the perspective of

multidimensional model, the surrogate key can be mapped to

dimension coordinate axis to identify the fact data in data cube.

From the perspective of the relational model, the surrogate foreign

key can be used as join index to map foreign key of a fact tuple to

the offset address of dimensional tuple. The surrogate key

represents the key-address mapping for column store.

3.1 Creating Surrogate Key Index
In data warehouse schemas, dimension tables commonly use

surrogate key as primary key e.g., in benchmarks of SSB, TPC-H

and TPC-DS. When tables with PK-FK referencing constraints do

not use surrogate key, we can create surrogate key index on them

for accelerating foreign key join performance. The surrogate key

index consists of two parts, one is surrogate key index as new

primary key column with incremental integer values, the other is

surrogate foreign key index as new foreign key column with

updated value from surrogate key index column.

Table 1. Surrogate key in benchmarks

 Table Surrogate Key
Key-address map

function

S
S

B

customer 1,2,3,… f(key)=key-1

supplier 1,2,3,… f(key)=key-1

part 1,2,3,… f(key)=key-1

date
19920101,

19920102, …

f(key)=

date(key)-date(key0)

T
P

C
-H

customer 1,2,3,… f(key)=key-1

supplier 1,2,3,… f(key)=key-1

part 1,2,3,… f(key)=key-1

nation 0,1,2,… f(key)=key

region 0,1,2,… f(key)=key

T
P

C
-D

S

call_center 1,2,3,… f(key)=key-1

catalog_page 1,2,3,… f(key)=key-1

customer 1,2,3,… f(key)=key-1

customer_address 1,2,3,… f(key)=key-1

customer_demographics 1,2,3,… f(key)=key-1

date_dim 2415022, 2415023, … f(key)= key-key0

household_demographics 1,2,3,… f(key)=key-1

income_band 1,2,3,… f(key)=key-1

item 1,2,3,… f(key)=key-1

promotion 1,2,3,… f(key)=key-1

reason 1,2,3,… f(key)=key-1

ship_mode 1,2,3,… f(key)=key-1

store 1,2,3,… f(key)=key-1

time_dim 0,1,2,… f(key)=key

warehouse 1,2,3,… f(key)=key-1

web_page 1,2,3,… f(key)=key-1

web_site 1,2,3,… f(key)=key-1

5

In snow-flake or snow-storm schema, there are multiple fact tables

with PK–FK references without surrogate key mechanism. For

example, in TPC-H, the primary key of lineitem is (orderkey,

linenumber), the primary key of orders table is (orderkey), the

primary key of partsupp table is (partkey, suppkey). lineitem

references orders table by orderkey column with the same order

because both lineitem and orders tables are cluster indexed with

orderkey column. And lineitem references partsupp table with

composite key (partkey, suppkey). The orderkey in orders table is

not surrogate key with inconsecutive values, and partsupp table has

no surrogate key at all. As fact tables store historical data with read-

only access, we can implement surrogate key mechanism on fact

tables for surrogate key referencing. In Figure 5, as primary key of

orders table is first partial key of lineitem table, a merge join can

be performed on orderkey of lineitem table and oderkey column of

orders table, the orderkey in orders table is updated with column

offset addresses (array index) to transform orderkey column into

surrogate key, at the same time orderkey column in lineitem table

is updated with the same value accordingly. For partsupp table, we

need to add an additional surrogate key index as column SK_PS in

partsupp table and an additional surrogate foreign key index as

column FK_PS in lineitem table, an extra join between lineitem

table and partsupp table is invoked at idle time to update surrogate

foreign key column FK_PS so as to enable surrogate key address

probing. The surrogate key update can be incremental, the join

between partsupp and lineitem can be divided into two parts,

conventional join for new inserted tuples and surrogate key

referencing for tuples with updated surrogate key.

In TPC-DS, for example, the composite primary key of store_sales

table is (ss_item_sk, ss_ticket_number), the composite key and

foreign key of store_return table is (sr_item_sk, sr_ticket_number),

we can also add additional surrogate key column in both

store_sales table and store_return table to enable surrogate key

referencing with similar update mechanism.

3.2 Updates on Surrogate Key
When surrogate key is used to store dimension coordinates, we

need to keep the surrogate key consecutive. This is an additional

constraint for update operations.

For insertion operation, new tuples are usually appended to the

table. Each new surrogate key is allocated by invoking max()+1.

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

1

2

3

4

l_CK l_SK l_DK

3 1 19920101

4 3 19920101

2 4 19920102

4 3 19920103

1 3 19920103

3 2 19920103

1 3 19920104

Lineorder
l_price

453.4

66.9

235.7

550.2

214.3

78.6

51.4

[0]

[1]

[2]

[3]

[4]

[5]

[6]

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#04 Thailand ASIA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

[3]

C_custkey

1

2

3

l_CK l_SK l_DK

3 1 19920101

2 3 19920101

2 4 19920102

2 3 19920103

1 3 19920103

3 2 19920103

1 3 19920104

Lineorder
l_price

453.4

66.9

235.7

550.2

214.3

78.6

51.4

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Figure 7. Consolidation mechanism of dimension table.

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

1

2

3

4

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#06 German EUROPE

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#05 China ASIA[3]

C_custkey

1

2

3

4

Cust#05 China ASIA[4]

Cust#06 German EUROPE[5]

5

6

4

2

[0]

[1]

[2]

[3]

[4]

[5]

l_CK

5

4

2

6

1

3

5

4

6

3

6

l_CK

4

4

2

2

1

3

4

4

2

3

2

Figure 8. Batched consolidation of dimension table.

For deletion operation, most in-memory databases, e.g., MonetDB

and Vectorwise, commonly adopt a lazy deletion mechanism, in

which a deletion vector is used to mark the positions of deleted

tuples instead of physically removing the tuples. Deletion leaves

holes in a relational table, which can be re-assigned to newly

inserted tuples. This keep surrogate key always consistent with

LINEITEM

[0]

[1]

[2]

[3]

ORDERKEY

0 1

0 1

1 3

1 3

PARTKEY

2

1

1

2

SUPPKEY

24

13

57

35

LINENUMBER

1

2

1

2

ORDERS

[0]

[1]

[2]

[3]

TOTALPRICE

357.89

427.64

1125.6

58.86

PARTSUPP

[0]

[1]

[2]

[3]

PARTKEY

1

1

2

2

SUPPKEY

13

57

24

35

SK_PS

0

1

2

3
[4]

[5]

[6]

2 7

3 9

3 9

1

2

1

13

24

57

1

1

2

 [...]

 [...] [...]

ORDERKEY

1 0

3 1

7 2

9 3

FK_PS

2

0

1

3

0

2

1

Figure 5. Creating surrogate key and updating foreign key as surrogate foreign key.

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

1

2

3

4

Cust#05 France EUROPE2Insert

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#05 France EUROPE

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

C_custkey

1

2

3

4

D_Vec

2
D_Vec

Figure 6. Delete vector and surrogate key reuse mechanism.

6

dimension coordinates. If the dimension is small or deletion

produces less holes, we can simply leave the holes in surrogate key

index, otherwise, we have to re-organize the surrogate key.

Figure 6 illustrates the rationale of the surrogate key deletion and

reuse mechanism. Sometimes, when deletion leave too many holes

in the table, we can perform consolidation, which compresses the

table space and reassigns the surrogate keys. As an example in

Figure 7, when tuple with surrogate key C_custkey=2 is deleted, the

fact tuples which reference this tuple are also deleted. We can move

the last tuple (C_custkey=4) to current tuple slot. Accordingly, the

surrogate foreign key column l_CK needs an update to assign

l_CK=2 where original value is 4. Such a consolidation process can

be done in a batch, as shown in Figure 8. When dimension tuples

with C_custkey=2, C_custkey=4 are deleted, we move the last two

tuples in tail to fill the deleted tuples, and the C_custkey is refreshed

from 5, 6 to 4, 2. We generate a deletion vector to record the tuple

movements. A NULL cell in the vector represents no change on the

corresponding tuple, and a non-empty cell represents that the

original tuple’s surrogate key is changed to the value in the cell.

Based on the deletion vector, the foreign key column can be

updated accordingly. Consolidation is not compulsory, as it is

usually at the cost of a full foreign key join. A system can

selectively perform consolidation at non-peak hours.

For update operation, as a surrogate key does not contain functional

information, it is usually kept intact. In-place update is usually

performed on the other attributes.

3.3 Logical Surrogate Key Index
Most analytical databases support insert-only mode to simplify

update mechanism. Such an update operation is always divided into

two operations: insertion of the new tuple with the update and

deletion of the original tuple. The constraint of surrogate key index

with surrogate key value as offset address may incur significant

overheads to insert-only update. Thus, we propose a relaxed

surrogate key index, named logical surrogate key index.

In a logical surrogate key index, the surrogate key no longer

represents offset address but a logical sequence. The only constraint

is to use consecutive sequence as surrogate key. The logical

surrogate key deletion vector reuse mechanism is also available.

The projection operation produces a surrogate vector as shown in

Figure 9, the logical surrogate key value is now used as offset ad-

dress in surrogate vector, the projected attribute value can be

directly mapped to surrogate vector cell.

The surrogate vector is a switcher between logical surrogate key

enabled table and physical surrogate key enabled table. Moreover,

if we employ a main-memory database engine as dimension table

management engine without in-place update mechanism, we can

still achieve the surrogate key mapping mechanism by adding an

API to project attributes to a physical surrogate vector according to

logical surrogate key value as vector index.

4. Surrogate Key Vector Referencing
Vector oriented processing is widely adopted by analytical main

memory databases. It can be classified into three types: SIMD

vector processing, vectorized processing, and vector referencing.

Modern processors are equipped with wide register, for example,

Intel Haswell supports 256-bit SIMD instructions to speedup

packed data processing. GPGPU and Xeon Phi coprocessors

support 512-bit SIMD instructions to further speedup data

processing efficiency with a single instruction. SIMD is a hot

research topic in query processing. The investigated operators

include sorting, hash key calculating and hash probing. SIMD

provides a register level vector processing support with dense

packed data layout. As shown in Figure 10, SIMD instructions can

calculate multiple hash map values in parallel.

Vectorized processing is the fundamental feature of state-of-the-art

main-memory databases. Its major principle is to operate on the

granularity according to the size of L1 cache. In other words, each

vector is a query processing unit that should fit in the L1 cache,

minimizing the materialization cost and boosting the performance

of query processing significantly.

h(x)

h(x)

h(x)

h(x)

S
IM

D
 V

e
c
to

r

V
e
ct

o
ri

z
e
d
 P

ro
c
e
ss

in
g

 V
e
ct

o
r

R
ef

e
re

n
c
in

g

Figure 10. SIMD processing vs. vectorized processing vs.

vector referencing.

Our surrogate key index based AIR algorithm can be regarded as

vector referencing approach. Surrogate key index is normally

implemented as a vector or a bitmap. The foreign key join is

Figure 9. Logical surrogate key index.

7

performed as referencing operation on the vector, which translates

foreign key values into the offset addresses of vector. Vector

referencing and the SIMD based vectorized processing techniques

can be used together, to achieve higher performance.

3.1 Vector referencing
Hash table is the key optimization technique for main-memory

database query processing. A hash probing operation involves

many CPU instructions, including those for hash probing, hash key

matching, linear search, overflow bucket search, etc. Many CPU

cycles are consumed in hash operation.

With a surrogate key index, each fact tuple has the address

information of referenced dimension tuples from surrogate foreign

key attributes, and can directly access corresponding dimensional

tuple. The overhead of building hash table and hash probing is

reduced. As illustrated by the example in Figure 11, l_CK and l_SK

are surrogate foreign key, and l_DK can be mapped as surrogate

foreign key; the dimension columns are used as surrogate vectors

to be directly referenced by fact tuples. The foreign key of fact tuple

can be considered as a native join index[22].

l_CK l_DK l_pricel_SK

3 1 19920101

4 3 19920101

2 4 19920102

4 3 19920103

1 3 19920103

3 2 19920103

1 3 19920104

Lineorder

453.4

66.9

235.7

550.2

214.3

78.6

51.4

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

C_custkey

1

2

3

4

D_year D_month D_day

1992 January 1

1992 January 2

1992 January 3

Date

[0]

[1]

[2]

1992 January 4[3]

D_datekey

19920101

19920102

19920103

19920104

S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

1

2

3

4

Figure 11. Surrogate key referencing.

For OLAP queries with multiple or complex predicate expressions

on dimension tables, we can first process the predicates on the

dimension tables and filter out dimension tuples that should not

participate in the joins. This turns each dimension table into a

bitmap, which can then be joined with the fact table using the

surrogate key index. Similar bloom filter technique is adopted by

databases such as Oracle Smart Scan, Vectorwise, etc.

d_year l_DK l_CK l_revenue

0 1 0 946

1 2 1 176

0 0 0 626

1 0 1 829

1 0 0 590

0 1 1 413

1 2 1 158

Lineorder
PK

1997 May

1997 May

1999 OCT

[0]

[1]

[2]

Date
DimFilter

1

1

0

d_month l_SK

d_year=1997

AND

d_month= May

JIBitmap

1

0

1

1

1

1

0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

Figure 12. Surrogate bitmap referencing.

Figure 12 illustrates the example of surrogate bitmap referencing.

Predicates on small dimension table are performed to generate a

bitmap (DimFilter in Figure 12) to identify which tuple satisfies the

predicate expressions. Supported by surrogate key mechanism, the

foreign key column can directly refer to the surrogate bitmap to

accomplish the join. A bitmap for the fact table can be materialized

to record join filtering result and used as bitmap join index

(JIBitmap in Figure 12) to filter other foreign key columns for the

following surrogate bitmap referencing operations on other

dimension tables. As the surrogate bitmap is always very small, the

filtering is more efficient and accurate than bloom filter.

OLAP query can be modeled as SPJGA (select, project, join, group,

aggregate) operation. The projection attributes are attributes in

GROUP BY clause. The general-purpose surrogate vector

referencing is illustrated in Figure 13. The predicate

c_region=’AMERICA’ is executed, the filtered GROUP BY

attribute c_nation is projected as surrogate vector. OLAP query

commonly uses low cardinality attributes as hierarchy attributes,

the grouping attributes can be stored as integer type under light-

weight dictionary encoding technique. Furthermore, we can

dynamically compress the projected vector to assign shorter code

for surrogate vector like dotted box in Figure 13. We have applied

this dynamically dictionary compression technique in [12].

C_name C_nation

Cust#01 Egypt

Cust#02 Canada

Cust#03 Brazil

Customer

Canada

Brazil

DimFilter

SELECT count(*), C_nation

FROM Customer, Lineorder

WHERE l_CK=C_cust

AND C_region= AMERICA

GROUP BY C_nation;

[0]

[1]

[2]

Cust#04 Thailand [3]

l_CK

2

3

1

3

0

2

0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

C_cust

0

1

2

3

C_region

AFRICA

AMERICA

AMERICA

ASIA

Canada

Brazil 0

1

Dictionary Table DimFilter

[0]

[1]

Figure 13. Surrogate vector referencing.

For typical OLAP queries, the number of groups in a single

dimension table is usually small, so that the result is small enough

for drill-down or roll-up operations. Therefore, in our experiments,

we use int_8, int_16, int_32 as the vector width to measure the

performance of surrogate vector referencing.

3.2 Schema-aware vector referencing

mechanism
SIMD based and vectorized query processing use the size of

register or L1 cache size to define the length of vectors. In contrast,

the vector length in AIR algorithm depends on the size of the

dataset. In turn, the length of vector affects the cache efficiency of

vector referencing.

Figure 14 gives a statistic chart about how the size of surrogate

bitmap affects the performance on typical benchmarks of SSB,

TPC-H and TPC-DS (SF=100, 300, 1000, 3000, 10000). In Figure

14 (a), the line represents the 22-core CPU’s LLC size (Xeon E5-

2600 v4, 55MB LLC). SSB is a denormalized schema of TPC-H,

and the dimension table size is modified to match real-world

businesses. The surrogate bitmap vectors of dimension tables are

always very small, even for dataset of SF=10000, the biggest

surrogate bitmap vector is smaller than the latest CPU’s LLC size.

TPC-H has two big dimension tables customer and part, the

surrogate bitmap size is smaller than 55 MB with datasets of

SF=100, 300 and 1000, for bigger datasets of SF=3000 and 10000,

the surrogate bitmap size is larger than 55 MB.

8

TPC-DS’s schema is more complex than TPC-H and SSB, and

contains more dimension tables. However, its dimension tables are

typical slowly increasing dimensions, and the corresponding

surrogate bitmap size is much smaller. In Figure 14 (b), the left Y

axis represents the size of bitmap vector size(MB), the right Y axis

represents the LLC size of different types of CPUs. The biggest

surrogate bitmap size is 7.75 MB, even smaller than low-end 6-core

CPU’s LLC size.

As most surrogate bitmaps are cache fit, we can use the fixed length

surrogate vector for different OLAP queries to simplify join

algorithm design with high performance.

3.3 AIR implementations on accelerators
Like NPO algorithm, AIR uses the shared vector for foreign key

referencing. In building phase, relation R is parallel scanned by

logical partition with working thread, the filtered values (bitmap or

compact value) are mapped to cells in surrogate vector by surrogate

key value. In probing phase, relation S is also logically partitioned

by thread number for parallel vector referencing operations.

Xeon Phi has similar cache architecture as multicore CPU, the code

can be compiled with icc for Phi version. The more threads (4

thread for one core) and less cache hierarchy (has no L3 cache)

make the performance of AIR on Phi different from AIR on CPU.

In this paper, we only use shared memory of GPU for join result

counter, the surrogate vector is accessed from global memory. The

parallelism is configured with BLOCK_NUM and

THREAD_NUMBER parameters for maximal performance.

The implementations of AIR on different accelerator platforms are

similar to each other without much hardware specialized

optimizations, the simple vector structure and vector addressing

operation makes AIR easy to be implemented on different

accelerator platforms.

As a summary, AIR is designed with systematic optimizations. From

schema perspective, AIR uses the multidimensional model to

simplify equi-join as dimension mapping. From workload

perspective, the append-only mode update, small and slow

increasing dimension guarantee the surrogate vector to be small

and efficient. From index perspective, surrogate key index is low

cost in space and maintenance for OLAP workloads. From

performance perspective, the vector referencing mechanism of

surrogate key index reduces the CPU cycle consumptions for key

oriented hash probing. Finally, AIR is simple enough to reduce

implementation overhead for heterogenous accelerator platforms.

5. EXPERIMENTAL EVALUATIONS
This paper re-focused on join performance evaluation with three

new perspectives, introducing a schema-conscious and OLAP

workload customized design join algorithm AIR, evaluating join

performance on industry benchmarks and illustrating how

hardware features dominate the performance of platform-oblivious

join algorithm in two representative accelerator platforms.

The experiments are designed with 3 parts. Part 1 is to evaluate the

dependency between cache locality ratio of input_size/cache_size

and performance for three join algorithms. [1] and [2] all focused

on data warehouse workloads, they only choose two workloads as

small table join and big table join to demonstrate whether

hardware-oblivious algorithm or hardware-conscious algorithm

performs better. But we still need further evaluations to discover

why one join algorithm outperforms others and exploit how to use

the conclusions for query optimizer design.

Opposite to the related approaches, we design a cache-conscious

join benchmark to evaluate join performance. In the CCJB (Cache-

Conscious Join Benchmark), a group of join workloads are

designed to measure the join performance pattern, the input (shared

hash table or shared vector) size is configured based on the

proportion of cache size to exploit how join performance is

influenced by the cache efficiency i.e., cache locality ratio of

input_size/cache_size. For fine-grained join performance

evaluation, we configure the input size with 8 proportions, 25%,

50%,75%, 100%, 125%, 150%, 175% and 200% of different level

of cache size (L1, L2, L3 cache slice and LLC).

Part 2 is to evaluate the candidate join algorithms with benchmark

evaluations. Schemas in benchmarks integrated the database

systematic optimizations e.g., normalization, denormalization,

indexing, etc. The workload B in [1] with two 128M rows table join

case may be optimized with denormalization like SSB to eliminate

the costly big table join. Moreover, the dimension tables in

benchmarks are commonly small and slowly increasing, this

schema feature may dominate which join algorithm is adaptive to

data warehousing workloads. To the best of our knowledge such a

study has not been conducted. The experimental conclusions can

give real-world advice for query optimizer design.

(a) TPC-H and SSB

(b) TPC-DS

Figure 14. Dimension bitmap sizes for dimension tables in

different dataset sizes (SF=100,300,1000,3000 and 10000).

0

50

100

150

200

250

C
U

S
T

O
M

E
R

P
A

R
T

S
U

P
P

L
IE

R

N
A

T
IO

N

R
E

G
IO

N

S
S

B
_
C

S
S

B
_
P

S
S

B
_
S

S
S

B
_
D

TPC-H
SSB

b
it

m
a
p

 v
ec

to
r

si
ze

 (
M

B
)

100GB 300GB 1TB 3TB 10TB

22-core CPU

18-core CPU

15-core CPU

12-core CPU

10-core CPU

8-core CPU

6-core CPU

0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

8

9

10

L
L

C
 s

iz
e

(M
B

)

b
it

m
a
p

 v
ec

to
r

si
ze

 (
M

B
)

100GB 300GB 1TB 3TB 10TB LLC size

9

Part 3 demonstrates how we implement the join algorithms for

different platforms with the representative multicore CPU, GPU

and Phi platforms. The performance evaluations also discover how

caching or simultaneous multi-threading mechanisms affect the

join performance. The fine-grained join performance evaluation not

only tell which join algorithm is better but also discover the join

performance patterns on heterogeneous processor platforms with

strengthen and weakness regions. These systematic evaluations can

give valuable advice on how to choose proper join algorithm

according to hardware characteristics and table size.

5.1 Dataset
We have used multiple datasets for comprehensive performance

evaluations. For join performance evaluation, the size of the S table

was set to 600 000 000 rows, whose scale is same to that of TPC-H

and SSB with Scale Factor=100. SF=100 is the smallest dataset for

OLAP benchmark in early time, so the join performance can be

referenced for in-memory database benchmark evaluations. For

CCJB testing, we set the size of the R table to proportions of cache

size, such as 25%, 50%, 75%, …, 200% of L1, L2, L3 cache size.

By varying R table size, we can measure how join performance is

dominated by cache locality. For the benchmark evaluations, we set

the sizes of R and S to the sizes of the dimension table and the fact

table in SSB, TPC-H, TPC-DS respectively. By dataset size

designs, we can evaluate join performance with industry

application scenarios, so that the conclusions can be more valuable

for database systematic designs and optimizations.

5.2 Update overhead
For OLAP workloads, updates on dimensional attributes (non-

primary key attributes) have no effects on surrogate key index;

insertions on dimension table and fact table have little effects on

surrogate key index; deletions on fact table have no effects on

surrogate key index, deletions on dimension table are rarely

occurred for the foreign key reference constraints. Update on

surrogate key index may be invoked for a long time when deletions

on dimension are more than certain threshold.

For SSB and TPC-H, we simulate the updates on dimension tables

with update ratio step 10% from 0 to 100%. By comparing the

average update time and original AIR time, we find that small

dimension is fast in updating and is sensitive to update ratios while

big dimension spends more time on updating and less sensitive to

update ratios. In SSB update tests, the dimension tables date,

supplier, part and customer are average 1.765, 1.768, 1.532, and

1.519 times of original AIR processing time. In TPC-H update tests,

the tables customer, supplier, part, partsupp and orders are average

1.441, 1.550, 1.402, 1.136 and 1.122 times of original AIR time.

The update overhead of surrogate key index is lower than

traditional hash joins.

As mentioned in section 3.3, we use TPC-DS to simulate logical

surrogate key index performance. For 13 foreign key referencing

tables (dimension tables and referenced store_return fact table),

logical surrogate key index mechanism spends average 1.15% more

time than physical surrogate key index oriented AIR. For detailed

analysis, the average logical surrogate key index oriented building

phase spends 149.87% more time than physical surrogate key index

oriented building phase, this is because build phase of AIR occupies

only average 0.82% execution time of whole AIR processing.

The OLAP workload features guarantee that updates for surrogate

key index are not frequently invoked operations, the vector

referencing oriented update operation and logical surrogate key

index provide high update performance.

5.3 Platforms
The experiments were performed on a DELL Power Edge R730

server with two Intel Xeon E5-2650 v3 @ 2.30GHz CPUs and 512

GB DDR3 main memory. Each CPU has 10 cores and 20 physical

threads. The OS is CentOS, and the Linux kernel version is 2.6.32-

431.el6.x86_64. The gcc compiler version is 4.4.7. The server is

equipped with an Intel Xeon Phi 5110P coprocessor, which has 60

cores and 240 threads. The Phi processor has 8 GB on-board

memory with bandwidth of 320 GB/s. Moreover, the server is also

equipped with a NVIDIA Tesla K80 GPU, with 4992 cuda cores

and 24 GB GDDR5 on-board memory. The bandwidth of GPU

memory is around 480 GB/s.

We used the open source code from [2] for hash join performance

testing. It contains a hardware-conscious join algorithm (PRO) and

a hardware-oblivious join algorithm (NPO). AIR algorithm in [12]

is easily to be implemented inside the hash join source code, we

just replace the shared hash table of NPO with shared vector, and

the hash probing is also replaced by address probing on vector by

key of S table. We disable knuth_shuffle function for generating

table R to guarantee the key to be surrogate key index. The

performance is evaluated with cycles-per-tuple as [1] and [2]. We

configure NUM_PASSES 2 and NUM_RADIX_BITS 14

parameters for PRO which experimentally yields the best cache

residency for our CPU hardware configuration, and we run the NPO

Figure 15. Join algorithms performance of AIR, NPO, PRO with different vector sizes and widths

0

2

4

6

8

10

12

cy
cl

e/
tu

p
le

surrogate vector size for referenced table

AIR AIR_int_16 AIR_int_32 NPO PRO

10

and PRO algorithm on CPU platform to verify that the performance

is similar to the results of [1] to guarantee the optimal

configurations. Note that PRO is obviously low performance than

NPO for joins with small hash tables, we perform the complete test

to discover exactly when PRO begins to outperform NPO.

For Phi performance evaluation, we compile the source code with

icc for Phi version. The Phi version of NPO and PRO algorithms

uses the open source code from [6]. As CPU and Phi have different

frequency, we use ns-per-tuple to evaluate performance as [6]. For

GPU tests, we use AIR algorithm to evaluate join performance

because AIR can be considered as hardware-oblivious and schema-

conscious join algorithm, AIR is also the tailored NPO join

algorithm with PRIMARY KEY AUTOINCREMENT constraint,

compression on payload, and configuring BUCKET_SIZE=1.

Compared with NPO, the simple structure and address probing also

enable AIR to be platform-oblivious design for different

characteristic processors. The AIR algorithm is programmed with

cuda language, table R, S and vector are implemented with int type

arrays, we use pinned memory to allocate GPU memory for high

performance. In experiments, we configure BLOCK_NUM 16 and

THREAD_NUM 512 parameters for optimized cuda kernel

functions, the join results are merged in shared memory of GPU.

5.4 Cache-Conscious Join Benchmark
For the experiments with cache-conscious join benchmark, we

design a group of join scripts with different R sizes, in which vector

sizes in AIR are set in proportion with the L1(32KB), L2(256KB),

and L3 cache slice(2.5MB) size, the maximal 2000% L3 slice

denotes vector size is 2 times of LLC size. NPO and PRO use hash

table to store tuples in table R. The hash table size is larger than

surrogate vector used by AIR.

Figure 15 gives performance curves of the AIR, NPO and PRO join

algorithms. NPO’s performance curve can be clearly divided into 3

stages: when the hash table size is smaller than the cache size (L1,

L2, L3 cache slice), the number of CPU cycles consumed by each

tuple is pretty low; when the hash table size is larger than a L3 cache

slice (2.5MB), the number of CPU cycles-per-tuple begins to rise

as remote cache access is required; when the hash table is larger

than the entire L3 cache, each hash probing may involve one or

more cache misses, resulting in a large number of CPU cycles-per-

tuple. The hardware-oblivious NPO algorithm is sensitive to hash

table size, and it can automatically achieve good performance with

small size of R table. PRO’s performance curve in Figure 15 is

almost constant. The size of the R relation does not affect the cache

efficiency severely, due to the employment of data partitioning can

guarantee in-cache hash building and probing. Therefore, the

hardware-conscious PRO algorithm is not sensitive to table size.

The AIR algorithm can be considered as a new hardware-oblivious

algorithm with schema-conscious design. The performance curve

of AIR algorithm in Figure 15 appears quite like NPO but much

flatter. AIR is also sensitive to the surrogate vector size when the R

table is small. When the R table is large, the number of cycles-per-

tuple rises more slowly than NPO. Nevertheless, its overall

performance is always better than that of NPO and PRO.

The size of the surrogate vector is an important factor to dominate

the performance of AIR. It is usually in proportion with the width

of the surrogate key. Figure 15 also shows the performance curves

of AIR algorithm where we set the type of the surrogate key to

int_8, int_16 and int_32 respectively. For wider surrogate vector,

the rising up stage comes earlier, then cycles-per-tuple value still

remains slowly increasing. When surrogate vector size exceeds L3

cache slice, AIR with different vector width has similar

performance.

The width of surrogate vector defines the cardinality of projected

attributes. For example, the cardinality of grouping attributes in one

dimension table is commonly lower than 255 in SSB and TPC-H,

for example, the maximal grouping size of SSB with 4 dimensions

is 800. With compression technique, we can reduce surrogate key

size to int_8. [12] proposed a systematic in-memory OLAP

approach with AIR, and had proved that the int_8 vector can satisfy

the whole SSB queries. In the following experiments, we set

surrogate vector type to int_8 as default, and the AIR algorithm can

represent the ultimate performance of hardware-oblivious join

algorithm with schema-conscious optimizations to simplify hash

table and hash probing overhead including compression and

surrogate key index.

AIR algorithm employs one-to-one map between dimension table

and surrogate key vector, queries with different selectivity use the

fixed length vector with different distributions of NULL cells. Hash

join builds hash table for tuples filtered by predicates, highly

selective query on big table may produce small hash table which

can achieve high performance with NPO algorithm.

For query optimizer, the performance curves in Figure 15 can be

used as an optimization rule to choose the best join algorithm for

given query. Let V denote vector size, let s denote selectivity, for a

query with selectivity s, we can get y-axis values by x-axis value V

and V*s on AIR and NPO performance curves. By comparing the

y-axis values, we can choose the best join algorithm. A rough

observation from Figure 15 is that if vector size V exceeds 1000%

L3 cache slice (25*220 rows) and V*s is lower than 25% L3 cache

slice (0.625*220 rows), i.e. selectivity is lower than 2.5%, we should

choose NPO algorithm opposite to AIR as better choice.

The performance curves of cache-conscious join benchmark

discovered how join performance is influenced by cache locality

ratio. The join performance can also be modeled as a smooth curve

dominated by several key performance points, and the performance

curve can be used to predicate join performance instead of

traditional evaluation oriented cost model.

As the conclusion of this subsection, within 50*220-row tables, AIR

algorithm outperforms PRO algorithm. NPO algorithm is preferred

for tables larger than 25*220 rows and with very low selectivity

(lower than 2.5%), AIR algorithm is preferred for queries either

with high selectivity (larger than 2.5%) or with small table sizes

(smaller than 50*220 rows).

5.5 Benchmark evaluation
We used workload A and workload B from [2] to evaluate the

performance of join. In workload A, relation R has 16*220 tuples

and relation S has 256*220 tuples to simulate a big table joining with

a small table. In workload B, both relation R and S have 128*106

tuples to simulate two big table join. Considering the use of

surrogate key on dimension tables and the common application of

dictionary compression, we set the key and payload attributes of the

R and S table to int_32, resulting in a 4-byte/4-byte tuple structure.

Workload A conducts join between a large table and a small table.

In the experiments, we kept increasing sizes of R and S with the

same proportion, until reaching the maximal surrogate key value of

11

R. As shown in Figure 16, NPO and PRO show the stable

performance, while AIR slowly decreases performance as the size

of R increases for surrogate vector size becomes larger than LLC

size. When the dataset is large enough, the performance of AIR,

NPO and PRO all become stable, as caching is no longer effective

to AIR and NPO at this stage. According to the metric of cycles-

per-tuple, NPO is about 2.3 and 3.6 times as costly as PRO and

AIR.

Workload B conducts join between two large tables, where R and S

both contain 128 million rows. We kept increasing the sizes of R

and S until the surrogate key of R reaches the maximal value. The

experimental results in Figure 17 show that NPO and AIR perform

constantly as the sizes of R and S increase, while PRO's

performance deteriorates slowly for the increasing overhead of

partitioning. For Workload B, NPO is about 1.3 and 3.9 times as

costly as PRO and AIR. The performance gap between NPO and

PRO shrinks in this workload, while the performance gap between

NPO and AIR grows wider.

To get a deeper insight, we further measure the execution time of

the different stages of the join algorithms. Figure 18 shows the

breakdown of the execution time of AIR, NPO and PRO. We can

see that PRO achieves the shortest probing time at the cost of data

partitioning. AIR's probing time is higher than that of PRO but

much lower than that of NPO, as it can achieve high code efficiency

by leveraging the surrogate key based index, the overhead of vector

generation for AIR is also lower than the overhead of building

shared hash table in NPO. NPO's hash probing is slow, due to both

cache misses and the cost of hash key processing overhead.

Furthermore, benchmarks like SSB, TPC-H and TPC-DS are used

to measure the performance of data warehouse workloads. We

Figure 16. Join performance for AIR, NPO and PRO

with workload A

Figure 17. Join performance for AIR, NPO and PRO with

workload B

Figure 18. Breakdown of join execution time

0.80
1.88

2.51 2.41 2.67 2.76 2.90

9.56 10.00 10.42 10.24 10.29 10.58 10.54

4.68 4.65 4.70 4.74 4.91 4.62 4.59

0

5

10

15

256 512 768 1024 1280 1536 1792

cy
cl

e/
tu

p
le

Rows of relation S（M）

WorkLoad A AIR NPO PRO

3.58 3.82 3.88 3.90 3.93 3.95 3.96 3.97 3.99 4.00 4.00 4.00 4.01 4.00 4.00 4.01

15.48 15.57 15.63 15.62 15.38 15.67 15.65 15.65 15.38 15.43 15.62 15.70 15.68 15.69 15.71 15.74

10.97
9.97 10.13 9.67 10.23 9.91 10.14 10.28 10.44 10.63 10.80 11.13 11.38 11.62 11.83 12.11

0

5

10

15

20

128 256 384 512 640 768 896 102411521280140815361664179219202048

cy
cl

e/
tu

p
le

Rows of relation S（M）

WorkLoad B AIR NPO PRO

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

2.5E+09

3.0E+09

AIR NPO PRO AIR NPO PRO

Workload A Workload B

cy
cl

es

PROBE BUILD PART

Table 2. Join benchmark for SSB

SSB SF=100 Cycles/tuple

Tables Dimension Fact Table AIR NPO PRO

date 2555 600000000 0.614 0.704 4.2459

supplier 200000 600000000 0.609 1.0634 4.3465

part 1528771 600000000 0.7283 3.2204 4.3372

customer 3000000 600000000 0.7367 6.4965 4.3479

SF=200 AIR NPO PRO

date 2555 1200000000 0.6096 0.7027 4.313

supplier 400000 1200000000 0.7005 1.0438 4.3342

part 1728771 1200000000 0.7274 3.2871 4.3297

customer 6000000 1200000000 0.7387 8.3506 4.3763

SF=300 AIR NPO PRO

date 2555 1800000000 0.6107 0.6967 4.1791

supplier 600000 1800000000 0.7109 0.9238 4.2186

part 1845764 1800000000 0.7281 3.1701 4.2174

customer 9000000 1800000000 0.7448 9.1763 4.2557

Table 3. Join benchmark for TPC-H
TPC-H SF=100 Cycles/tuple

Tables Dimension Fact Table AIR NPO PRO

customer 15000000 150000000 0.8353 9.8735 4.9176

supplier 1000000 600000000 0.7218 0.9672 4.3393

part 20000000 600000000 0.7992 9.7736 4.5618

partsupp 80000000 600000000 2.5841 10.6461 5.3588

orders 150000000 600000000 3.0952 11.2908 5.641

SF=200 AIR NPO PRO

customer 30000000 300000000 2.5102 10.3537 4.8683

supplier 2000000 1200000000 0.7367 3.3188 4.3356

part 40000000 1200000000 2.4603 9.9922 4.5782

partsupp 160000000 1200000000 3.1608 10.7107 5.4246

orders 300000000 1200000000 3.3644 11.3414 5.9213

 SF=300 AIR NPO PRO

customer 45000000 450000000 2.6388 10.5868 4.8345

supplier 3000000 1800000000 0.732 6.4765 4.3491

part 60000000 1800000000 2.509 10.2517 4.4295

PARTSUPP 240000000 1800000000 3.1557 10.9847 5.3094

orders 450000000 1800000000 3.3745 11.6566 5.8831

12

measure the performance of PK – FK joins between dimension

table and fact table in these benchmarks. The experiments target at

finding out which is the most adaptive join algorithm for the

representative data warehouse workloads.

Our tests assigned row numbers to the relations R and S according

to schemas of SSB, TPC-H and TPC-DS. We used the scale factors

of 100, 200 and 300 in the tests.

Table 2 shows the results of AIR, NPO and PRO with the cycles-

per-tuple metric on SSB. PRO still shows a constant performance

at about 4.3 cycles-per-tuple for both small dimension table and

large dimension table. NPO's performance depends on the size of

the dimension table: it can achieve better performance than PRO

with small dimension table, the minimal cycles-per-tuple is 0.704;

only for the large customer table, it is slower than PRO. AIR

outperforms both NPO and PRO in all the tests, and its maximal

cycles-per-tuple is about 0.75. As the scale factor increases, PRO

maintains constant performance while NPO's performance keeps

decreasing. For the largest customer dimension table with the scale

factor of 300, the surrogate vector of AIR is only 9 MB, which is

smaller than the LLC size (25 MB), so that address probing on

surrogate vector commonly occurs in cache to provide high

performance.

Table 3 shows the join performance for TPC-H. The 3NF oriented

TPC-H contains some big table joins such as partsupp ⋈ lineitem,

orders⋈lineitem. Most of dimension tables in TPC-H are larger

than their corresponding dimension tables in SSB. Therefore,

NPO's performance is lower than PRO's in most of the tests. AIR is

still superior to NPO and PRO in all the tests. For the test of the

largest join, e.g., orders⋈lineitem (SF=300), NPO is 3.46 and 1.74

times as costly as AIR and PRO. In this test, although PRO shows

a similar performance as AIR, it consumes 2 times as much

memory as AIR, as it needs large intermediate space for data

partitioning.

TPC-DS is more complex than SSB and TPC-H, as it contains more

dimension tables with higher complexity. On the other hand, the

scale of its schema follows most real-world cases, that dimension

tables grow much slower than fact table, in contrast to the fixed

proportion between the dimension and fact tables in TPC-H and

SSB. For the joins in TPC-DS as shown in Table 4, NPO

outperforms PRO in most cases, due to the skewed schema with

small dimension tables. The vector size of the biggest dimension

table customer is 5MB, so that AIR can perform efficient in-cache

address probing to achieve high performance.

The industry benchmarks show schema perspective optimizations,

e.g., denormalizing 3NF oriented TPC-H to star schema SSB to

eliminate the costly big table join; designing multiple but small

dimensions for fine-grained analytics, which make data warehouses

reduce the dependency of big table join performance; using

surrogate key to simplify foreign key join between fact table and

dimension tables with address probing instead of key matching

oriented hash probing. Join optimization is not only algorithm

optimizations but also database systematic design optimizations to

make complex operation simple and efficient.

5.6 Evaluation for skewed data
Skewed datasets commonly have negative influence on workload

balance in multi-core parallel processing. For shared memory

approaches, such as NPO using shared hash table and AIR using

shared surrogate vector, skewed data distribution can improve the

data locality in cache. Although skewed data result in skewed

accessing on partitioned chunks, it imposes limited influence on

PRO, which applies hardware-conscious in cache hash probing.

Figure 19 gives the performance curves for AIR, NPO and PRO on

the SSB dataset (SF=100), with a Zif factor varying from 0 to 1.75.

AIR and PRO are not influenced by Zif factor, while NPO is

remarkably influenced. As shown in Table 2, the maximal

surrogate vector size of SSB (SF=100) is 3 MB (for the customer

table). It can always fit in caches, so the skewed data distribution

has little influence for in cache vector addressing. PRO

intentionally partitions a big table into cache-fit small chunks, so

that the building and hash probing are all processed in cache.

Therefore, skewed data accesses also have little influence on PRO.

In contrast, NPO is sensitive to skewness. When the shared hash

table of NPO is small enough to be held in cache, e.g., the date table

in Figure 19, the Zif factor also has little influence for NPO. When

the hash table cannot be accommodated by the cache, skewness

becomes beneficial to cache efficiency, e.g., the supplier, part and

customer tables in Figure 19, the skewed distribution enables the

“hot” dataset to be frequently accessed to improve the cache

locality.

Table 4. Join benchmark for TPC-DS
TPC-DS SF=100 Cycles/tuple

Tables Dimension
Fact

Table
AIR NPO PRO

reason 55 28795080 0.6683 0.692 4.605

store 402 287997024 0.6241 0.6394 3.9484

promotion 1000 287997024 0.6203 0.6075 4.305

household_

dmographics
7200 287997024 0.6142 0.6384 4.4055

date_dim 73049 287997024 0.6176 0.9132 4.3674

time_dim 86400 287997024 0.6175 1.1005 4.3518

item 204000 287997024 0.6117 1.0413 4.3672

customer_

address
1000000 287997024 0.7237 0.9866 4.3885

customer_

dmographics
1920800 287997024 0.7351 3.2517 4.3886

customer 2000000 287997024 0.7348 3.3546 4.4287

store_returns 28795080 287997024 1.4666 10.3612 4.8286

SF=300 AIR NPO PRO

reason 60 86393244 0.6334 0.6292 4.1749

store 804 864001869 0.6106 0.6352 3.8877

promotion 1300 864001869 0.6121 0.6871 3.9013

household_

dmographics
7200 864001869 0.6103 0.6322 4.3374

date_dim 73049 864001869 0.6117 0.9083 4.3125

time_dim 86400 864001869 0.6125 1.0972 4.3295

item 264000 864001869 0.6553 0.8901 4.3133

customer_

address
2500000 864001869 0.7366 6.5171 4.3529

customer_

dmographics
1920800 864001869 0.7289 3.4382 4.7154

customer 5000000 864001869 0.7439 8.248 4.3391

store_returns 86393244 864001869 2.7531 10.613 4.798

13

On TPC-H, we get the similar results. The curves of AIR and NPO

drop remarkably as Zif factor increases for big tables, while PRO's

curve drops slowly as shown in Figure 20. For NPO and PRO

algorithms, when Zif factor is larger than 1, hardware-oblivious

NPO outperforms hardware-conscious PRO. AIR is always

superior to NPO and PRO, it also benefits from skewed dataset for

self-adaptive higher cache locality.

Although hardware-conscious PRO tuning algorithm to hardware

characteristics to improve performance, it also excessively

optimizes join algorithm for skewed data and small table scenarios,

missing the self-adaptive feature like hardware-oblivious

algorithms such as NPO and AIR.

5.7 Evaluation for parallel scalability
The speedup ratio metric measures the parallel scalability of join

algorithm. The concerned hardware factors mainly include number

Figure 21. Parallel speedup ratio for AIR, NPO and PRO with SSB dataset (SF=100)

Figure 22. Parallel speedup ratio for AIR, NPO and PRO with TPC-H dataset (SF=100)

0

5

10

15

20

25

30

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

sp
ee

d
u
p
 r

at
io

threads

SSB date⋈lineorder

AIR

NPO

PRO

0

5

10

15

20

25

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

SSB supplier⋈lineorder

AIR

NPO

PRO

0

5

10

15

20

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

SSB part⋈lineorder

AIR

NPO

PRO

0

5

10

15

20

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

SSB customer⋈lineorder

AIR

NPO

PRO

0

5

10

15

20

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

sp
ee

d
u
p
 r

at
io

threads

TPC-H customer⋈orders

AIR
NPO
PRO

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

TPC-H supplier⋈lineitem

AIR

NPO

PRO

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

TPC-H part⋈lineitem

AIR
NPO
PRO

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

TPC-H partsupp⋈lineitem

AIR

NPO

PRO

1 2 4 6 8

1
0

2
0

4
0

8
0

1
2
0

2
4
0

threads

TPC-H orders⋈lineitem

AIR
NPO
PRO

Figure 19. Join performance for skewed SSB data (SF=100)

Figure 20. Join performance for skewed TPC-H data (SF=100)

0

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

cy
cl

e/
tu

p
le

Zif factor

SSB date⋈lineorder

AIR

NPO

PRO

0

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

Zif factor

SSB supplier⋈lineorder

AIR

NPO

PRO

0

1

2

3

4

5

0 0.25 0.5 0.75 1 1.25 1.5 1.75

Zif factor

SSB part⋈lineorder

AIR

NPO

PRO

0

1

2

3

4

5

6

7

0 0.25 0.5 0.75 1 1.25 1.5 1.75

Zif factor

SSB customer⋈lineorder

AIR

NPO

PRO

0

5

10

15

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5

cy
cl

e/
tu

p
le

Zif factor

TPC-H customer⋈orders

AIR

NPO

PRO

0

1

2

3

4

5

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5

Zif factor

TPC-H supplier⋈lineitem

AIR

NPO

PRO

0

5

10

15

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5

Zif factor

TPC-H part⋈lineitem

AIR

NPO

PRO

0

2

4

6

8

10

12

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5

Zif factor

TPC-H Partsupp⋈lineitem

AIR

NPO

PRO

0

2

4

6

8

10

12

14

0

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5

Zif factor

TPC-H orders⋈lineitem

AIR

NPO

PRO

14

of memory channels, cores and threads. The concerned software

factors mainly include the size of the private dataset for each thread

that can cause LLC contention and the CPU cycle consumption.

Our testing platform was equipped with 4-channel DDR3 memory

and two 10-core CPUs (each core supports 2 threads).

Figure 21 shows the speedup ratio charts for SSB dataset (SF=100).

The x-axis represents number of threads, due to the 10-core and 20-

thread architecture, we increase threads by step=2 within 10

threads, then use 20 threads and times of 20 threads to guarantee

workload to be assigned to all the available threads equally.

We can see that in the joins with small date and supplier tables, the

minimal speedup ratio is about 4 (memory channel number) for

AIR, and the maximal speedup ratio is around 25 (slightly more

than core number) for NPO. In joins with large part and customer

tables, the maximal speedup ratio of three join algorithms is around

15 (slightly lower than core number) for PRO.

The size of the surrogate vector for the date table is 2.6 KB and that

for the supplier table is 200 KB. Therefore, the surrogate vector

address probing of AIR mostly occurs within the private L1 or L2

cache. As a result, the AIR join can be as efficient as parallel table

scan. Thus, its maximal speedup ratio approaches 4, the number of

memory channels. When the dimension table is small, NPO can

achieve a high speedup ratio as its hash table can fit in the cache.

For big dimension tables, PRO can achieve higher speedup ratio

than NPO and AIR, due to it partitions the tables and joins each

partition pair in parallel. Basically, the partitioning and probing

phases of PRO are adaptive to be parallelized, and its contention

for shared cache is lower than that of NPO and AIR.

Figure 22 shows the speedup ratio charts of TPC-H. For joins with

small supplier table, NPO outperforms PRO and AIR. However,

for big table joins, NPO achieves the lowest speedup ratio of around

5, while PRO and AIR usually achieve the maximal speedup ratio

of around 15. PRO's speedup ratio is higher than AIR on big table.

As a summary, PRO uses a divide-and-conquer strategy to divide

big table into small chunks and processes small chunks in parallel.

Its parallel scalability is constant and high, regardless of the table

size. NPO and AIR perform accesses on shared hash table or

shared surrogate vector. If shared hash table or surrogate vector

is smaller than LLC, parallel threads with shared LLC accessing

achieves high scalability; if shared hash table or surrogate vector

size exceeds LLC size, parallel threads with shared data accesses

produce cache misses to contend for LLC resources. Therefore,

their scalability is not as good as that of PRO.

5.8 Evaluation for heterogeneous platforms
The AIR algorithm uses arrays as the main computing instruments.

Therefore, it is easily to be implemented on the emerging

accelerator coprocessors, such as Xeon Phi, GPU and FPGA. In this

section, we measure the performance of the join algorithms on two

leading coprocessor platforms.

We used the open source from [6] as the Phi version NPO and PRO

algorithms, and compiled the open source from [1] with embed AIR

algorithm to Phi version for the tests.

Figure 23 shows the results of measuring AIR, NPO and PRO's

performance on CPU and Phi in Workload A and B of [6]. We used

two 10-core E5-2650 v3 CPUs with 40 threads and one Phi 5110P

coprocessor with 60 cores and 240 threads. NPO's performance on

Phi is slightly higher than its performance on CPU. PRO's

performance on Phi is slightly lower than its performance on CPU.

We can say that one Xeon Phi is comparable to two Xeon CPUs for

both NPO and PRO. In contrast, AIR's performance on CPU seems

remarkably superior to its performance on Phi with Workload A.

Figure 24 shows the results of join performance with SSB and TPC-

H benchmarks. Frist of all, PRO fails all the tests with SF=100

dataset for the double memory consumption which exceeds the size

of device memory of Phi, NPO fails for large table join in TPC-H,

and AIR passed all the tests for its efficient vector store which is

Figure 23. Join performance for AIR, NPO and PRO

on CPU and Phi

0

1

2

3

4

5

6

7

8

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

w
o
rk

lo
ad

 A

w
o
rk

lo
ad

 B

Phi CPU Phi CPU Phi CPU

AIR NPO PRO

n
se

c/
tu

p
le

Join algorithms on Phi 5110P and two 10-core CPUs

Figure 24. Join performance with SSB and TPC-H

Figure 25. Join performance with TPC-DS

0

1

2

3

4

5
d
at

e

su
p
p
li

er

p
ar

t

cu
st

o
m

e
r

d
at

e

su
p
p
li

er

p
ar

t

cu
st

o
m

e
r

cu
st

o
m

e
r

su
p
p
li

er

p
ar

t

P
A

R
T

S
U

P
P

o
rd

er
s

cu
st

o
m

e
r

su
p
p
li

er

p
ar

t

P
A

R
T

S
U

P
P

o
rd

er
s

CPU Phi CPU Phi

SSB TPC-H

n
s/

tu
p

le

AIR NPO PRO

0

1

2

3

4

5

CPU Phi

TPC-DS

n
s/

tu
p

le AIR NPO PRO

15

enabled by surrogate key index and compression techniques of

database. From the perspective of memory efficiency, AIR

outperforms NPO and PRO. Considering the performance on CPU

and Phi, we see some interesting results. AIR and NPO perform

better on CPU than on Phi with SSB, the main reason lies in that

the small dimension size and larger LLC size on CPU produce

higher cache locality than on Phi. With TPC-H, except the small

supplier table, the join performance with large table performs better

on Phi than on CPU, the main reason lies in that simultaneous multi-

threading mechanism of Phi works when hash table size exceeds

the cache size. For AIR algorithm, AIR on Phi outperforms on CPU

with date and supplier tables in SSB because the vector size is

lower than L2 cache and more threads of Phi produce higher

performance; AIR on CPU outperforms on Phi for other tables with

vector size larger than L2 of Phi, the larger L3 cache on CPU

produces higher cache locality.

Figure 25 shows the join performance with TPC-DS on CPU and

Phi. PRO still illustrates the constant performance both on CPU and

Phi; NPO's performance differs with different size of dimension

tables. For small dimension tables, NPO on CPU outperforms on

Phi, for large dimension tables, NPO on Phi outperforms on CPU.

AIR on CPU outperforms on Phi mainly for its cache fit vector size.

For a deeper insight, we repeated the cache-conscious join

benchmark in section 4.3 on Phi. Phi's L2 cache is of 512 KB, while

CPU's L2 cache size is 256 KB. CPU's L3 cache is 25 MB, while

Phi has no L3 cache but a 30 MB shared L2 cache ring. The axis

“Vector size of R” represents surrogate vector (int_8) size, in

proportion with the sizes of the cache at different levels. For

example, "25% L1 cache" represents that the surrogate vector size

is 0.25*32 KB=8KB, the row number is 8*210.

Figure 26 shows the performance curves of AIR, NPO and PRO on

CPU and Phi platforms. For small tables with surrogate vector size

lower than L2 cache (256 KB), AIR on Phi is faster than AIR on

CPU for massive parallel threads. When surrogate vector size is

larger than 150% of L2 (384 KB, 75% of Phi’s 512 KB L2 cache),

CPU’s performance begins to outperform Phi's performance due to

Figure 26. Join algorithms on CPU and Phi

Figure 27. Join algorithms on CPU and Phi with small dataset

Figure 28. Join algorithms on CPU, Xeon Phi and K80 GPU

0

1

2

3

4

5

6

7

8
n
s/

tu
p
le

surrogate vector size for referenced table

Algorithm Performance on Multicore CPU and Phi

AIR_CPU AIR_Phi NPO_CPU NPO_Phi PRO_CPU

0

2

4

6

8

cy
cl

e/
tu

p
le

surrogate vector size for referenced table

Algorithm Performance on Phi

AIR NPO PRO

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

ex
ec

u
ti

o
n
 (

u
s)

Vector size of R

NPO_Phi AIR_Phi AIR_K80 AIR_CPU

16

the large L3 cache slice size (2.5 MB). For small R table sizes, AIR

and NPO both have good performance, while they are quite

different on Phi. For a small R table size whose size is lower than

the L3 cache slice (100% L3 cache slice on Figure 26), NPO on

CPU outperforms NPO on Phi, the major reason may be the

performance of Phi's P54C core is lower than CPU core for either

low frequency or missing advanced instructions like out-of-order

execution. For a large R table, NPO on Phi outperforms NPO on

CPU, due to its high parallelism. NPO on Phi starts to outperform

it on CPU when row number exceeds 3.75M (150%*L3 cache

slice), and NPO's performance is lower than PRO on CPU for most

cases.

Due to the limited on-board memory of Phi (8GB), PRO with

doubled memory consumption cannot be conducted. As shown in

Figure 26, AIR can support larger table size than NPO, as its

surrogate vector consumes less space than the hash table of NPO.

PRO completely fails the test, as data partitioning consumes twice

as much space as the data itself. Therefore, PRO is not a good

choice when memory space is scarce.

Moreover, we reduced the dataset to SF=20 to enable all the join

algorithms to be performed on Phi. Figure 27 shows the join

performance with cache-conscious join benchmark, we increase the

vector size up to shared L2 cache (60* 512KB). The performance

curves show that NPO only outperforms PRO within small input

cases about lower than 64K rows, PRO outperforms NPO for large

input at the cost of double device memory consumption. AIR is

about half of the execution cost of PRO's, and is influenced by

vector size compared with L1 cache size, L2 private cache size,

shared L2 cache size, and slowly increases execution cost for large

input cases. The join performance patterns on Phi are like patterns

on CPU, caching is still the important mechanism to improve join

performance. NPO improves performance on Phi than on CPU by

more threads, but still runs slower than PRO.

Compared with x86 architecture CPU and Phi, GPU has different

architecture. The cache is very small than CPU (128KB shared

memory as L1 cache for 192 cuda cores within one SMX, 1.5 MB

L2 cache for entire GPU), the small cache is not adaptive to parallel

radix partitioning based hash join algorithm of PRO. The

hardware-oblivious NPO can improve hash probing performance

on GPU with the SIMT mechanism for thousands of parallel

threads, but the hash table structure, latch mechanism for building

hash table, branching processing for hash tuple matching must be

carefully tuned for GPU hardware features. AIR simplifies the hash

table structure as surrogate vector without pointer, the hash probing

is also simplified as address probing to single vector address, so

that AIR is adaptive to be implemented with cuda to run on GPU.

We implemented the AIR algorithm on NVIDIA K80 GPU, AIR

uses the fixed length surrogate vector for addressing probing, this

design is adaptive to GPU cudamalloc function to pre-allocate

device memory on GPU. We only measured the kernel execution

time of AIR on the GPU. As K80 has 24 GB device memory, testing

with various row numbers can all be executed on K80. Figure 28

gives the join execution time (us) for AIR on CPU, AIR on Phi,

NPO on Phi and AIR on K80. We can see the different performance

curves of AIR on three processors.

AIR on CPU performs well as vector size of R is lower than LLC

size (1000%* L3 slice). AIR on Phi outperforms the other two as

vector size of R is lower than 150% L2 cache size (75% of Phi L2

cache, note that L2 cache size of Phi is 512KB instead of 256KB of

CPU) for the massive parallel threads, when vector size exceeds L2

cache (200%*L2, 512KB), the performance begins to decrease

significantly. While AIR on K80 is relatively flat because K80

doesn’t rely on caching mechanism instead of SIMT mechanism to

overlap memory access latency.

This chart discovers performance patterns of caching and

simultaneous multi-threading mechanisms. Caching still plays the

important role for improving join performance, the LLC size

dominates the input relation size with high performance. Nowadays

CPUs have limited LLC size for the limited core number, the new

KNL processor’s 16GB HBM cache can remarkably improve join

performance with big input relation. The first-generation Phi

processor is less efficient for shared L2 cache with dual ring bus

architecture, join on Phi has the highest performance but limited

with small input size (lower than L2 cache not the shared L2 cache).

The join performance can be improved on second-generation KNL

Phi processor with tile architecture. For x86 processors such as

CPU and Phi, the join performance strengthen region is cache fit

input size, the weakness region is large input exceeding LLC. GPU

has the input size oblivious performance pattern, join performance

doesn’t influenced much by different input size. For large input

size, the performance is still high. The GPU join performance

strengthen region is large input, the weakness region is cache fit

small input size. We can draw the conclusion that x86 processors

is adaptive to small table join with caching mechanism to improve

data locality and GPU is adaptive to big table join with SIMT to

overlap memory access latency.

As the performance curve of GPU is almost flat, less performance

gap is left for PRO to further improve join performance, we neglect

developing GPU based NPO and PRO baseline algorithms in this

paper, and we will fill this blank in our future work.

Additionally, we used GPU database MapD for baseline GPU join

performance. In Figure 29, we can see that AIR on CPU

outperforms AIR on GPU for SSB joins, MapD join has similar

performance to AIR on GPU. The performance gap can be

considered as surrogate key index performance gains against

traditional join performance.

Different join algorithms have special patterns under different

workloads. Table 5 summaries the performance patterns of NPO,

AIR and PRO algorithms with different benchmarks on different

platforms, these patterns describe the strength and weakness

regions of each join algorithm and can provide valuable

information for query optimizer design.

Figure 29. AIR performance with MapD join

0

50

100

150

200

250

300

350

400

date supplier part customer

T
im

e(
m

s)

Join Performance with SSB(SF=100) Dataset

AIR AIR_GPU MapD_GPU

17

Table 5. Join performance pattern comparison (SF=100)
Algorithms CCJB SSB TPC-H TPC-DS

N
P

O

CPU
H: <512K row

L: >2.5M row

H: 3 dims

L: 1 big dim

H: 1 dim

L: 4 dims

H: 8 dims

M:2 L:1

Phi M: <128K row H:2 M:1 L:1 H: 1 M: 4 H:8 M:8 L:6

GPU N/A N/A N/A N/A

A
IR

CPU
H: <22.5M row

M: >25M row
H: all H: all H: all

Phi
H: <256K row

M: >512K row
H:2 M:2 H:1 M:4 H:19 M:3

GPU
H:>30M row

M:<30M row
M H M

P
R

O

CPU M: constant M: constant M: constant M: constant

Phi Fail Fail Fail Fail

GPU N/A N/A N/A N/A

* H: high, M: moderate, L: low of three join candidates

From table 5, we have the following observations:

• The performance of hardware-oblivious join algorithms

(NPO and AIR) is dominated by cache locality ratio, either

reducing hash table size (simplifying hash table as efficient

vector in AIR) or enlarging LLC size (employing KNL

processor with large memory-side cache) can improve join

performance, performance of different joins differs little

within cache size input relations;

• The performance of hardware-conscious join algorithm

provides constant performance for different workloads, the

strengthen region is big table join, the weakness region is

cache-fit small table join, the performance is obtained at the

cost of doubling memory consumption in partitioning phase;

• With schema-conscious design, NPO is simplified as AIR by

transforming hash probing to address probing with

PRIMARY KEY AUTOINCREMENT constraint or

surrogate key index, the compressed vector for data

warehousing workloads minimizes vector size to be held in

cache even for big table, the schema-conscious and

hardware-oblivious AIR algorithm outperforms hardware-

conscious PRO algorithm for both performance and memory

efficiency;

• Database systematic optimization is another important

perspective for improving join performance, and the well-

designed schemas reduce the costly big table joins in

workloads, and enable the simple hardware-oblivious

algorithms to be adaptive for OLAP workloads;

• Considering the complex optimization techniques of hash

join [11], the hardware-oblivious NPO algorithm is not the

best candidate for heterogenous processors, AIR algorithm

eliminates the optimization requirements by removing

complex structure and processing by database systematic

optimizations to enable AIR to be platform-oblivious design

for heterogenous processors, the hardware-oblivious design

should be upgraded to platform-oblivious design for the

emerging high performance heterogenous platforms;

• The approaches that PRO is the best join algorithm for CPU

platform commonly emphasize the performance perspective,

considering the coming trend of integrating large HBM on

chip, memory efficiency plays more important roles to enable

processor processing more data.

6. RELATED WORK
The debate on whether hardware-oblivious or hardware-conscious

join algorithm is better choice remains hot topic in recent years. It

is a dilemma that how we consider hardware in designing

algorithm, as a white box or as a black box? [1] first systematically

evaluates the performance of hardware-oblivious no partitioning

join and hardware-conscious radix join, and their conclusion was

that hardware-oblivious join algorithm performs as well as

hardware-conscious join algorithm with simple structure and

algorithm design. No doubt, this conclusion can dramatically

simplify the query engine design. While [2] proposed the

completely opposite conclusion that hardware-conscious join

algorithm beats hardware-oblivious join algorithm with further

optimizations. Considering the SIMD optimization technique, [9]

compared radix join and sort-merge join with deep SIMD

optimizations, the radix join still wins. In database

implementations, hash join algorithm is continuously improved,

[17] proposed concise hash table to provide a linear probing with

100% fill factor to reduce hash table memory usage, the partitioning

hash join is further optimized by only partitioning the build table

and not partitioning the probe table to save memory consumption.

These researches try to get the trade-off between high performance

with fully partitioning and moderate performance with partial

partitioning. And [18] developed the uniform testbed for all

candidate join algorithms with same optimizations, datasets and

workloads and try to give the final answer.

The debate is further pushed to the emerging hardware accelerator

platforms. The join algorithms of GPU version [5], Phi version

[6][7] and FPGA version [8] are proposed to verify whether

hardware-oblivious or hardware-conscious join algorithm is

adaptive to hardware accelerator architectures. With the

continuously updated optimization techniques, the conclusion

keeps refreshing. [11] discussed hashing methods with seven

dimensions and 20 different combinations in total, the complexity

of hashing methods makes query optimizer design even complex.

No partitioning join is a hardware-oblivious algorithm without

concerning schema. Data warehouse is multidimensional model

oriented opposite to relational mode. [12] proposed an array-store

oriented AIR algorithm for foreign key join with PK-FK

referencing constraint and OLAP schema-conscious design, the

array engine gains high performance but limits the application

scenarios. Array join in [18] has the similar consideration of [12].

AIR or array join algorithm can be considered as specialized NPO

algorithm case when using PRIMARY KEY AUTOINCREMENT

constraint or surrogate key index in dimension tables, and

configuring BUCKET_SIZE=1. MonetDB use fetchjoin to directly

access dense BAT with VOID, invisible-join [21] also illustrated

how to use positional lookup (like fetchjoin) to access tuples from

other column instead of column join. But the similar approaches are

not employed for foreign key joins for lacking comprehensive

mechanism to guarantee foreign key address mapping. Without the

database systematic constraint mechanism, the array join can only

be used for special cases.

18

Furthermore, the schema-conscious design can also simplify join

algorithm on GPUs with simple array structure instead of complex

hash table, and simple address probing instead of hash probing. Our

work in this paper studied the performance of varied join

algorithms by using the comprehensive data warehousing

benchmarks.

7. CONCLUSIONS
In this paper, we re-evaluated the foreign key joins on main stream

platforms. With cache-conscious join benchmark and industry

benchmark testing, we discovered the join performance patterns

with strength and weakness regions. For specified workload, the

performance curve chart enable to accurately choose the best

algorithm. The performance curve chart discovered the dependency

of join performance, input size and cache size, and the cache

locality ratio of input_size/cache_size can be used as threshold to

predict the performance of join algorithms.

Based on the experimental results, the main conclusion is that the

hardware-oblivious NPO join outperforms hardware-conscious

PRO join in most benchmark workloads with small input table size

and hardware-conscious PRO join prefers to big table joins.

Moreover, the hardware-oblivious NPO join can be further

optimized with schema-conscious and OLAP workload customized

design and address probing operation, which outperforms

hardware-conscious PRO for all the tests. Compared with hash

table based NPO and PRO joins, AIR algorithm proves to be high

performance for both small table and big table joins.

With heterogeneous processor perspective, a new performance

issue is how to use the on-board memory efficiently. The hardware-

conscious partition-based joins decrease the utilization of on-board

HBM for the additional partitioning memory consumption. On the

other hand, the hardware-oblivious joins can process large

workloads for less intermediate memory consumption. The

hardware-oblivious and schema-conscious AIR algorithm can

provide both high performance and high memory efficiency joins

on GPU and Phi processors. Moreover, AIR algorithm uses simple

vector structure and address probing operation which enables it to

be platform-oblivious implementation for heterogeneous processor

platforms.

As a result, join algorithm should be designed and optimized based

on schema features, hardware characteristics and platform

heterogeneity to make joins efficient for workloads and the

emerging heterogeneous architectures. As the future work, for data

warehousing workloads, star-join is the fundamental operator for

multidimensional operation, and we will exploit to optimize the

join efficiency during pipelined star join.

Acknowledgements Yu Zhang is the corresponding author. This

work is supported by Nature Science foundation of China Project

No. 61732014,61772533 and Academy of Finland (310321).

8. REFERENCES
[1] Blanas, S., Li, Y., Patel, J. M. Design and evaluation of main memory

hash join algorithms for multi-core CPUs. In Proceedings of SIGMOD

Conference. ACM, New York, NY, pp. 37-48, Jun. 2011,

doi:10.1145/1989323.1989328.

[2] Balkesen, C., Teubner, J., Alonso, G., and Ozsu, T. Main-memory hash

joins on multi-core cpus: Tuning to the underlying hardware. In

Proceedings of ICDE Conference. pp. 362-373, Apr. 2013,

doi:10.1109/ICDE.2013.6544839.

[3] Boncz, P. A., Kersten, M. L., Manegold, S. Breaking the memory wall in
MonetDB. Commun. ACM. vol 51, no. 12, pp.77-85, Dec. 2008.doi:

10.1145/1409360.1409380

[4] Kaldewey, T., Lohman, G., Mueller, R., Volk, P. GPU join processing

revisited. In Proceedings of DaMoN Conference. pp. 55-62, 2012.

[5] Yuan, Y., Lee, R., Zhang, X. The Yin and Yang of Processing Data

Warehousing Queries on GPU Devices. PVLDB, 6(10): 817-828 (2013).

[6] Jha, S., He, B., Lu, M., Cheng, X., Huynh, H P. Improving Main Memory

Hash Joins on Intel Xeon Phi Processors: An Experimental Approach.

PVLDB, 8(6): 642-653 (2015)

[7] Polychroniou, O., Raghavan, A., Ross, K.A. Rethinking SIMD

Vectorization for In-Memory Databases. In Proceedings of SIGMOD

Conference. pp. 1493-1508, May. 2015, doi:10.1145/2723372.2747645.

[8] Halstead, R.J., Absalyamov, I., Najjar, W.A., Tsotras, V. J. FPGA-based

Multithreading for In-Memory Hash Joins. P. In Proceedings of CIDR

Conference. Jan. 2015.

[9] Balkesen, C., Alonso, G., Teubner, Jens., Özsu, M. T. Multi-Core, Main-

Memory Joins: Sort vs. Hash Revisited. PVLDB 7(1): 85-96 (2013)

[10] He, J., Lu, M., He, B. Revisiting co-processing for hash joins on the

coupled CPU-GPU architecture. In Proceedings of VLDB Conference.

vol. 6, no. 10, pp. 889–900, Aug. 2013.

[11] Richter, S., Alvarez, V., Dittrich, Jens. A Seven-Dimensional Analysis of

Hashing Methods and its Implications on Query Processing. PVLDB,

9(3): 96-107 (2015)

[12] Zhang, Y., Zhou, X., Zhang, Y., Zhang, Y., Su, M., Wang, S. Virtual

Denormalization via Array Index Reference for Main Memory OLAP.

IEEE Trans. Knowl. Data Eng. 28(4): 1061-1074 (2016).

[13] Kemper, A., Neumann, T. HyPer: A hybrid OLTP&OLAP main memory

database system based on virtual memory snapshots. In Proceedings of

ICDE Conference. pp. 195-206, Apr. 2011,

doi:10.1109/ICDE.2011.5767867.

[14] Sompolski, J., Zukowski, M., Boncz, P.A. Vectorization vs. compilation

in query execution. In Proceedings of DaMoN Conference. 2011: 33-40

[15] Sikka, V., Färber, F., Lehner, W., Cha, S.K., Peh, T., Bornhövd, C.

Efficient transaction processing in SAP HANA database: the end of a

column store myth. In Proceedings of SIGMOD Conference. 2012: 731-

742

[16] Boncz, P. A., Zukowski, M., Nes, N. MonetDB/X100: Hyper-Pipelining

Query Execution. In Proceedings of CIDR Conference. 2005: 225-237

[17] Barber, R., Lohman, G.M., Pandis, I., et al. Memory-Efficient Hash

Joins. In Proceedings of VLDB Endowment. 2015, Vol 8, No 4, 353-364

[18] Stefan, S., Xiao, C., Jens, D. An Experimental Comparison of Thirteen

Relational Equi-Joins in Main Memory. In Proceedings of SIGMOD

Conference. 2016: 1961-1976

[19] Avinash, S., Roger, G., Jesús, C., Ho-Seop, K., Krishna, V., Sundaram,

C., Steven, H., Rajat, A., Yen-Chen, L. Knights Landing: Second-

Generation Intel Xeon Phi Product. IEEE Micro 36(2): 34-46 (2016).

[20] Jack, D., Wen-Fu, K., Allen, K. L., Julius, M., Anirudha, R., Lihu, R.,
Efraim, R., Ahmad, Y., Adi, Y. Inside 6th-Generation Intel Core: New

Microarchitecture Code-Named Skylake. IEEE Micro 37(2): 52-62

(2017)

[21] Daniel J. Abadi, Samuel Madden, Nabil Hachem. Column-stores vs. row-

stores: how different are they really? In Proceedings of SIGMOD

Conference. 2008: 967-980

[22] Zhang Y, Wang S, Lu J. Improving performance by creating a native

join-index for OLAP. Frontiers Comput. Sci. China 5(2): 236-249 (2011)

