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ABSTRACT 
The hash join algorithm family is one of the leading techniques for 

equi-join performance evaluation. OLAP systems borrow this line 

of research to efficiently implement foreign key joins between 

dimension tables and big fact tables. From data warehouse schema 

and workload feature perspective, the hash join algorithm can be 

further simplified with multidimensional mapping, and the foreign 

key join algorithms can be evaluated from multiple perspectives 

instead of single performance perspective. In this paper, we 

introduce the surrogate key index oriented foreign key join as 

schema-conscious and OLAP workload customized design foreign 

key join to comprehensively evaluate how state-of-the-art join 

algorithms perform in OLAP workloads. Our experiments and 

analysis gave the following insights: (1) customized foreign key 

join algorithm for OLAP workload can make join performance step 

forward than general-purpose hash joins; (2) each join algorithm 

shows strong and weak performance regions dominated by the 

cache locality ratio of input_size / cache_size with a fine-grained 

micro join benchmark; (3) the simple hardware-oblivious shared 

hash table join outperforms complex hardware-conscious radix 

partitioning hash join in most benchmark cases; (4) the customized 

foreign key join algorithm with surrogate key index simplified the 

algorithm complexity for hardware accelerators and make it easy to 

be implemented for different hardware accelerators. Overall, we 

argue that improving join performance is a systematic work 

opposite to merely hardware-conscious algorithm optimizations, 

and the OLAP domain knowledge enables surrogate key index to 

be effective for foreign key joins in data warehousing workloads 

for both CPU and hardware accelerators. 

1. INTRODUCTION 
Recent years have witnessed the debate between hardware-

conscious or hardware-oblivious hash join algorithms. Hardware-

conscious join algorithm is to optimize join algorithm with 

comprehensive considerations on hardware characteristics to obtain 

the maximal performance gains and its underlying assumption is 

that the hardware must be carefully used to improve join 

performance. The representative hardware-conscious join 

algorithm is radix partitioning based hash join, in which cache and 

TLB are carefully used to make memory access efficient. On the 

other hand, hardware-oblivious join is designed with simple 

algorithm without much considerations on hardware 

characteristics, and the assumption is that hardware is good enough 

to automatically hide the memory access latencies. The 

representative hardware-oblivious join algorithm is the no-

partitioning hash join, in which only the simple shared hash table is 

employed for parallel working threads without the concerns on 

specified hardware characteristics. 

The purpose of this paper is not to simply determine whether 

hardware-conscious or hardware-oblivious join algorithms 

perform better than the others, but to discover the intrinsic 

performance pattern and to exploit the key insight to understand 

why and when one join algorithm outperforms the others. To handle 

the real-world workloads, comprehensive benchmark evaluations 

are considered, instead of limited user defined workloads for 

performance testing. We argue that the best join algorithm may not 

be the fastest one, and the implementation complexity, the 

intermediate memory consumption, the heterogeneous platform 

adaptiveness and the compatibility with query engine are all 

important and indispensable dimensions for holistic consideration. 

In particular, we review the state-of-the-art main-memory join 

algorithms and their limitations as follows.  

First, the hardware-oblivious join algorithm [1] uses the shared 

hash table for building and probing without much considerations 

for how to eliminate cache conflicts. In contrast, the hardware-

conscious join algorithm [2] uses radix partitioning [3] method and 

many hardware tuning configurations to divide big join table into 

cache fit small partitions to improve cache locality. With the 

partitioning space cost, hardware-conscious join algorithm always 

outperforms the hardware-oblivious join algorithm [18]. These 

approaches are beneficial for OLAP workloads for the foreign key 

join between dimension tables and big fact tables dominating the 

OLAP performance. But the conclusions need re-evaluations based 

on OLAP schema, workloads, update mechanism features, and the 

OLAP domain knowledge can also further improve foreign key join 

performance with customized structure and algorithm. 

Second, comprehensive join benchmarks, rather than the isolated 

user-defined workloads should be considered for performance 

evaluations. The recent work [18] extended the workloads for more 

scenarios. Their work focused on join evaluations with a small 

relation (smaller than probe relation) and a big relation (with the 

same size of probe relation). This experimental design has two 

major limitations. (1) hardware-oblivious join algorithm is 

sensitive to the cache locality ratio of input_size/cache_size instead 

of the size of join relation R or the ratio of |R|/|S|. To describe the 

join performance, we should vary the join table size according to 

L1, L2, L3 cache slice, and LLC size to measure the join 

performance pattern. (2) database benchmarks are widely used for 
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the academic and industry performance evaluations with different 

schemas, e.g., SSB for star schema, TPC-H for snow-flake schema 

and TPC-DS for snow storm schema, and the joins in these 

benchmarks represent the big fact table joining with different size 

of dimension tables. The benchmark tests can evaluate how 

different join algorithms perform in real-world workloads with 

different size of tables. 

Third, hardware accelerators come to be main-stream high 

performance computing platforms, the join algorithm designs and 

optimizations should consider the heterogeneous platform 

adaptiveness to avoid tightly coupled optimizations with CPU 

cache hierarchy. The cache-centric optimizations focus on cache 

locality in private cache (L1, L2, L3 cache slice), while private 

cache in GPU and Xeon Phi accelerators is commonly small, so that 

it is to make join algorithm adaptive to be performed in parallel. 

One feasible solution is to extend hardware-oblivious join 

algorithm to platform-oblivious join algorithm i.e., simplifying 

hash table to reduce branching, using one to one map to reduce 

conflicts in building phase and using shared probing for massive 

parallel working threads.  

In this paper, we combine schema-conscious and OLAP workload 

customized design with join algorithm through heterogeneous 

platform perspective, benchmark evaluation perspective and 

systematic optimization perspective. The contributions of this 

paper are summarized as follows: 

 Schema-conscious and OLAP workload customized 

design for join. We introduce surrogate key index 

mechanism to relational data warehouse. The column-

wise index simplifies foreign key join as array index 

referencing (AIR) by creating surrogate key index for 

PK-FK constraint tables. Surrogate key index enables 

relational database to perform a multidimensional style 

operation like [12], and the surrogate key index 

mechanism makes array join in [18] to be an OLAP 

workload customized design for relational data 

warehouses.  

 Benchmark based evaluations. We start with a cache-

conscious join benchmark with fine-granularity tests, 

where the probe table remains fixed-length and the join 

table varies its size to different proportions of L1, L2, L3 

cache size. Our fine-granularity experimental results give 

a performance curve chart for each join algorithm to 

discover the performance strength and weakness regions 

and the dependency between join table size and cache 

size.  We also employ SSB, TPC-H, TPC-DS 

benchmarks to exploit how these join algorithms perform 

for real-world workloads, and our analysis on the 

comprehensive experimental results shed the lights on 

query optimizer design in practice. 

 Platform evaluations. The emerging trend is to 

accelerate the costly relational join operation with new 

hardware based on more cores and simultaneous 

massive-threading mechanism such as GPU[4][5], 

APU[10], Phi[6], and FPGA[8]. We implemented the 

join algorithm for Xeon Phi and NVIDIA K80 GPU 

platforms, and designed the experiments to evaluate the 

join performance for different processor architectures. 

Our experimental results discovered how caching and 

simultaneous massive-threading mechanisms dominate 

the join performance in different workloads and 

platforms. We also found that memory efficiency is 

another key consideration for joins to maximize co-

processor’s on-board device memory utilization rate.  

The rest of this paper is organized as follows: Section 2 introduces 

the background of representative in-memory join algorithms. The 

surrogate key index mechanism is described in Section 3. Section 

4 presents the experimental evaluations. Section 5 analyzes the 

related work, and Section 6 concludes the paper. 

2. PRELIMINARIES 
The essential difference between hardware-oblivious and 

hardware-conscious join algorithms is whether hardware is good 

enough to optimize memory access latencies. The main roadmaps 

to reduce memory access latency can be classified into two 

categories: (1) caching mechanism and (2) simultaneous multi-

threading approach. The effectiveness of caching mechanism relies 

on the LLC size, x86 processors are commonly designed with small 

LLC size (2.5MB*#core), while the latest KNL processor can 

configure at most 16 GB on-board high bandwidth memory as LLC, 

the 6th-generation Skylake also supports large memory-side cache 

[20], the trend of increasing LLC size enables hardware-oblivious 

join algorithm to be used for more workloads. The simultaneous 

multi-threading mechanism overlaps memory access latency with 

massive threads, the Xeon Phi’s hyper threading and GPU’s SIMT 

technique support hundreds or thousands of simultaneous threads 

to overlap memory access latency. From hardware feature 

perspective, hardware-conscious join algorithm is majorly 

designed for multiple cache hierarchy of x86 processors, hardware-

oblivious join algorithm is adaptive to hardware accelerator’s 

architecture with massive hardware simultaneous threads. In this 

paper, we shall focus on hardware-oblivious join algorithm on 

hardware accelerator platforms. 

Another important perspective is combining schema-conscious and 

OLAP workload customized design into join algorithm 

optimizations. For data warehouse schemas, as shown in Figure 1, 

the multidimensional dataset can be modeled as data cube, the fact 

data can be located by multiple dimensions. Relational model 

organizes the data as dimension tables and fact table with PK-FK 

referencing constraints between them, missing the features that 

dimension tables can be mapped to dimensions and fact data can 

directly map to corresponding dimension items. Thus, the foreign 

key join in OLAP workloads can be customized by using dimension 

table as dimension and transforming hash join as FK mapping to 

dimension, simplifying the hash probing as address probing.  

Dimension Table

Dimension Table

Dimension Table

Data Cube Fact Table

 

Figure 1. Multi-dimensional model and relational model. 
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In this paper, we majorly evaluated three representative join 

algorithms: hardware-oblivious no partitioning hash join, schema-

conscious and OLAP workload customized AIR, and hardware-

conscious radix partitioning hash join. Three join algorithms are 

designed with two important perspectives: hardware feature and 

database systematic design. 

2.1 No Partitioning Join 
Let R denote the dimension table with primary key, and S the fact 

table with foreign key. The join between R and S is to locate the 

corresponding tuple in R with the same key of tuple in S. NPO 

algorithm from [1] is a no-partitioning join algorithm, which builds 

a shared hash table from R. For multiple-thread parallel processing, 

NPO algorithm divides the input relations R and S into equi-sized 

portions that assigned to working threads. As shown in Figure 2, 

during build phase, the hash table is shared among all the working 

threads. To enable the concurrent insertions on hash table, each 

bucket is protected via a latch for a thread to obtain before inserting 

a tuple. [2] has optimized the hash table by combining the lock and 

hash bucket together to reduce cache misses. For the big input 

relation, the build phase is very costly. 

NPO algorithm does not consider hardware parameters such as 

cache size or TLB entries, and the performance is majorly affected 

by table size. When shared hash table from R is small enough to be 

held in cache, NPO is efficient; but when shared hash table size 

exceeds cache size, NPO suffers from cache miss latencies. Modern 

processors commonly use auto-prefetching, out-of-order execution 

and simultaneous multi-threading mechanisms to overlap or hide 

cache miss latencies. For CPU platform, the hash probing overhead 

is large for limited cores and threads. The hardware accelerators 

like Phi and GPU strengthen the simultaneous multi-threading 

feature with hundreds or thousands of threads, the hash probing 

performance of NPO can be accelerated by them. 

2.2 AIR algorithm 
AIR algorithm is an array-store oriented foreign key join 

algorithm. As shown in Figure 3, relation R is stored as array, the 

array index is used as primary key of R, and the foreign key of S is 

the array index of referenced tuple of R, the foreign key join 

between R and S is simplified as array addressing on R. This feature 

is also used in CAT[17] and array join[18] with PRIMARY KEY 

AUTOINCREMENT constraint and dense primary key. [12] 

further optimized the shared hash table with a shared vector, each 

tuple of R is mapping to a unique vector cell according to primary 

key, the hash probing is also simplified as directly accessing vector 

cell by mapping foreign key value to vector index.   

Compared with NPO algorithm, the vector is simpler than hash 

table which contains next pointer for overflow bucket and cannot 

be directly implemented on GPU platform. If all the tuples in table 

R is selected, hash table size is larger than vector for storing key, 

value and the additional meta data such as head pointer, next 

pointer; in build phase, the tuple is mapped to unique cell in vector 

without conflict control opposite to latch mechanism in building 

shared hash table of NPO; the complexity of hash probing can be 

expected as O(1), but hash probing involves many cycles on 

computing hash functions, loading buckets, matching key and 

probing in overflow bucket etc., which need to be further optimized 

with SIMD on Phi platform[6][7], while AIR algorithm directly 

uses key for address probing without storing key/hashing key and 

matching key, each key is strictly mapped to unique cell in vector 

without further computing cycle consumption. 

AIR uses the fixed length vector for address probing, each tuple is 

mapped to the unique cell in vector without conflicts, while NPO 

uses the filtered tuples to build shared hash table with latch 

mechanism. For query with high selectivity, the shared vector is 

smaller than shared hash table, for query with low selectivity, the 

shared vector may be larger than shared hash table. In OLAP 

benchmarks, queries usually have high selectivity on single 

dimension table in roll-up and drill-down operations, the shared 

vector is commonly smaller than shared hash table; with 

compression on dimension tables, the shared vector can be even 

smaller. Shared vector is adaptive to data warehouse workloads, on 

one hand, the dimension tables in data warehouses are commonly 

small size and increasing slowly, the shared vector for dimension 

table is usually small size; on another hand, nowadays processors 

have large LLC size for caching shared vector, e.g., Xeon E7 8890 

v4’s 60 MB L3 cache can hold a shared vector(int_8) with 

60,000,000 rows, the fixed length shared vector is efficient for 

processors and data warehouse workloads. Considering the large 

LLC size, small compact vector size and small dimension size, AIR 

algorithm is customized for OLAP workloads. 

NPO algorithm is hardware-oblivious for multicore CPU platform, 

but how to design efficient hash join is a complex issue [11]. For 

hardware accelerator platforms such as GPU, Phi or FPGA, the 

complex hash table, hashing schema, hash function, SIMD 
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optimizations etc. need to be re-designed with specified platform 

features[4][7][8][10]. NPO algorithm is hardware-oblivious but 

not platform-oblivious join approach. AIR algorithm is even 

simpler than NPO algorithm in data structure, build phase and 

probe phase, the vector structure is compatible for different 

hardware platforms, the address probing operation involves less 

computing optimization requirements. AIR is a customized join 

algorithm for data warehousing workloads, the customized design 

with simple structure and algorithm also enable AIR to be platform-

oblivious for heterogonous platforms. 

The OLAP benchmarks, e.g., SSB, TPC-H and TPC-DS use 

surrogate key (consecutive values without semantic information) as 

primary key, Table 1 illustrates how to map surrogate key to vector 

index. [12] proposed array store to guarantee directly mapping 

primary key to vector index, it is not a OLTP workload design but 

a OLAP workload design for the read-only feature of data 

warehouses. The new trend of analytical in-memory database is to 

combine OLTP and OLAP processing inside single engine, the 

representative systems are Hyper [13] and SAP HANA [15]. The 

copy-on-write, MVCC, insert-only mechanisms for OLTP conflict 

with strictly position constraint of array store, we need a relaxed 

mechanism to map out-of-order keys to vector addresses, and how 

to maintain array index with update workload. 

2.3  Parallel Radix Join 
We use PRO algorithm from [2] as parallel radix partitioning join 

algorithm. PRO majorly optimizes the build and probe phases with 

hardware parameters to tune the performance. In partition phase, 

the major latency is caused by TLB miss. TLB caches the virtual 

memory mapping entries, the number of TLB entries are defined 

by hardware, if the number of created partitions exceeds the number 

of TLB entries the partition phase may cause TLB misses. The 

radix partitioning optimizes TLB misses by partitioning both input 

relations R and S in multiple passes, as shown in Figure 4, the first 

pass looks at a different set of bits from hash function h1,1, the 

second pass looks at the other set of bits from hash function h1,2, in 

2nd pass, all partitions produced by 1st pass guarantee the 

partitioning fan-out never exceeds the hardware limit given by the 

number of TLB entries. For typical data sizes, two or three passes 

are sufficient to create cache-sized partitions without TLB misses. 

Hash tables are built over each cache-sized partitions of table R. In 

probe phase, all si partitions are scanned and probe the respective 

ri partitions for join matches.  

Two important hardware parameters of radix join are the maximum 

fanout per radix pass and partition size which are defined by the 

number of TLB entries and cache size. [2] also showed that radix 

join can also works well with misconfiguration of either 

parameters. 

PRO algorithm optimizes parallel radix join in partition phase to 

avoid thread contention in creating a shared set of partitions. Each 

thread scans the R and S relations twice, the first scan computes a 

set of histograms over the input data for exact output size for each 

thread and partition, by computing a prefix-sum over the histogram, 

a contiguous memory space is allocated for the output and each 

thread pre-computes the exclusive location for its output. With 

these optimizations, all threads can perform parallel hash join on 

each partition without needs to synchronize. 

PRO is designed for cache-centric architecture, the hypothesis is 

that caching is superior to simultaneous multi-threading 

mechanism, so that the big relations are divided into cache-fit small 

partitions to guarantee in-cache hashing. That is right for x86 

processors for the limited threads and large LLC, but it is not 

suitable for accelerators with massive threads and small cache size 

(e.g., NVIDIA Tesla K80 has 4992 cuda cores and 1.5MB L2 

cache). PRO algorithm doubled the memory space in partition 

phase, the performance gain is preferred for multicore CPU 

platform with large memory. But for the emerging accelerator 

platforms like GPU and Phi, the on-board memory size is limited 

and expensive, PRO algorithm sacrifices the memory efficiency. 

3. SURROGATE KEY INDEX 
Surrogate key is widely used in data warehouses, surrogate key uses 

the simple consecutive integer sequence as primary key, and can 

also be produced with PRIMARY KEY AUTOINCREMENT 

constraint in databases.  

For an in-memory column store, a surrogate key can be mapped to 

the offset address of dimension tuple. From the perspective of 

multidimensional model, the surrogate key can be mapped to 

dimension coordinate axis to identify the fact data in data cube. 

From the perspective of the relational model, the surrogate foreign 

key can be used as join index to map foreign key of a fact tuple to 

the offset address of dimensional tuple. The surrogate key 

represents the key-address mapping for column store. 

3.1  Creating Surrogate Key Index 
In data warehouse schemas, dimension tables commonly use 

surrogate key as primary key e.g., in benchmarks of SSB, TPC-H 

and TPC-DS. When tables with PK-FK referencing constraints do 

not use surrogate key, we can create surrogate key index on them 

for accelerating foreign key join performance. The surrogate key 

index consists of two parts, one is surrogate key index as new 

primary key column with incremental integer values, the other is 

surrogate foreign key index as new foreign key column with 

updated value from surrogate key index column. 

Table 1. Surrogate key in benchmarks 

 Table Surrogate Key 
Key-address map 

function 

S
S

B
 

customer 1,2,3,… f(key)=key-1 

supplier 1,2,3,… f(key)=key-1 

part  1,2,3,… f(key)=key-1 

date 
19920101, 

19920102, … 

f(key)=  

date(key)-date(key0) 

T
P

C
-H

 

customer 1,2,3,… f(key)=key-1 

supplier 1,2,3,… f(key)=key-1 

part  1,2,3,… f(key)=key-1 

nation 0,1,2,… f(key)=key 

region 0,1,2,… f(key)=key 

T
P

C
-D

S
 

call_center 1,2,3,… f(key)=key-1 

catalog_page 1,2,3,… f(key)=key-1 

customer 1,2,3,… f(key)=key-1 

customer_address 1,2,3,… f(key)=key-1 

customer_demographics 1,2,3,… f(key)=key-1 

date_dim 2415022, 2415023, … f(key)= key-key0 

household_demographics 1,2,3,… f(key)=key-1 

income_band 1,2,3,… f(key)=key-1 

item 1,2,3,… f(key)=key-1 

promotion 1,2,3,… f(key)=key-1 

reason 1,2,3,… f(key)=key-1 

ship_mode 1,2,3,… f(key)=key-1 

store 1,2,3,… f(key)=key-1 

time_dim 0,1,2,… f(key)=key 

warehouse 1,2,3,… f(key)=key-1 

web_page 1,2,3,… f(key)=key-1 

web_site 1,2,3,… f(key)=key-1 
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In snow-flake or snow-storm schema, there are multiple fact tables 

with PK–FK references without surrogate key mechanism. For 

example, in TPC-H, the primary key of lineitem is (orderkey, 

linenumber), the primary key of orders table is (orderkey), the 

primary key of partsupp table is (partkey, suppkey). lineitem 

references orders table by orderkey column with the same order 

because both lineitem and orders tables are cluster indexed with 

orderkey column. And lineitem references partsupp table with 

composite key (partkey, suppkey). The orderkey in orders table is 

not surrogate key with inconsecutive values, and partsupp table has 

no surrogate key at all. As fact tables store historical data with read-

only access, we can implement surrogate key mechanism on fact 

tables for surrogate key referencing. In Figure 5, as primary key of 

orders table is first partial key of lineitem table, a merge join can 

be performed on orderkey of lineitem table and oderkey column of 

orders table, the orderkey in orders table is updated with column 

offset addresses (array index) to transform orderkey column into 

surrogate key, at the same time orderkey column in lineitem table 

is updated with the same value accordingly. For partsupp table, we 

need to add an additional surrogate key index as column SK_PS in 

partsupp table and an additional surrogate foreign key index as 

column FK_PS in lineitem table, an extra join between lineitem 

table and partsupp table is invoked at idle time to update surrogate 

foreign key column FK_PS so as to enable surrogate key address 

probing. The surrogate key update can be incremental, the join 

between partsupp and lineitem can be divided into two parts, 

conventional join for new inserted tuples and surrogate key 

referencing for tuples with updated surrogate key. 

In TPC-DS, for example, the composite primary key of store_sales 

table is (ss_item_sk, ss_ticket_number), the composite key and 

foreign key of store_return table is (sr_item_sk, sr_ticket_number), 

we can also add additional surrogate key column in both 

store_sales table and store_return table to enable surrogate key 

referencing with similar update mechanism. 

3.2  Updates on Surrogate Key 
When surrogate key is used to store dimension coordinates, we 

need to keep the surrogate key consecutive. This is an additional 

constraint for update operations. 

For insertion operation, new tuples are usually appended to the 

table. Each new surrogate key is allocated by invoking max()+1.  

C_name C_nation C_region
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Figure 7. Consolidation mechanism of dimension table. 

C_name C_nation C_region
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Figure 8. Batched consolidation of dimension table. 

For deletion operation, most in-memory databases, e.g., MonetDB 

and Vectorwise, commonly adopt a lazy deletion mechanism, in 

which a deletion vector is used to mark the positions of deleted 

tuples instead of physically removing the tuples. Deletion leaves 

holes in a relational table, which can be re-assigned to newly 

inserted tuples. This keep surrogate key always consistent with 
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Figure 5. Creating surrogate key and updating foreign key as surrogate foreign key. 

C_name C_nation C_region
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Figure 6. Delete vector and surrogate key reuse mechanism. 
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dimension coordinates. If the dimension is small or deletion 

produces less holes, we can simply leave the holes in surrogate key 

index, otherwise, we have to re-organize the surrogate key. 

Figure 6 illustrates the rationale of the surrogate key deletion and 

reuse mechanism. Sometimes, when deletion leave too many holes 

in the table, we can perform consolidation, which compresses the 

table space and reassigns the surrogate keys. As an example in 

Figure 7, when tuple with surrogate key C_custkey=2 is deleted, the 

fact tuples which reference this tuple are also deleted. We can move 

the last tuple (C_custkey=4) to current tuple slot. Accordingly, the 

surrogate foreign key column l_CK needs an update to assign 

l_CK=2 where original value is 4. Such a consolidation process can 

be done in a batch, as shown in Figure 8. When dimension tuples 

with C_custkey=2, C_custkey=4 are deleted, we move the last two 

tuples in tail to fill the deleted tuples, and the C_custkey is refreshed 

from 5, 6 to 4, 2. We generate a deletion vector to record the tuple 

movements. A NULL cell in the vector represents no change on the 

corresponding tuple, and a non-empty cell represents that the 

original tuple’s surrogate key is changed to the value in the cell. 

Based on the deletion vector, the foreign key column can be 

updated accordingly. Consolidation is not compulsory, as it is 

usually at the cost of a full foreign key join. A system can 

selectively perform consolidation at non-peak hours.  

For update operation, as a surrogate key does not contain functional 

information, it is usually kept intact. In-place update is usually 

performed on the other attributes. 

3.3  Logical Surrogate Key Index 
Most analytical databases support insert-only mode to simplify 

update mechanism. Such an update operation is always divided into 

two operations: insertion of the new tuple with the update and 

deletion of the original tuple. The constraint of surrogate key index 

with surrogate key value as offset address may incur significant 

overheads to insert-only update. Thus, we propose a relaxed 

surrogate key index, named logical surrogate key index.  

In a logical surrogate key index, the surrogate key no longer 

represents offset address but a logical sequence. The only constraint 

is to use consecutive sequence as surrogate key. The logical 

surrogate key deletion vector reuse mechanism is also available. 

The projection operation produces a surrogate vector as shown in 

Figure 9, the logical surrogate key value is now used as offset ad-

dress in surrogate vector, the projected attribute value can be 

directly mapped to surrogate vector cell. 

The surrogate vector is a switcher between logical surrogate key 

enabled table and physical surrogate key enabled table. Moreover, 

if we employ a main-memory database engine as dimension table 

management engine without in-place update mechanism, we can 

still achieve the surrogate key mapping mechanism by adding an 

API to project attributes to a physical surrogate vector according to 

logical surrogate key value as vector index. 

4. Surrogate Key Vector Referencing 
Vector oriented processing is widely adopted by analytical main 

memory databases. It can be classified into three types: SIMD 

vector processing, vectorized processing, and vector referencing. 

Modern processors are equipped with wide register, for example, 

Intel Haswell supports 256-bit SIMD instructions to speedup 

packed data processing. GPGPU and Xeon Phi coprocessors 

support 512-bit SIMD instructions to further speedup data 

processing efficiency with a single instruction. SIMD is a hot 

research topic in query processing. The investigated operators 

include sorting, hash key calculating and hash probing. SIMD 

provides a register level vector processing support with dense 

packed data layout. As shown in Figure 10, SIMD instructions can 

calculate multiple hash map values in parallel. 

Vectorized processing is the fundamental feature of state-of-the-art 

main-memory databases. Its major principle is to operate on the 

granularity according to the size of L1 cache. In other words, each 

vector is a query processing unit that should fit in the L1 cache, 

minimizing the materialization cost and boosting the performance 

of query processing significantly. 
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Figure 10. SIMD processing vs. vectorized processing vs. 

vector referencing. 

Our surrogate key index based AIR algorithm can be regarded as 

vector referencing approach. Surrogate key index is normally 

implemented as a vector or a bitmap. The foreign key join is 

         

Figure 9. Logical surrogate key index. 
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performed as referencing operation on the vector, which translates 

foreign key values into the offset addresses of vector. Vector 

referencing and the SIMD based vectorized processing techniques 

can be used together, to achieve higher performance. 

3.1 Vector referencing 
Hash table is the key optimization technique for main-memory 

database query processing. A hash probing operation involves 

many CPU instructions, including those for hash probing, hash key 

matching, linear search, overflow bucket search, etc. Many CPU 

cycles are consumed in hash operation. 

With a surrogate key index, each fact tuple has the address 

information of referenced dimension tuples from surrogate foreign 

key attributes, and can directly access corresponding dimensional 

tuple. The overhead of building hash table and hash probing is 

reduced. As illustrated by the example in Figure 11, l_CK and l_SK 

are surrogate foreign key, and l_DK can be mapped as surrogate 

foreign key; the dimension columns are used as surrogate vectors 

to be directly referenced by fact tuples. The foreign key of fact tuple 

can be considered as a native join index[22]. 

l_CK l_DK l_pricel_SK

3 1 19920101

4 3 19920101

2 4 19920102

4 3 19920103

1 3 19920103

3 2 19920103

1 3 19920104

Lineorder

453.4

66.9

235.7

550.2

214.3

78.6

51.4

C_name C_nation C_region

Cust#01 Egypt AFRICA

Cust#02 Canada AMERICA

Cust#03 Brazil AMERICA

Customer 

[0]

[1]

[2]

Cust#04 Thailand ASIA[3]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

C_custkey

1

2

3

4

D_year D_month D_day

1992 January 1

1992 January 2

1992 January 3

Date

[0]

[1]

[2]

1992 January 4[3]

D_datekey

19920101

19920102

19920103

19920104

S_name S_nation S_region

Suppt#01 Japan ASIA

Suppt#02 China ASIA

Supp#03 Egypt AFRICA

Supplier 

[0]

[1]

[2]

Supp#04 Korea ASIA[3]

S_suppkey

1

2

3

4

 

Figure 11. Surrogate key referencing. 

For OLAP queries with multiple or complex predicate expressions 

on dimension tables, we can first process the predicates on the 

dimension tables and filter out dimension tuples that should not 

participate in the joins. This turns each dimension table into a 

bitmap, which can then be joined with the fact table using the 

surrogate key index. Similar bloom filter technique is adopted by 

databases such as Oracle Smart Scan, Vectorwise, etc.   

d_year l_DK l_CK l_revenue

0 1 0 946

1 2 1 176

0 0 0 626

1 0 1 829

1 0 0 590

0 1 1 413

1 2 1 158

Lineorder
PK

1997 May

1997 May

1999 OCT

[0]

[1]

[2]

Date
DimFilter

1

1

0

d_month l_SK

d_year=1997 

AND 

d_month= May 

JIBitmap

1

0

1

1

1

1

0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

 

Figure 12. Surrogate bitmap referencing. 

Figure 12 illustrates the example of surrogate bitmap referencing. 

Predicates on small dimension table are performed to generate a 

bitmap (DimFilter in Figure 12) to identify which tuple satisfies the 

predicate expressions. Supported by surrogate key mechanism, the 

foreign key column can directly refer to the surrogate bitmap to 

accomplish the join. A bitmap for the fact table can be materialized 

to record join filtering result and used as bitmap join index 

(JIBitmap in Figure 12) to filter other foreign key columns for the 

following surrogate bitmap referencing operations on other 

dimension tables. As the surrogate bitmap is always very small, the 

filtering is more efficient and accurate than bloom filter.  

OLAP query can be modeled as SPJGA (select, project, join, group, 

aggregate) operation. The projection attributes are attributes in 

GROUP BY clause. The general-purpose surrogate vector 

referencing is illustrated in Figure 13. The predicate 

c_region=’AMERICA’ is executed, the filtered GROUP BY 

attribute c_nation is projected as surrogate vector. OLAP query 

commonly uses low cardinality attributes as hierarchy attributes, 

the grouping attributes can be stored as integer type under light-

weight dictionary encoding technique. Furthermore, we can 

dynamically compress the projected vector to assign shorter code 

for surrogate vector like dotted box in Figure 13. We have applied 

this dynamically dictionary compression technique in [12]. 

C_name C_nation

Cust#01 Egypt

Cust#02 Canada

Cust#03 Brazil

Customer 

Canada

Brazil

DimFilter

SELECT count(*), C_nation 

FROM Customer, Lineorder

WHERE l_CK=C_cust 

AND C_region= AMERICA 

GROUP BY C_nation;

[0]

[1]

[2]

Cust#04 Thailand [3]

l_CK

2

3

1

3

0

2

0

[0]

[1]

[2]

[3]

[4]

[5]

[6]

C_cust

0

1

2

3

C_region

AFRICA

AMERICA

AMERICA

ASIA

Canada

Brazil 0

1

Dictionary Table DimFilter

[0]

[1]

 

Figure 13. Surrogate vector referencing. 

For typical OLAP queries, the number of groups in a single 

dimension table is usually small, so that the result is small enough 

for drill-down or roll-up operations. Therefore, in our experiments, 

we use int_8, int_16, int_32 as the vector width to measure the 

performance of surrogate vector referencing. 

3.2 Schema-aware vector referencing 

mechanism 
SIMD based and vectorized query processing use the size of 

register or L1 cache size to define the length of vectors. In contrast, 

the vector length in AIR algorithm depends on the size of the 

dataset. In turn, the length of vector affects the cache efficiency of 

vector referencing. 

Figure 14 gives a statistic chart about how the size of surrogate 

bitmap affects the performance on typical benchmarks of SSB, 

TPC-H and TPC-DS (SF=100, 300, 1000, 3000, 10000). In Figure 

14 (a), the line represents the 22-core CPU’s LLC size (Xeon E5-

2600 v4, 55MB LLC). SSB is a denormalized schema of TPC-H, 

and the dimension table size is modified to match real-world 

businesses. The surrogate bitmap vectors of dimension tables are 

always very small, even for dataset of SF=10000, the biggest 

surrogate bitmap vector is smaller than the latest CPU’s LLC size. 

TPC-H has two big dimension tables customer and part, the 

surrogate bitmap size is smaller than 55 MB with datasets of 

SF=100, 300 and 1000, for bigger datasets of SF=3000 and 10000, 

the surrogate bitmap size is larger than 55 MB.  
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TPC-DS’s schema is more complex than TPC-H and SSB, and 

contains more dimension tables. However, its dimension tables are 

typical slowly increasing dimensions, and the corresponding 

surrogate bitmap size is much smaller. In Figure 14 (b), the left Y 

axis represents the size of bitmap vector size(MB), the right Y axis 

represents the LLC size of different types of CPUs. The biggest 

surrogate bitmap size is 7.75 MB, even smaller than low-end 6-core 

CPU’s LLC size. 

As most surrogate bitmaps are cache fit, we can use the fixed length 

surrogate vector for different OLAP queries to simplify join 

algorithm design with high performance. 

3.3 AIR implementations on accelerators 
Like NPO algorithm, AIR uses the shared vector for foreign key 

referencing. In building phase, relation R is parallel scanned by 

logical partition with working thread, the filtered values (bitmap or 

compact value) are mapped to cells in surrogate vector by surrogate 

key value. In probing phase, relation S is also logically partitioned 

by thread number for parallel vector referencing operations. 

Xeon Phi has similar cache architecture as multicore CPU, the code 

can be compiled with icc for Phi version. The more threads (4 

thread for one core) and less cache hierarchy (has no L3 cache) 

make the performance of AIR on Phi different from AIR on CPU. 

In this paper, we only use shared memory of GPU for join result 

counter, the surrogate vector is accessed from global memory. The 

parallelism is configured with BLOCK_NUM and 

THREAD_NUMBER parameters for maximal performance.  

The implementations of AIR on different accelerator platforms are 

similar to each other without much hardware specialized 

optimizations, the simple vector structure and vector addressing 

operation makes AIR easy to be implemented on different 

accelerator platforms. 

As a summary, AIR is designed with systematic optimizations. From 

schema perspective, AIR uses the multidimensional model to 

simplify equi-join as dimension mapping. From workload 

perspective, the append-only mode update, small and slow 

increasing dimension guarantee the surrogate vector to be small 

and efficient. From index perspective, surrogate key index is low 

cost in space and maintenance for OLAP workloads. From 

performance perspective, the vector referencing mechanism of 

surrogate key index reduces the CPU cycle consumptions for key 

oriented hash probing. Finally, AIR is simple enough to reduce 

implementation overhead for heterogenous accelerator platforms. 

5. EXPERIMENTAL EVALUATIONS 
This paper re-focused on join performance evaluation with three 

new perspectives, introducing a schema-conscious and OLAP 

workload customized design join algorithm AIR, evaluating join 

performance on industry benchmarks and illustrating how 

hardware features dominate the performance of platform-oblivious 

join algorithm in two representative accelerator platforms. 

The experiments are designed with 3 parts. Part 1 is to evaluate the 

dependency between cache locality ratio of input_size/cache_size 

and performance for three join algorithms. [1] and [2] all focused 

on data warehouse workloads, they only choose two workloads as 

small table join and big table join to demonstrate whether 

hardware-oblivious algorithm or hardware-conscious algorithm 

performs better. But we still need further evaluations to discover 

why one join algorithm outperforms others and exploit how to use 

the conclusions for query optimizer design.  

Opposite to the related approaches, we design a cache-conscious 

join benchmark to evaluate join performance. In the CCJB (Cache-

Conscious Join Benchmark), a group of join workloads are 

designed to measure the join performance pattern, the input (shared 

hash table or shared vector) size is configured based on the 

proportion of cache size to exploit how join performance is 

influenced by the cache efficiency i.e., cache locality ratio of 

input_size/cache_size. For fine-grained join performance 

evaluation, we configure the input size with 8 proportions, 25%, 

50%,75%, 100%, 125%, 150%, 175% and 200% of different level 

of cache size (L1, L2, L3 cache slice and LLC).  

Part 2 is to evaluate the candidate join algorithms with benchmark 

evaluations. Schemas in benchmarks integrated the database 

systematic optimizations e.g., normalization, denormalization, 

indexing, etc. The workload B in [1] with two 128M rows table join 

case may be optimized with denormalization like SSB to eliminate 

the costly big table join. Moreover, the dimension tables in 

benchmarks are commonly small and slowly increasing, this 

schema feature may dominate which join algorithm is adaptive to 

data warehousing workloads. To the best of our knowledge such a 

study has not been conducted. The experimental conclusions can 

give real-world advice for query optimizer design.  

 

(a) TPC-H and SSB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) TPC-DS 

Figure 14. Dimension bitmap sizes for dimension tables in 

different dataset sizes (SF=100,300,1000,3000 and 10000).  

0

50

100

150

200

250

C
U

S
T

O
M

E
R

P
A

R
T

S
U

P
P

L
IE

R

N
A

T
IO

N

R
E

G
IO

N

S
S

B
_
C

S
S

B
_
P

S
S

B
_
S

S
S

B
_
D

TPC-H
SSB

b
it

m
a
p

 v
ec

to
r 

si
ze

 (
M

B
)

100GB 300GB 1TB 3TB 10TB

22-core CPU

18-core CPU

15-core CPU

12-core CPU

10-core CPU

8-core CPU

6-core CPU

0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

8

9

10

L
L

C
 s

iz
e 

(M
B

)

b
it

m
a
p

 v
ec

to
r 

si
ze

 (
M

B
)

100GB 300GB 1TB 3TB 10TB LLC size



9 

 

Part 3 demonstrates how we implement the join algorithms for 

different platforms with the representative multicore CPU, GPU 

and Phi platforms. The performance evaluations also discover how 

caching or simultaneous multi-threading mechanisms affect the 

join performance. The fine-grained join performance evaluation not 

only tell which join algorithm is better but also discover the join 

performance patterns on heterogeneous processor platforms with 

strengthen and weakness regions. These systematic evaluations can 

give valuable advice on how to choose proper join algorithm 

according to hardware characteristics and table size.  

5.1  Dataset 
We have used multiple datasets for comprehensive performance 

evaluations. For join performance evaluation, the size of the S table 

was set to 600 000 000 rows, whose scale is same to that of TPC-H 

and SSB with Scale Factor=100. SF=100 is the smallest dataset for 

OLAP benchmark in early time, so the join performance can be 

referenced for in-memory database benchmark evaluations. For 

CCJB testing, we set the size of the R table to proportions of cache 

size, such as 25%, 50%, 75%, …, 200% of L1, L2, L3 cache size. 

By varying R table size, we can measure how join performance is 

dominated by cache locality. For the benchmark evaluations, we set 

the sizes of R and S to the sizes of the dimension table and the fact 

table in SSB, TPC-H, TPC-DS respectively. By dataset size 

designs, we can evaluate join performance with industry 

application scenarios, so that the conclusions can be more valuable 

for database systematic designs and optimizations. 

5.2  Update overhead 
For OLAP workloads, updates on dimensional attributes (non-

primary key attributes) have no effects on surrogate key index; 

insertions on dimension table and fact table have little effects on 

surrogate key index; deletions on fact table have no effects on 

surrogate key index, deletions on dimension table are rarely 

occurred for the foreign key reference constraints. Update on 

surrogate key index may be invoked for a long time when deletions 

on dimension are more than certain threshold. 

For SSB and TPC-H, we simulate the updates on dimension tables 

with update ratio step 10% from 0 to 100%. By comparing the 

average update time and original AIR time, we find that small 

dimension is fast in updating and is sensitive to update ratios while 

big dimension spends more time on updating and less sensitive to 

update ratios. In SSB update tests, the dimension tables date, 

supplier, part and customer are average 1.765, 1.768, 1.532, and 

1.519 times of original AIR processing time. In TPC-H update tests, 

the tables customer, supplier, part, partsupp and orders are average 

1.441, 1.550, 1.402, 1.136 and 1.122 times of original AIR time. 

The update overhead of surrogate key index is lower than 

traditional hash joins. 

As mentioned in section 3.3, we use TPC-DS to simulate logical 

surrogate key index performance. For 13 foreign key referencing 

tables (dimension tables and referenced store_return fact table), 

logical surrogate key index mechanism spends average 1.15% more 

time than physical surrogate key index oriented AIR. For detailed 

analysis, the average logical surrogate key index oriented building 

phase spends 149.87% more time than physical surrogate key index 

oriented building phase, this is because build phase of AIR occupies 

only average 0.82% execution time of whole AIR processing. 

The OLAP workload features guarantee that updates for surrogate 

key index are not frequently invoked operations, the vector 

referencing oriented update operation and logical surrogate key 

index provide high update performance. 

5.3  Platforms 
The experiments were performed on a DELL Power Edge R730 

server with two Intel Xeon E5-2650 v3 @ 2.30GHz CPUs and 512 

GB DDR3 main memory. Each CPU has 10 cores and 20 physical 

threads. The OS is CentOS, and the Linux kernel version is 2.6.32-

431.el6.x86_64. The gcc compiler version is 4.4.7. The server is 

equipped with an Intel Xeon Phi 5110P coprocessor, which has 60 

cores and 240 threads. The Phi processor has 8 GB on-board 

memory with bandwidth of 320 GB/s. Moreover, the server is also 

equipped with a NVIDIA Tesla K80 GPU, with 4992 cuda cores 

and 24 GB GDDR5 on-board memory. The bandwidth of GPU 

memory is around 480 GB/s. 

We used the open source code from [2] for hash join performance 

testing. It contains a hardware-conscious join algorithm (PRO) and 

a hardware-oblivious join algorithm (NPO). AIR algorithm in [12] 

is easily to be implemented inside the hash join source code, we 

just replace the shared hash table of NPO with shared vector, and 

the hash probing is also replaced by address probing on vector by 

key of S table. We disable knuth_shuffle function for generating 

table R to guarantee the key to be surrogate key index. The 

performance is evaluated with cycles-per-tuple as [1] and [2]. We 

configure NUM_PASSES 2 and NUM_RADIX_BITS 14 

parameters for PRO which experimentally yields the best cache 

residency for our CPU hardware configuration, and we run the NPO 

        

 

Figure 15. Join algorithms performance of AIR, NPO, PRO with different vector sizes and widths 
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and PRO algorithm on CPU platform to verify that the performance 

is similar to the results of [1] to guarantee the optimal 

configurations. Note that PRO is obviously low performance than 

NPO for joins with small hash tables, we perform the complete test 

to discover exactly when PRO begins to outperform NPO. 

For Phi performance evaluation, we compile the source code with 

icc for Phi version. The Phi version of NPO and PRO algorithms 

uses the open source code from [6]. As CPU and Phi have different 

frequency, we use ns-per-tuple to evaluate performance as [6]. For 

GPU tests, we use AIR algorithm to evaluate join performance 

because AIR can be considered as hardware-oblivious and schema-

conscious join algorithm, AIR is also the tailored NPO join 

algorithm with PRIMARY KEY AUTOINCREMENT constraint, 

compression on payload, and configuring BUCKET_SIZE=1. 

Compared with NPO, the simple structure and address probing also 

enable AIR to be platform-oblivious design for different 

characteristic processors. The AIR algorithm is programmed with 

cuda language, table R, S and vector are implemented with int type 

arrays, we use pinned memory to allocate GPU memory for high 

performance. In experiments, we configure BLOCK_NUM 16 and 

THREAD_NUM 512 parameters for optimized cuda kernel 

functions, the join results are merged in shared memory of GPU. 

5.4  Cache-Conscious Join Benchmark  
For the experiments with cache-conscious join benchmark, we 

design a group of join scripts with different R sizes, in which vector 

sizes in AIR are set in proportion with the L1(32KB), L2(256KB), 

and L3 cache slice(2.5MB) size, the maximal 2000% L3 slice 

denotes vector size is 2 times of LLC size. NPO and PRO use hash 

table to store tuples in table R. The hash table size is larger than 

surrogate vector used by AIR.  

Figure 15 gives performance curves of the AIR, NPO and PRO join 

algorithms. NPO’s performance curve can be clearly divided into 3 

stages: when the hash table size is smaller than the cache size (L1, 

L2, L3 cache slice), the number of CPU cycles consumed by each 

tuple is pretty low; when the hash table size is larger than a L3 cache 

slice (2.5MB), the number of CPU cycles-per-tuple begins to rise 

as remote cache access is required; when the hash table is larger 

than the entire L3 cache, each hash probing may involve one or 

more cache misses, resulting in a large number of CPU cycles-per-

tuple. The hardware-oblivious NPO algorithm is sensitive to hash 

table size, and it can automatically achieve good performance with 

small size of R table. PRO’s performance curve in Figure 15 is 

almost constant. The size of the R relation does not affect the cache 

efficiency severely, due to the employment of data partitioning can 

guarantee in-cache hash building and probing. Therefore, the 

hardware-conscious PRO algorithm is not sensitive to table size. 

The AIR algorithm can be considered as a new hardware-oblivious 

algorithm with schema-conscious design. The performance curve 

of AIR algorithm in Figure 15 appears quite like NPO but much 

flatter. AIR is also sensitive to the surrogate vector size when the R 

table is small. When the R table is large, the number of cycles-per-

tuple rises more slowly than NPO. Nevertheless, its overall 

performance is always better than that of NPO and PRO. 

The size of the surrogate vector is an important factor to dominate 

the performance of AIR. It is usually in proportion with the width 

of the surrogate key. Figure 15 also shows the performance curves 

of AIR algorithm where we set the type of the surrogate key to 

int_8, int_16 and int_32 respectively. For wider surrogate vector, 

the rising up stage comes earlier, then cycles-per-tuple value still 

remains slowly increasing. When surrogate vector size exceeds L3 

cache slice, AIR with different vector width has similar 

performance. 

The width of surrogate vector defines the cardinality of projected 

attributes. For example, the cardinality of grouping attributes in one 

dimension table is commonly lower than 255 in SSB and TPC-H, 

for example, the maximal grouping size of SSB with 4 dimensions 

is 800. With compression technique, we can reduce surrogate key 

size to int_8. [12] proposed a systematic in-memory OLAP 

approach with AIR, and had proved that the int_8 vector can satisfy 

the whole SSB queries. In the following experiments, we set 

surrogate vector type to int_8 as default, and the AIR algorithm can 

represent the ultimate performance of hardware-oblivious join 

algorithm with schema-conscious optimizations to simplify hash 

table and hash probing overhead including compression and 

surrogate key index. 

AIR algorithm employs one-to-one map between dimension table 

and surrogate key vector, queries with different selectivity use the 

fixed length vector with different distributions of NULL cells. Hash 

join builds hash table for tuples filtered by predicates, highly 

selective query on big table may produce small hash table which 

can achieve high performance with NPO algorithm.  

For query optimizer, the performance curves in Figure 15 can be 

used as an optimization rule to choose the best join algorithm for 

given query. Let V denote vector size, let s denote selectivity, for a 

query with selectivity s, we can get y-axis values by x-axis value V 

and V*s on AIR and NPO performance curves. By comparing the 

y-axis values, we can choose the best join algorithm. A rough 

observation from Figure 15 is that if vector size V exceeds 1000% 

L3 cache slice (25*220 rows) and V*s is lower than 25% L3 cache 

slice (0.625*220 rows), i.e. selectivity is lower than 2.5%, we should 

choose NPO algorithm opposite to AIR as better choice.  

The performance curves of cache-conscious join benchmark 

discovered how join performance is influenced by cache locality 

ratio. The join performance can also be modeled as a smooth curve 

dominated by several key performance points, and the performance 

curve can be used to predicate join performance instead of 

traditional evaluation oriented cost model. 

As the conclusion of this subsection, within 50*220-row tables, AIR 

algorithm outperforms PRO algorithm. NPO algorithm is preferred 

for tables larger than 25*220 rows and with very low selectivity 

(lower than 2.5%), AIR algorithm is preferred for queries either 

with high selectivity (larger than 2.5%) or with small table sizes 

(smaller than 50*220 rows). 

5.5  Benchmark evaluation 
We used workload A and workload B from [2] to evaluate the 

performance of join. In workload A, relation R has 16*220 tuples 

and relation S has 256*220 tuples to simulate a big table joining with 

a small table. In workload B, both relation R and S have 128*106 

tuples to simulate two big table join. Considering the use of 

surrogate key on dimension tables and the common application of 

dictionary compression, we set the key and payload attributes of the 

R and S table to int_32, resulting in a 4-byte/4-byte tuple structure.  

Workload A conducts join between a large table and a small table. 

In the experiments, we kept increasing sizes of R and S with the 

same proportion, until reaching the maximal surrogate key value of 
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R. As shown in Figure 16, NPO and PRO show the stable 

performance, while AIR slowly decreases performance as the size 

of R increases for surrogate vector size becomes larger than LLC 

size. When the dataset is large enough, the performance of AIR, 

NPO and PRO all become stable, as caching is no longer effective 

to AIR and NPO at this stage. According to the metric of cycles-

per-tuple, NPO is about 2.3 and 3.6 times as costly as PRO and 

AIR. 

Workload B conducts join between two large tables, where R and S 

both contain 128 million rows. We kept increasing the sizes of R 

and S until the surrogate key of R reaches the maximal value. The 

experimental results in Figure 17 show that NPO and AIR perform 

constantly as the sizes of R and S increase, while PRO's 

performance deteriorates slowly for the increasing overhead of 

partitioning. For Workload B, NPO is about 1.3 and 3.9 times as 

costly as PRO and AIR. The performance gap between NPO and 

PRO shrinks in this workload, while the performance gap between 

NPO and AIR grows wider. 

To get a deeper insight, we further measure the execution time of 

the different stages of the join algorithms. Figure 18 shows the 

breakdown of the execution time of AIR, NPO and PRO. We can 

see that PRO achieves the shortest probing time at the cost of data 

partitioning. AIR's probing time is higher than that of PRO but 

much lower than that of NPO, as it can achieve high code efficiency 

by leveraging the surrogate key based index, the overhead of vector 

generation for AIR is also lower than the overhead of building 

shared hash table in NPO. NPO's hash probing is slow, due to both 

cache misses and the cost of hash key processing overhead. 

Furthermore, benchmarks like SSB, TPC-H and TPC-DS are used 

to measure the performance of data warehouse workloads. We 

 

Figure 16. Join performance for AIR, NPO and PRO 

with workload A 

 

Figure 17. Join performance for AIR, NPO and PRO with 

workload B 

 

Figure 18. Breakdown of join execution time 
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Table 2. Join benchmark for SSB 

SSB SF=100 Cycles/tuple 

Tables Dimension Fact Table AIR NPO PRO 

date 2555 600000000 0.614 0.704 4.2459 

supplier 200000 600000000 0.609 1.0634 4.3465 

part 1528771 600000000 0.7283 3.2204 4.3372 

customer 3000000 600000000 0.7367 6.4965 4.3479 
 

SF=200 AIR NPO PRO 

date 2555 1200000000 0.6096 0.7027 4.313 

supplier 400000 1200000000 0.7005 1.0438 4.3342 

part 1728771 1200000000 0.7274 3.2871 4.3297 

customer 6000000 1200000000 0.7387 8.3506 4.3763 
 

SF=300 AIR NPO PRO 

date 2555 1800000000 0.6107 0.6967 4.1791 

supplier 600000 1800000000 0.7109 0.9238 4.2186 

part 1845764 1800000000 0.7281 3.1701 4.2174 

customer 9000000 1800000000 0.7448 9.1763 4.2557 

Table 3. Join benchmark for TPC-H 
TPC-H SF=100 Cycles/tuple 

Tables Dimension Fact Table AIR NPO PRO 

customer 15000000 150000000 0.8353 9.8735 4.9176 

supplier 1000000 600000000 0.7218 0.9672 4.3393 

part 20000000 600000000 0.7992 9.7736 4.5618 

partsupp 80000000 600000000 2.5841 10.6461 5.3588 

orders 150000000 600000000 3.0952 11.2908 5.641 
 

SF=200 AIR NPO PRO 

customer 30000000 300000000 2.5102 10.3537 4.8683 

supplier 2000000 1200000000 0.7367 3.3188 4.3356 

part 40000000 1200000000 2.4603 9.9922 4.5782 

partsupp 160000000 1200000000 3.1608 10.7107 5.4246 

orders 300000000 1200000000 3.3644 11.3414 5.9213 

 SF=300 AIR NPO PRO 

customer 45000000 450000000 2.6388 10.5868 4.8345 

supplier 3000000 1800000000 0.732 6.4765 4.3491 

part 60000000 1800000000 2.509 10.2517 4.4295 

PARTSUPP 240000000 1800000000 3.1557 10.9847 5.3094 

orders 450000000 1800000000 3.3745 11.6566 5.8831 
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measure the performance of PK – FK joins between dimension 

table and fact table in these benchmarks. The experiments target at 

finding out which is the most adaptive join algorithm for the 

representative data warehouse workloads. 

Our tests assigned row numbers to the relations R and S according 

to schemas of SSB, TPC-H and TPC-DS. We used the scale factors 

of 100, 200 and 300 in the tests. 

Table 2 shows the results of AIR, NPO and PRO with the cycles-

per-tuple metric on SSB. PRO still shows a constant performance 

at about 4.3 cycles-per-tuple for both small dimension table and 

large dimension table. NPO's performance depends on the size of 

the dimension table: it can achieve better performance than PRO 

with small dimension table, the minimal cycles-per-tuple is 0.704; 

only for the large customer table, it is slower than PRO. AIR 

outperforms both NPO and PRO in all the tests, and its maximal 

cycles-per-tuple is about 0.75. As the scale factor increases, PRO 

maintains constant performance while NPO's performance keeps 

decreasing. For the largest customer dimension table with the scale 

factor of 300, the surrogate vector of AIR is only 9 MB, which is 

smaller than the LLC size (25 MB), so that address probing on 

surrogate vector commonly occurs in cache to provide high 

performance. 

Table 3 shows the join performance for TPC-H. The 3NF oriented 

TPC-H contains some big table joins such as partsupp ⋈ lineitem, 

orders⋈lineitem. Most of dimension tables in TPC-H are larger 

than their corresponding dimension tables in SSB. Therefore, 

NPO's performance is lower than PRO's in most of the tests. AIR is 

still superior to NPO and PRO in all the tests. For the test of the 

largest join, e.g., orders⋈lineitem (SF=300), NPO is 3.46 and 1.74 

times as costly as AIR and PRO. In this test, although PRO shows 

a similar performance as AIR, it consumes 2 times as much 

memory as AIR, as it needs large intermediate space for data 

partitioning. 

TPC-DS is more complex than SSB and TPC-H, as it contains more 

dimension tables with higher complexity. On the other hand, the 

scale of its schema follows most real-world cases, that dimension 

tables grow much slower than fact table, in contrast to the fixed 

proportion between the dimension and fact tables in TPC-H and 

SSB. For the joins in TPC-DS as shown in Table 4, NPO 

outperforms PRO in most cases, due to the skewed schema with 

small dimension tables. The vector size of the biggest dimension 

table customer is 5MB, so that AIR can perform efficient in-cache 

address probing to achieve high performance. 

The industry benchmarks show schema perspective optimizations, 

e.g., denormalizing 3NF oriented TPC-H to star schema SSB to 

eliminate the costly big table join; designing multiple but small 

dimensions for fine-grained analytics, which make data warehouses 

reduce the dependency of big table join performance; using 

surrogate key to simplify foreign key join between fact table and 

dimension tables with address probing instead of key matching 

oriented hash probing. Join optimization is not only algorithm 

optimizations but also database systematic design optimizations to 

make complex operation simple and efficient. 

5.6  Evaluation for skewed data 
Skewed datasets commonly have negative influence on workload 

balance in multi-core parallel processing. For shared memory 

approaches, such as NPO using shared hash table and AIR using 

shared surrogate vector, skewed data distribution can improve the 

data locality in cache. Although skewed data result in skewed 

accessing on partitioned chunks, it imposes limited influence on 

PRO, which applies hardware-conscious in cache hash probing. 

Figure 19 gives the performance curves for AIR, NPO and PRO on 

the SSB dataset (SF=100), with a Zif factor varying from 0 to 1.75. 

AIR and PRO are not influenced by Zif factor, while NPO is 

remarkably influenced. As shown in Table 2, the maximal 

surrogate vector size of SSB (SF=100) is 3 MB (for the customer 

table). It can always fit in caches, so the skewed data distribution 

has little influence for in cache vector addressing. PRO 

intentionally partitions a big table into cache-fit small chunks, so 

that the building and hash probing are all processed in cache. 

Therefore, skewed data accesses also have little influence on PRO. 

In contrast, NPO is sensitive to skewness. When the shared hash 

table of NPO is small enough to be held in cache, e.g., the date table 

in Figure 19, the Zif factor also has little influence for NPO. When 

the hash table cannot be accommodated by the cache, skewness 

becomes beneficial to cache efficiency, e.g., the supplier, part and 

customer tables in Figure 19, the skewed distribution enables the 

“hot” dataset to be frequently accessed to improve the cache 

locality. 

Table 4. Join benchmark for TPC-DS 
TPC-DS SF=100 Cycles/tuple 

Tables Dimension 
Fact 

Table 
AIR NPO PRO 

reason 55  28795080  0.6683 0.692 4.605 

store 402  287997024  0.6241 0.6394 3.9484 

promotion 1000  287997024  0.6203 0.6075 4.305 

household_ 

dmographics 
7200  287997024  0.6142 0.6384 4.4055 

date_dim 73049  287997024  0.6176 0.9132 4.3674 

time_dim 86400  287997024  0.6175 1.1005 4.3518 

item 204000  287997024  0.6117 1.0413 4.3672 

customer_ 

address 
1000000  287997024  0.7237 0.9866 4.3885 

customer_ 

dmographics 
1920800  287997024  0.7351 3.2517 4.3886 

customer 2000000  287997024  0.7348 3.3546 4.4287 

store_returns 28795080  287997024  1.4666 10.3612 4.8286 
 

SF=300 AIR NPO PRO 

reason 60  86393244  0.6334 0.6292 4.1749 

store 804  864001869  0.6106 0.6352 3.8877 

promotion 1300  864001869  0.6121 0.6871 3.9013 

household_ 

dmographics 
7200  864001869  0.6103 0.6322 4.3374 

date_dim 73049  864001869  0.6117 0.9083 4.3125 

time_dim 86400  864001869  0.6125 1.0972 4.3295 

item 264000  864001869  0.6553 0.8901 4.3133 

customer_ 

address 
2500000  864001869  0.7366 6.5171 4.3529 

customer_ 

dmographics 
1920800  864001869  0.7289 3.4382 4.7154 

customer 5000000  864001869  0.7439 8.248 4.3391 

store_returns 86393244  864001869  2.7531 10.613 4.798 
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On TPC-H, we get the similar results. The curves of AIR and NPO 

drop remarkably as Zif factor increases for big tables, while PRO's 

curve drops slowly as shown in Figure 20. For NPO and PRO 

algorithms, when Zif factor is larger than 1, hardware-oblivious 

NPO outperforms hardware-conscious PRO. AIR is always 

superior to NPO and PRO, it also benefits from skewed dataset for 

self-adaptive higher cache locality. 

Although hardware-conscious PRO tuning algorithm to hardware 

characteristics to improve performance, it also excessively 

optimizes join algorithm for skewed data and small table scenarios, 

missing the self-adaptive feature like hardware-oblivious 

algorithms such as NPO and AIR. 

5.7  Evaluation for parallel scalability 
The speedup ratio metric measures the parallel scalability of join 

algorithm. The concerned hardware factors mainly include number 

 

Figure 21. Parallel speedup ratio for AIR, NPO and PRO with SSB dataset (SF=100) 

 

Figure 22. Parallel speedup ratio for AIR, NPO and PRO with TPC-H dataset (SF=100)   
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Figure 19. Join performance for skewed SSB data (SF=100) 

 

Figure 20. Join performance for skewed TPC-H data (SF=100) 
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of memory channels, cores and threads. The concerned software 

factors mainly include the size of the private dataset for each thread 

that can cause LLC contention and the CPU cycle consumption. 

Our testing platform was equipped with 4-channel DDR3 memory 

and two 10-core CPUs (each core supports 2 threads). 

Figure 21 shows the speedup ratio charts for SSB dataset (SF=100). 

The x-axis represents number of threads, due to the 10-core and 20- 

thread architecture, we increase threads by step=2 within 10 

threads, then use 20 threads and times of 20 threads to guarantee 

workload to be assigned to all the available threads equally. 

We can see that in the joins with small date and supplier tables, the 

minimal speedup ratio is about 4 (memory channel number) for 

AIR, and the maximal speedup ratio is around 25 (slightly more 

than core number) for NPO. In joins with large part and customer 

tables, the maximal speedup ratio of three join algorithms is around 

15 (slightly lower than core number) for PRO. 

The size of the surrogate vector for the date table is 2.6 KB and that 

for the supplier table is 200 KB. Therefore, the surrogate vector 

address probing of AIR mostly occurs within the private L1 or L2 

cache. As a result, the AIR join can be as efficient as parallel table 

scan. Thus, its maximal speedup ratio approaches 4, the number of 

memory channels. When the dimension table is small, NPO can 

achieve a high speedup ratio as its hash table can fit in the cache. 

For big dimension tables, PRO can achieve higher speedup ratio 

than NPO and AIR, due to it partitions the tables and joins each 

partition pair in parallel. Basically, the partitioning and probing 

phases of PRO are adaptive to be parallelized, and its contention 

for shared cache is lower than that of NPO and AIR. 

Figure 22 shows the speedup ratio charts of TPC-H. For joins with 

small supplier table, NPO outperforms PRO and AIR. However, 

for big table joins, NPO achieves the lowest speedup ratio of around 

5, while PRO and AIR usually achieve the maximal speedup ratio 

of around 15. PRO's speedup ratio is higher than AIR on big table. 

As a summary, PRO uses a divide-and-conquer strategy to divide 

big table into small chunks and processes small chunks in parallel. 

Its parallel scalability is constant and high, regardless of the table 

size. NPO and AIR perform accesses on shared hash table or 

shared surrogate vector. If shared hash table or surrogate vector 

is smaller than LLC, parallel threads with shared LLC accessing 

achieves high scalability; if shared hash table or surrogate vector 

size exceeds LLC size, parallel threads with shared data accesses 

produce cache misses to contend for LLC resources. Therefore, 

their scalability is not as good as that of PRO. 

5.8  Evaluation for heterogeneous platforms  
The AIR algorithm uses arrays as the main computing instruments. 

Therefore, it is easily to be implemented on the emerging 

accelerator coprocessors, such as Xeon Phi, GPU and FPGA. In this 

section, we measure the performance of the join algorithms on two 

leading coprocessor platforms. 

We used the open source from [6] as the Phi version NPO and PRO 

algorithms, and compiled the open source from [1] with embed AIR 

algorithm to Phi version for the tests. 

Figure 23 shows the results of measuring AIR, NPO and PRO's 

performance on CPU and Phi in Workload A and B of [6]. We used 

two 10-core E5-2650 v3 CPUs with 40 threads and one Phi 5110P 

coprocessor with 60 cores and 240 threads. NPO's performance on 

Phi is slightly higher than its performance on CPU. PRO's 

performance on Phi is slightly lower than its performance on CPU. 

We can say that one Xeon Phi is comparable to two Xeon CPUs for 

both NPO and PRO. In contrast, AIR's performance on CPU seems 

remarkably superior to its performance on Phi with Workload A. 

Figure 24 shows the results of join performance with SSB and TPC-

H benchmarks. Frist of all, PRO fails all the tests with SF=100 

dataset for the double memory consumption which exceeds the size 

of device memory of Phi, NPO fails for large table join in TPC-H, 

and AIR passed all the tests for its efficient vector store which is 

 

Figure 23. Join performance for AIR, NPO and PRO 

on CPU and Phi 
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Figure 24. Join performance with SSB and TPC-H 

 

Figure 25. Join performance with TPC-DS 
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enabled by surrogate key index and compression techniques of 

database. From the perspective of memory efficiency, AIR 

outperforms NPO and PRO. Considering the performance on CPU 

and Phi, we see some interesting results. AIR and NPO perform 

better on CPU than on Phi with SSB, the main reason lies in that 

the small dimension size and larger LLC size on CPU produce 

higher cache locality than on Phi. With TPC-H, except the small 

supplier table, the join performance with large table performs better 

on Phi than on CPU, the main reason lies in that simultaneous multi-

threading mechanism of Phi works when hash table size exceeds 

the cache size. For AIR algorithm, AIR on Phi outperforms on CPU 

with date and supplier tables in SSB because the vector size is 

lower than L2 cache and more threads of Phi produce higher 

performance; AIR on CPU outperforms on Phi for other tables with 

vector size larger than L2 of Phi, the larger L3 cache on CPU 

produces higher cache locality. 

Figure 25 shows the join performance with TPC-DS on CPU and 

Phi. PRO still illustrates the constant performance both on CPU and 

Phi; NPO's performance differs with different size of dimension 

tables. For small dimension tables, NPO on CPU outperforms on 

Phi, for large dimension tables, NPO on Phi outperforms on CPU. 

AIR on CPU outperforms on Phi mainly for its cache fit vector size. 

For a deeper insight, we repeated the cache-conscious join 

benchmark in section 4.3 on Phi. Phi's L2 cache is of 512 KB, while 

CPU's L2 cache size is 256 KB. CPU's L3 cache is 25 MB, while 

Phi has no L3 cache but a 30 MB shared L2 cache ring. The axis 

“Vector size of R” represents surrogate vector (int_8) size, in 

proportion with the sizes of the cache at different levels. For 

example, "25% L1 cache" represents that the surrogate vector size 

is 0.25*32 KB=8KB, the row number is 8*210. 

Figure 26 shows the performance curves of AIR, NPO and PRO on 

CPU and Phi platforms. For small tables with surrogate vector size 

lower than L2 cache (256 KB), AIR on Phi is faster than AIR on 

CPU for massive parallel threads. When surrogate vector size is 

larger than 150% of L2 (384 KB, 75% of Phi’s 512 KB L2 cache), 

CPU’s performance begins to outperform Phi's performance due to 

 

Figure 26. Join algorithms on CPU and Phi 

 

Figure 27. Join algorithms on CPU and Phi with small dataset 

 

Figure 28. Join algorithms on CPU, Xeon Phi and K80 GPU 
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the large L3 cache slice size (2.5 MB). For small R table sizes, AIR 

and NPO both have good performance, while they are quite 

different on Phi. For a small R table size whose size is lower than 

the L3 cache slice (100% L3 cache slice on Figure 26), NPO on 

CPU outperforms NPO on Phi, the major reason may be the 

performance of Phi's P54C core is lower than CPU core for either 

low frequency or missing advanced instructions like out-of-order 

execution. For a large R table, NPO on Phi outperforms NPO on 

CPU, due to its high parallelism. NPO on Phi starts to outperform 

it on CPU when row number exceeds 3.75M (150%*L3 cache 

slice), and NPO's performance is lower than PRO on CPU for most 

cases. 

Due to the limited on-board memory of Phi (8GB), PRO with 

doubled memory consumption cannot be conducted. As shown in 

Figure 26, AIR can support larger table size than NPO, as its 

surrogate vector consumes less space than the hash table of NPO. 

PRO completely fails the test, as data partitioning consumes twice 

as much space as the data itself. Therefore, PRO is not a good 

choice when memory space is scarce.  

Moreover, we reduced the dataset to SF=20 to enable all the join 

algorithms to be performed on Phi. Figure 27 shows the join 

performance with cache-conscious join benchmark, we increase the 

vector size up to shared L2 cache (60* 512KB). The performance 

curves show that NPO only outperforms PRO within small input 

cases about lower than 64K rows, PRO outperforms NPO for large 

input at the cost of double device memory consumption. AIR is 

about half of the execution cost of PRO's, and is influenced by 

vector size compared with L1 cache size, L2 private cache size, 

shared L2 cache size, and slowly increases execution cost for large 

input cases. The join performance patterns on Phi are like patterns 

on CPU, caching is still the important mechanism to improve join 

performance. NPO improves performance on Phi than on CPU by 

more threads, but still runs slower than PRO. 

Compared with x86 architecture CPU and Phi, GPU has different 

architecture. The cache is very small than CPU (128KB shared 

memory as L1 cache for 192 cuda cores within one SMX, 1.5 MB 

L2 cache for entire GPU), the small cache is not adaptive to parallel 

radix partitioning based hash join algorithm of PRO. The 

hardware-oblivious NPO can improve hash probing performance 

on GPU with the SIMT mechanism for thousands of parallel 

threads, but the hash table structure, latch mechanism for building 

hash table, branching processing for hash tuple matching must be 

carefully tuned for GPU hardware features. AIR simplifies the hash 

table structure as surrogate vector without pointer, the hash probing 

is also simplified as address probing to single vector address, so 

that AIR is adaptive to be implemented with cuda to run on GPU.  

We implemented the AIR algorithm on NVIDIA K80 GPU, AIR 

uses the fixed length surrogate vector for addressing probing, this 

design is adaptive to GPU cudamalloc function to pre-allocate 

device memory on GPU. We only measured the kernel execution 

time of AIR on the GPU. As K80 has 24 GB device memory, testing 

with various row numbers can all be executed on K80. Figure 28 

gives the join execution time (us) for AIR on CPU, AIR on Phi, 

NPO on Phi and AIR on K80. We can see the different performance 

curves of AIR on three processors. 

AIR on CPU performs well as vector size of R is lower than LLC 

size (1000%* L3 slice). AIR on Phi outperforms the other two as 

vector size of R is lower than 150% L2 cache size (75% of Phi L2 

cache, note that L2 cache size of Phi is 512KB instead of 256KB of 

CPU) for the massive parallel threads, when vector size exceeds L2 

cache (200%*L2, 512KB), the performance begins to decrease 

significantly. While AIR on K80 is relatively flat because K80 

doesn’t rely on caching mechanism instead of SIMT mechanism to 

overlap memory access latency. 

This chart discovers performance patterns of caching and 

simultaneous multi-threading mechanisms. Caching still plays the 

important role for improving join performance, the LLC size 

dominates the input relation size with high performance. Nowadays 

CPUs have limited LLC size for the limited core number, the new 

KNL processor’s 16GB HBM cache can remarkably improve join 

performance with big input relation. The first-generation Phi 

processor is less efficient for shared L2 cache with dual ring bus 

architecture, join on Phi has the highest performance but limited 

with small input size (lower than L2 cache not the shared L2 cache). 

The join performance can be improved on second-generation KNL 

Phi processor with tile architecture. For x86 processors such as 

CPU and Phi, the join performance strengthen region is cache fit 

input size, the weakness region is large input exceeding LLC. GPU 

has the input size oblivious performance pattern, join performance 

doesn’t influenced much by different input size. For large input 

size, the performance is still high. The GPU join performance 

strengthen region is large input, the weakness region is cache fit 

small input size. We can draw the conclusion that x86 processors 

is adaptive to small table join with caching mechanism to improve 

data locality and GPU is adaptive to big table join with SIMT to 

overlap memory access latency.  

As the performance curve of GPU is almost flat, less performance 

gap is left for PRO to further improve join performance, we neglect 

developing GPU based NPO and PRO baseline algorithms in this 

paper, and we will fill this blank in our future work. 

Additionally, we used GPU database MapD for baseline GPU join 

performance. In Figure 29, we can see that AIR on CPU 

outperforms AIR on GPU for SSB joins, MapD join has similar 

performance to AIR on GPU. The performance gap can be 

considered as surrogate key index performance gains against 

traditional join performance.  

Different join algorithms have special patterns under different 

workloads. Table 5 summaries the performance patterns of NPO, 

AIR and PRO algorithms with different benchmarks on different 

platforms, these patterns describe the strength and weakness 

regions of each join algorithm and can provide valuable 

information for query optimizer design. 

 

Figure 29. AIR performance with MapD join 
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Table 5. Join performance pattern comparison (SF=100) 
Algorithms CCJB SSB TPC-H TPC-DS 

N
P

O
 

CPU 
H: <512K row 

L: >2.5M row 

H: 3 dims 

L: 1 big dim 

H: 1 dim 

L: 4 dims 

H: 8 dims 

M:2 L:1 

Phi M: <128K row H:2 M:1 L:1 H: 1 M: 4 H:8 M:8 L:6 

GPU N/A N/A N/A N/A 

A
IR

 

CPU 
H: <22.5M row 

M: >25M row 
H: all H: all H: all 

Phi 
H: <256K row 

M: >512K row 
H:2 M:2 H:1 M:4 H:19 M:3 

GPU 
H:>30M row 

M:<30M row 
M H M 

P
R

O
 

CPU M: constant M: constant M: constant M: constant 

Phi Fail Fail Fail Fail 

GPU N/A N/A N/A N/A 

* H: high, M: moderate, L: low of three join candidates 

From table 5, we have the following observations: 

• The performance of hardware-oblivious join algorithms 

(NPO and AIR) is dominated by cache locality ratio, either 

reducing hash table size (simplifying hash table as efficient 

vector in AIR) or enlarging LLC size (employing KNL 

processor with large memory-side cache) can improve join 

performance, performance of different joins differs little 

within cache size input relations; 

• The performance of hardware-conscious join algorithm 

provides constant performance for different workloads, the 

strengthen region is big table join, the weakness region is 

cache-fit small table join, the performance is obtained at the 

cost of doubling memory consumption in partitioning phase; 

• With schema-conscious design, NPO is simplified as AIR by 

transforming hash probing to address probing with 

PRIMARY KEY AUTOINCREMENT constraint or 

surrogate key index, the compressed vector for data 

warehousing workloads minimizes vector size to be held in 

cache even for big table, the schema-conscious and 

hardware-oblivious AIR algorithm outperforms hardware-

conscious PRO algorithm for both performance and memory 

efficiency; 

• Database systematic optimization is another important 

perspective for improving join performance, and the well-

designed schemas reduce the costly big table joins in 

workloads, and enable the simple hardware-oblivious 

algorithms to be adaptive for OLAP workloads; 

• Considering the complex optimization techniques of hash 

join [11], the hardware-oblivious NPO algorithm is not the 

best candidate for heterogenous processors, AIR algorithm 

eliminates the optimization requirements by removing 

complex structure and processing by database systematic 

optimizations to enable AIR to be platform-oblivious design 

for heterogenous processors, the hardware-oblivious design 

should be upgraded to platform-oblivious design for the 

emerging high performance heterogenous platforms; 

• The approaches that PRO is the best join algorithm for CPU 

platform commonly emphasize the performance perspective, 

considering the coming trend of integrating large HBM on 

chip, memory efficiency plays more important roles to enable 

processor processing more data.  

6. RELATED WORK 
The debate on whether hardware-oblivious or hardware-conscious 

join algorithm is better choice remains hot topic in recent years. It 

is a dilemma that how we consider hardware in designing 

algorithm, as a white box or as a black box? [1] first systematically 

evaluates the performance of hardware-oblivious no partitioning 

join and hardware-conscious radix join, and their conclusion was 

that hardware-oblivious join algorithm performs as well as 

hardware-conscious join algorithm with simple structure and 

algorithm design. No doubt, this conclusion can dramatically 

simplify the query engine design. While [2] proposed the 

completely opposite conclusion that hardware-conscious join 

algorithm beats hardware-oblivious join algorithm with further 

optimizations. Considering the SIMD optimization technique, [9] 

compared radix join and sort-merge join with deep SIMD 

optimizations, the radix join still wins. In database 

implementations, hash join algorithm is continuously improved, 

[17] proposed concise hash table to provide a linear probing with 

100% fill factor to reduce hash table memory usage, the partitioning 

hash join is further optimized by only partitioning the build table 

and not partitioning the probe table to save memory consumption. 

These researches try to get the trade-off between high performance 

with fully partitioning and moderate performance with partial 

partitioning. And [18] developed the uniform testbed for all 

candidate join algorithms with same optimizations, datasets and 

workloads and try to give the final answer. 

The debate is further pushed to the emerging hardware accelerator 

platforms. The join algorithms of GPU version [5], Phi version 

[6][7] and FPGA version [8] are proposed to verify whether 

hardware-oblivious or hardware-conscious join algorithm is 

adaptive to hardware accelerator architectures. With the 

continuously updated optimization techniques, the conclusion 

keeps refreshing. [11] discussed hashing methods with seven 

dimensions and 20 different combinations in total, the complexity 

of hashing methods makes query optimizer design even complex. 

No partitioning join is a hardware-oblivious algorithm without 

concerning schema. Data warehouse is multidimensional model 

oriented opposite to relational mode. [12] proposed an array-store 

oriented AIR algorithm for foreign key join with PK-FK 

referencing constraint and OLAP schema-conscious design, the 

array engine gains high performance but limits the application 

scenarios. Array join in [18] has the similar consideration of [12]. 

AIR or array join algorithm can be considered as specialized NPO 

algorithm case when using PRIMARY KEY AUTOINCREMENT 

constraint or surrogate key index in dimension tables, and 

configuring BUCKET_SIZE=1. MonetDB use fetchjoin to directly 

access dense BAT with VOID, invisible-join [21] also illustrated 

how to use positional lookup (like fetchjoin) to access tuples from 

other column instead of column join. But the similar approaches are 

not employed for foreign key joins for lacking comprehensive 

mechanism to guarantee foreign key address mapping. Without the 

database systematic constraint mechanism, the array join can only 

be used for special cases. 
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Furthermore, the schema-conscious design can also simplify join 

algorithm on GPUs with simple array structure instead of complex 

hash table, and simple address probing instead of hash probing. Our 

work in this paper studied the performance of varied join 

algorithms by using the comprehensive data warehousing 

benchmarks. 

7. CONCLUSIONS 
In this paper, we re-evaluated the foreign key joins on main stream 

platforms. With cache-conscious join benchmark and industry 

benchmark testing, we discovered the join performance patterns 

with strength and weakness regions. For specified workload, the 

performance curve chart enable to accurately choose the best 

algorithm. The performance curve chart discovered the dependency 

of join performance, input size and cache size, and the cache 

locality ratio of input_size/cache_size can be used as threshold to 

predict the performance of join algorithms.  

Based on the experimental results, the main conclusion is that the 

hardware-oblivious NPO join outperforms hardware-conscious 

PRO join in most benchmark workloads with small input table size 

and hardware-conscious PRO join prefers to big table joins. 

Moreover, the hardware-oblivious NPO join can be further 

optimized with schema-conscious and OLAP workload customized 

design and address probing operation, which outperforms 

hardware-conscious PRO for all the tests. Compared with hash 

table based NPO and PRO joins, AIR algorithm proves to be high 

performance for both small table and big table joins. 

With heterogeneous processor perspective, a new performance 

issue is how to use the on-board memory efficiently. The hardware-

conscious partition-based joins decrease the utilization of on-board 

HBM for the additional partitioning memory consumption. On the 

other hand, the hardware-oblivious joins can process large 

workloads for less intermediate memory consumption. The 

hardware-oblivious and schema-conscious AIR algorithm can 

provide both high performance and high memory efficiency joins 

on GPU and Phi processors. Moreover, AIR algorithm uses simple 

vector structure and address probing operation which enables it to 

be platform-oblivious implementation for heterogeneous processor 

platforms. 

As a result, join algorithm should be designed and optimized based 

on schema features, hardware characteristics and platform 

heterogeneity to make joins efficient for workloads and the 

emerging heterogeneous architectures. As the future work, for data 

warehousing workloads, star-join is the fundamental operator for 

multidimensional operation, and we will exploit to optimize the 

join efficiency during pipelined star join. 
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